Transverse spin asymmetries at low momentum transfer at STAR

Dmitry Svirida (ITEP) for the STAR Collaboration

EDS Blois 2011

14th Workshop on Elastic and Diffractive Scattering, Qui Nhon, Vietnam,
December 15-21, 2011

Amplitudes and observables

Amplitudes and observables

$\phi_{1}(s, t)=\langle++| M|++\rangle$ spin non-flip
$\phi_{2}(s, t)=\langle++| M|--\rangle$ double spin flip
$\phi_{3}(s, t)=\langle+-| M|+-\rangle$ spin non-flip
$\phi_{4}(s, t)=\langle+-| M|-+\rangle$ double spin flip
$\phi_{5}(s, t)=\langle++| M|+-\rangle$ single spin flip
$\sigma_{\text {tot }}=\frac{4 \pi}{s} \operatorname{Im}\left\{\phi_{1}+\phi_{3}\right\}_{t=0}$
EM terms are calculable from QED

Coulomb nuclear interference

Each amplitude has hadronic and electromagnetic parts:

$$
\phi_{i}(s, t)=\phi_{i}^{E M}(s, t)+\phi_{i}^{H A D}(s, t)
$$

Main contribution to $\mathrm{A}_{\mathrm{N}}\left(\phi_{1} \square \phi_{3} \square \phi_{2}, \phi_{4}\right)$:

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{2 \pi}{s^{2}}\left\{\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}+\left|\phi_{4}\right|^{2}+4\left|\phi_{5}\right|^{2}\right\} \\
& A_{N}(s, t) \frac{d \sigma}{d t}=\frac{-4 \pi}{s^{2}} \operatorname{Im}\left\{\phi_{5}^{*}\left(\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}\right)\right\}
\end{aligned}
$$

$$
\phi_{+}^{H A D}=\left(\phi_{1}^{H A D}+\phi_{3}^{H A D}\right) / 2 \square \sigma_{t o t}
$$

Parametrization: $\phi_{5}^{\text {had }}=r_{5} \frac{\sqrt{-t}}{m_{p}} \operatorname{Im} \phi_{+}^{H A D}$

$$
A_{N N}(s, t) \frac{d \sigma}{d t}=\frac{4 \pi}{s^{2}}\left\{2\left|\phi_{5}\right|^{2}+\operatorname{Re}\left(\phi_{1}^{*} \phi_{2}-\phi_{3}^{*} \phi_{4}\right)\right\}
$$

$$
A_{N}(t)=\frac{\sqrt{-t}}{m} \frac{\left.\left[(\mu-1)(1-\rho \delta)+2\left(\delta \text { Rer }-\operatorname{Im} r_{s}\right)\right] \frac{t_{c}}{t}-2 \text { Rer }-\rho \operatorname{II} r_{\mathrm{c}}\right)}{\left(\frac{t_{c}}{t}\right)^{2}-2(\rho+\delta) \frac{t_{c}}{t}+\left(1+\rho^{2}\right)}
$$

$$
A_{S S}(s, t) \frac{d \sigma}{d t}=\frac{4 \pi}{s^{2}} \operatorname{Re}\left\{\phi_{1} \phi_{2}^{*}+\phi_{3} \phi_{4}^{*}\right\}
$$

N. H. Buttimore et. al. Phys. Rev. D59, 114010 (1999)

A_{N} measurements in the CNI region

pp Analyzing Power

Roman pots at STAR

- Scattered protons have very small transverse momentum and travel with the beam through the accelerator magnets
- Roman pots allow to get very close to the beam without breaking accelerator vacuum
- Optimal detector position is where scattered particles are already separated from the beam and their coordinate is most sensitive to the scattering angle through the machine optics
Beam transport equations relate measured position at the detector to the scattering angle.

