

Transverse spin asymmetries at low momentum transfer at STAR

Dmitry Svirida (ITEP) for the STAR Collaboration

14th Workshop on Elastic and Diffractive Scattering, Qui Nhon, Vietnam, December 15-21, 2011

Amplitudes and observables

 $\phi_1(s,t) = \langle ++ | M | ++ \rangle$ spin non-flip $\phi_2(s,t) = \langle ++ | M | -- \rangle$ double spin flip $\phi_3(s,t) = \langle +-|M|+-\rangle$ spin non-flip $\phi_4(s,t) = \langle +- | M | -+ \rangle$ double spin flip $\phi_5(s,t) = \langle ++ | M | +- \rangle$ single spin flip

 $\sigma_{tot} = \frac{4\pi}{s} \operatorname{Im} \left\{ \phi_1 + \phi_3 \right\}_{t=0}$

Coulomb nuclear interference

Each amplitude has hadronic and electromagnetic parts:

$$\phi_{i}\left(s,t\right) = \phi_{i}^{EM}\left(s,t\right) + \phi_{i}^{HAD}\left(s,t\right)$$

Main contribution to A_N ($\phi_1 \Box \phi_3 \Box \phi_2, \phi_4$):

$$A_{N}(s,t) \frac{d\sigma}{dt} \approx \frac{-8\pi}{s^{2}} \operatorname{Im} \left\{ \phi_{5}^{EM*} \phi_{+}^{HAD} + \phi_{5}^{HAD*} \phi_{+}^{EM} \right\}$$

e calculable from QED ?

EM terms are calculable from QED

$$\frac{d\sigma}{dt} = \frac{2\pi}{s^2} \left\{ |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2 \right\}$$

$$A_{N}(s,t)\frac{d\sigma}{dt} = \frac{-4\pi}{s^{2}} \operatorname{Im}\left\{\phi_{5}^{*}\left(\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}\right)\right\}$$

$$A_{NN}(s,t)\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \left\{ 2\left|\phi_5\right|^2 + \operatorname{Re}\left(\phi_1^*\phi_2 - \phi_3^*\phi_4\right) \right\}$$

$$A_{SS}(s,t)\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \operatorname{Re}\left\{\phi_1\phi_2^* + \phi_3\phi_4^*\right\}$$

$$\phi_{+}^{HAD} = (\phi_{1}^{HAD} + \phi_{3}^{HAD}) / 2 \Box \sigma_{tot}$$

Parametrization: $\phi_5^{had} = r_5 \frac{\sqrt{-t}}{m} \operatorname{Im} \phi_+^{HAD}$

$$\mathbf{A}_{N}(t) = \frac{\sqrt{-t}}{m} \frac{\left[(\mu - 1)(1 - \rho \ \delta) + 2(\delta(\mathbf{Re} \ r_{5}) - (\mathbf{Im} \ r_{5}))\right] \frac{t_{c}}{t} - 2(\mathbf{Re} \ r_{5}) - \rho(\mathbf{Im} \ r_{5})}{\left(\frac{t_{c}}{t}\right)^{2} - 2(\rho + \delta)\frac{t_{c}}{t} + (1 + \rho^{2})}$$

N. H. Buttimore *et. al.* Phys. Rev. D59, 114010 (1999)

 A_N measurements in the CNI region

Roman pots at STAR

- Scattered protons have very small transverse momentum and travel with the beam through the accelerator magnets
- Roman pots allow to get very close to the beam without breaking accelerator vacuum
- Optimal detector position is where scattered particles are already separated from the beam and their coordinate is most sensitive to the scattering angle through the machine optics

Beam transport equations relate measured position at the detector to the scattering angle.

$$\begin{bmatrix} x_{D} \\ \Theta_{D}^{x} \\ y_{D} \\ \Theta_{D}^{y} \end{bmatrix} = \begin{bmatrix} a_{11} \begin{pmatrix} L_{eff}^{x} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} \begin{pmatrix} L_{eff}^{y} \\ e_{eff} \end{pmatrix} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ y_{0} \\ \Theta_{y}^{*} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ y_{0} \\ \Theta_{y}^{*} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ y_{0} \\ \Theta_{y}^{*} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ y_{0} \\ \Theta_{y}^{*} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \varphi_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y}^{*} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{x}^{*} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y}^{*} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y}^{*} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y}^{*} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \text{Position}} \begin{bmatrix} x_{0} \\ \Theta_{y} \\ \Theta_{y} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \mathbb{C} } \xrightarrow{x_{0}, y_{0} : \mathbb{C} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \mathbb{C} } \xrightarrow{x_{0}, y_{0} : \mathbb{C} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \mathbb{C} \end{bmatrix} \xrightarrow{x_{0}, y_{0} : \mathbb{C} } \xrightarrow{x_{0}, y_{0} : \mathbb{C} } \xrightarrow{x_{0}, y_{0} : \mathbb{C} \end{bmatrix} \xrightarrow{x_{0}, y_{0}$$

 $_{0}$, y_{0} : Position at interaction point D_{x}^{*} , Θ_{y}^{*} : Scattering angle at IP $_{D}$, y_{D} : Position at detector D_{D}^{*} , Θ_{D}^{y} : Angle at detector

The most significant matrix elements are L_{eff} , so that approximately $x_D \approx L^x_{eff} \Theta_x^*$ $y_D \approx L^y_{eff} \Theta_y^*$

In the tunnel

Integration of RPs with STAR for RUN-2009:

- STAR Trigger system
- STAR Data aquiition system
- STAR BBC or VPD for normalization

• Additional opportunities for other goals – central production etc.

Detector performance and Elastic cuts

- Accurate hit cluster selection based on individual channel pedestals, cluster width and total charge
- Excellent signal/noise ratio ~20, high detector efficiency >97%
- Combine clusters in different planes of each side into tracks using alignment data from overlapping regions
- Convert track coordinates to IP angles using <u>transport matrix</u>
- Analyze the event for elasticity based on χ^2 , number of tracks and number of contributing planes

Event counting (45 runs)					
Total in files	58344 <mark>907</mark>				
Elastic triggers in files	32916 <mark>91</mark> 6				
Tracks in both sides	25 <mark>028</mark> 096				
Single track on both sides	23 <mark>92475</mark> 3				
Selected elastic events	19 <mark>277</mark> 607				

EDS Blois 2011

System acceptance and *-t* ranges

Dmitry Svirida for the STAR Collaboration

8

Square root formula: don't need external normalization, acceptance asymmetry and luminosity asymmetry cancel out We have all bunch polarization combinations: $\uparrow\uparrow$, $\uparrow\downarrow$, $\downarrow\uparrow$, $\downarrow\downarrow$ -- can build various asymmetries

$$\varepsilon_{N}(\varphi) = \frac{(P_{B} + P_{Y})A_{N}\cos\varphi}{1 + \delta(\varphi)} = \frac{\sqrt{N^{++}(\varphi)N^{--}(\pi + \varphi)} - \sqrt{N^{--}(\varphi)N^{++}(\pi + \varphi)}}{\sqrt{N^{++}(\varphi)N^{--}(\pi + \varphi)} + \sqrt{N^{--}(\varphi)N^{++}(\pi + \varphi)}}$$

$$\varepsilon_{N}^{B}(\varphi) = P_{B}A_{N}\cos\varphi = \frac{\sqrt{N_{B}^{+}(\varphi)N_{B}^{-}(\pi+\varphi)} - \sqrt{N_{B}^{-}(\varphi)N_{B}^{+}(\pi+\varphi)}}{\sqrt{N_{B}^{+}(\varphi)N_{B}^{-}(\pi+\varphi)} + \sqrt{N_{B}^{-}(\varphi)N_{B}^{+}(\pi+\varphi)}}$$

$$\mathcal{E}'_{N}(\varphi) = \frac{(P_{B} - P_{Y})A_{N}\cos\varphi}{1 - \delta(\varphi)} = \frac{\sqrt{N^{+-}(\varphi)N^{-+}(\pi + \varphi)} - \sqrt{N^{-+}(\varphi)N^{+-}(\pi + \varphi)}}{\sqrt{N^{+-}(\varphi)N^{-+}(\pi + \varphi)} + \sqrt{N^{-+}(\varphi)N^{+-}(\pi + \varphi)}}$$