The most significant matrix elements are $L_{\text {eff }}$, so that approximately

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{D}} \approx \mathrm{~L}^{\mathrm{x}}{ }_{\mathrm{eff}} \Theta_{\mathrm{x}}^{*} * \\
& \mathrm{y}_{\mathrm{D}} \approx \mathrm{~L}_{\mathrm{efff}} \Theta_{\mathrm{y}}^{*}
\end{aligned}
$$

Si detector package

- 4 planes of $400 \mu \mathrm{~m}$ Silicon microstrip detectors: $>4.5 \times 7.5 \mathrm{~cm}^{2}$ sensitive area
>100 um pitch $=>$ good resolution, low occupancy
$>$ Redundancy: 2 X - and 2 Y -detectors in each package
$>$ Closest proximity to the beam $\sim 10 \mathrm{~mm}$
$>8 \mathrm{~mm}$ trigger scintillator with two PMT readout
- Total 32 silicon planes by Hamamatsu Photonics in 8 packages
- Only 5 dead/noisy strips per ~14000 active strips.

Detector performance and Elastic cuts

- Accurate hit cluster selection based on individual channel pedestals, cluster width and total charge
- Excellent signal/noise ratio ~20, high detector efficiency >97\%
- Combine clusters in different planes of each side into tracks using alignment data from overlapping regions
- Convert track coordinates to IP angles using transport matrix
- Analyze the event for elasticity based on χ^{2}, number of tracks and number of contributing planes

Event counting (45 runs)	
Total in files	58344907
Elastic triggers in files	32916916
Tracks in both sides	25028096
Single track on both sides	23924753
Selected elastic events	19277607

System acceptance and -t ranges

- Full 2π acceptance in azimuth angle
- $5(-t)$ ranges up to 0.03 $(\mathrm{GeV} / \mathrm{c})^{2}$

Number of events in each $-t$-range

Elastic events angular distribution

Calculation of asymmetry A_{N}

Square root formula: don't need external normalization, acceptance asymmetry and luminosity asymmetry cancel out
We have all bunch polarization combinations: $\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow$-- can build various asymmetries
$\varepsilon_{N}(\varphi)=\frac{\left(P_{B}+P_{Y}\right) A_{N} \cos \varphi}{1+\delta(\varphi)}=\frac{\sqrt{N^{++}(\varphi) N^{--}(\pi+\varphi)}-\sqrt{N^{--}(\varphi) N^{++}(\pi+\varphi)}}{\sqrt{N^{++}(\varphi) N^{--}(\pi+\varphi)}+\sqrt{N^{--}(\varphi) N^{++}(\pi+\varphi)}}$ • $\begin{aligned} & \text { Both beams polarized - } \\ & \text { half of the statistics, but }\end{aligned}$
$\varepsilon_{N}^{B}(\varphi)=P_{B} A_{N} \cos \varphi=\frac{\sqrt{N_{B}^{+}(\varphi) N_{B}^{-}(\pi+\varphi)}-\sqrt{N_{B}^{-}(\varphi) N_{B}^{+}(\pi+\varphi)}}{\sqrt{N_{B}^{+}(\varphi) N_{B}^{-}(\pi+\varphi)}+\sqrt{N_{B}^{-}(\varphi) N_{B}^{+}(\pi+\varphi)}}$ - One beam polarized, the other 'unpolarized' full statistics, but effect is only $\sim \mathrm{P}_{\mathrm{B}}\left(\right.$ or $\left.\mathrm{P}_{\mathrm{Y}}\right)$
$\varepsilon_{N}^{\prime}(\varphi)=\frac{\left(P_{B}-P_{Y}\right) A_{N} \cos \varphi}{1-\delta(\varphi)}=\frac{\sqrt{N^{+-}(\varphi) N^{-+}(\pi+\varphi)}-\sqrt{N^{-+}(\varphi) N^{+-}(\pi+\varphi)}}{\sqrt{N^{+-}(\varphi) N^{-+}(\pi+\varphi)}+\sqrt{N^{-+}(\varphi) N^{+-}(\pi+\varphi)}}$

- Opposite relative polarization - effect $\sim\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{Y}}\right)$ should be close to 0 - systematics check
where $\delta(\varphi)=P_{B} P_{Y}\left(A_{N N} \cos ^{2} \varphi+A_{S S} \sin ^{2} \varphi\right)<0.01 \ll 1$
Beam polarization: $\mathrm{P}_{\mathrm{B}}=0.602 \pm 0.026 \quad \mathrm{P}_{\mathrm{Y}}=0.618 \pm 0.028 \quad \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{Y}}=0.372 \pm 0.023$

$$
\left(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{Y}}\right)=1.221 \pm 0.038, \quad\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{Y}}\right)=-0.016 \pm 0.038=0.013\left(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{Y}}\right)
$$

A_{N} results and r_{5} estimates

Normalization and ε_{N} systematics checks

-Normalization is based on "inelastic" event counts assuming their negligible polarization dependence
-Two independent STAR subsystems, both having 2π acceptance for forward particles in east and west:

BBC - beam-beam counters VPD - vertex position detector
 spin combination, $\mathrm{V}^{+/-}$-- normalization factor from BBC/VPD

	statistics	V^{++}	V^{+-}	V^{-+}	V^{--}	stat σ
VPD	38246243	0.24544	0.24676	0.24940	0.25839	0.00028
BBC	449686340	0.24512	0.24595	0.25028	0.25864	0.00008
average		0.24528	0.24636	0.24984	0.25852	

$$
\varepsilon_{N}^{N}(\varphi)=\frac{\left(P_{B}+P_{Y}\right) A_{N} \cos \varphi}{1+\delta(\varphi)}=\frac{K^{++}(\varphi)-K^{--}(\varphi)}{K^{++}(\varphi)+K^{--}(\varphi)}
$$

$\cdot \mathrm{V}^{+/-}$differs beyond statistical error (0.25%) for VPD/BBC - two different physics processes \Rightarrow average

- Asymmetry value in good agreement \Rightarrow
- Small systematic errors
- High normalization quality - but may not be good enough for $\mathrm{A}_{\mathrm{NN}} \& \mathrm{~A}_{\mathrm{SS}}$

$A_{N N}$ and $A_{\text {SS }}$

-Cannot use square root formula - have to rely on normalized counts $\mathrm{K}^{+/-}$

$$
\begin{aligned}
& \varepsilon_{N N}(\varphi)=P_{B} P_{Y}\left(A_{N N} \cos ^{2} \varphi+A_{S S} \sin ^{2} \varphi\right)= \\
& =\frac{\left(K^{++}(\varphi)+K^{--}(\varphi)\right)-\left(K^{+-}(\varphi)+K^{-+}(\varphi)\right)}{\left(K^{++}(\varphi)+K^{--}(\varphi)\right)+\left(K^{+-}(\varphi)+K^{-+}(\varphi)\right)}
\end{aligned}
$$

-Double spin effects are seen and not consistent with 0

Double spin asymmetry

- Both A_{NN} and A_{SS} are very small $\sim 10^{-3}$ (except for the lowest t-range where larger systematic shifts may occur)
- Need better systematic error studies - current normalization uncertainties are of the order of the effect

Conclusions and plans

SUMMARY

- Roman Pots installed at STAR IR and integrated into STAR detector for low t studies
- $\sim 20 \cdot 10^{6}$ elastic events recorded in 40 hours of data taking in 5 days with RPs in 2009 at $V_{\mathrm{s}}=200 \mathrm{GeV}$ and special machine optics $\beta^{*}=21 \mathrm{~m}$
- Excellent detector performance provides extremely clean data set
- Single spin asymmetry A_{N} obtained with unprecedented 2% accuracy in $5 t$-ranges
- No significant contribution of hadronic spin-flip amplitude seen: $r_{5} \sim 0$
- Double spin effects are seen, but need more accurate normalization studies

THE WAY TO THE FINAL RESULT

- Accurate MC simulations of transport and comparison with data - done
- Finalize detector alignment based on data and MC - done
- Derive final values of systematic uncertainties in $-t, \mathrm{~A}_{\mathrm{N}}, \mathrm{r}_{5}$ - in progress
- Normalization studies for double spin asymmetries - in progress.

FURTHER PLANS

- Measurements of A_{LL} at $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$ - longitudinal polarization is possible with STAR spin rotators
- Measurements at $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}: \sigma_{\text {TOT }}$, diffraction cone slope $\mathrm{b}, \mathrm{A}_{\mathrm{N}}\left({\left.\text { expect } \mathrm{r}_{5} \sim 0\right)}\right.$)