- •Both beams polarized half of the statistics, but effect ~ (P_B+P_Y)
- •One beam polarized, the other 'unpolarized' – full statistics, but effect is only $\sim P_B$ (or P_Y)
- •Opposite relative polarization – effect ~ (P_B-P_Y) should be close to 0 – systematics check

where $\delta(\varphi) = P_B P_Y (A_{NN} \cos^2 \varphi + A_{SS} \sin^2 \varphi) < 0.01 << 1$

Beam polarization: $P_B = 0.602 \pm 0.026 P_Y = 0.618 \pm 0.028 P_B P_Y = 0.372 \pm 0.023$ $(P_B + P_Y) = 1.221 \pm 0.038, (P_B - P_Y) = -0.016 \pm 0.038 = 0.013(P_B + P_Y)$

Dmitry Svirida for the STAR Collaboration

A_N results and r_5 estimates

- No significant contribution of hadronic spin-flip amplitude: $r_5 \sim 0$
- Accuracy improved ~20 times compared to pp2pp (2003)

Normalization and ε_N systematics checks

- •Normalization is based on "inelastic" event counts assuming their negligible polarization dependence
- •Two independent STAR subsystems, both having 2π acceptance for forward particles in east and west:

BBC – beam-beam counters VPD – vertex position detector

•Normalized counts: $K^{+/-} = N^{+/-}/V^{+/-}$, $N^{+/-}$ -- elastic event counts for a certain spin combination, $V^{+/-}$ -- normalization factor from BBC/VPD

	statistics	V++	V+-	V ⁻⁺	V	stat σ
VPD	38246243	0.24544	0.24676	0.24940	0.25839	0.00028
BBC	449686340	0.24512	0.24595	0.25028	0.25864	0.00008
average		0.24528	0.24636	0.24984	0.25852	

$$\mathcal{E}_{N}^{N}(\varphi) = \frac{(P_{B} + P_{Y})A_{N}\cos\varphi}{1 + \delta(\varphi)} = \frac{K^{++}(\varphi) - K^{--}(\varphi)}{K^{++}(\varphi) + K^{--}(\varphi)}$$

- •V^{+/-} differs beyond statistical error (0.25%) for VPD/BBC – two different physics processes \Rightarrow average
- •Asymmetry value in good agreement \Rightarrow
 - Small systematic errors
 - •High normalization quality but may not be good enough for $A_{NN} \& A_{SS}$

A_{NN} and A_{SS}

•Cannot use square root formula – have to rely on normalized counts $K^{+/-}$

$$\varepsilon_{NN}(\varphi) = P_B P_Y(A_{NN} \cos^2 \varphi + A_{SS} \sin^2 \varphi) =$$

=
$$\frac{(K^{++}(\varphi) + K^{--}(\varphi)) - (K^{+-}(\varphi) + K^{-+}(\varphi))}{(K^{++}(\varphi) + K^{--}(\varphi)) + (K^{+-}(\varphi) + K^{-+}(\varphi))}$$

•Double spin effects are seen and not consistent with 0

- •Both A_{NN} and A_{SS} are very small ~10⁻³ (except for the lowest *t*-range where larger systematic shifts may occur)
- •Need better systematic error studies – current normalization uncertainties are of the order of the effect

Conclusions and plans

SUMMARY

- Roman Pots installed at STAR IR and integrated into STAR detector for low *t* studies
- ~20.10⁶ elastic events recorded in 40 hours of data taking in 5 days with RPs in 2009 at $\sqrt{s}=200$ GeV and special machine optics $\beta^*=21$ m
- Excellent detector performance provides extremely clean data set
- Single spin asymmetry A_N obtained with unprecedented 2% accuracy in 5 *t*-ranges
- No significant contribution of hadronic spin-flip amplitude seen: $r_5 \sim 0$
- Double spin effects are seen, but need more accurate normalization studies

THE WAY TO THE FINAL RESULT

- Accurate MC simulations of transport and comparison with data done
- Finalize detector alignment based on data and MC done
- Derive final values of systematic uncertainties in -t, A_N , r_5 in progress
- Normalization studies for double spin asymmetries in progress.

FURTHER PLANS

- Measurements of A_{LL} at $\sqrt{s}=200$ GeV longitudinal polarization is possible with STAR spin rotators
- Measurements at $\sqrt{s}=500$ GeV: σ_{TOT} , diffraction cone slope b, A_N (expect $r_5 \sim 0$)

