

Propagation of Ultra-highenergy Cosmic Rays

Hajime Takami Max Planck Institute for Physics

Ultra-high-energy Cosmic Rays

One of the biggest mysteries in modern astrophysics

<u>Plausible Sources</u> ~ extragalactic sources only extreme environments in the Universe

- Active galaxies with rel. jets Hypernova / NS-NS merger • Most energetic bursts
- Largest energy budgets

 Strongly magnetized neutron stars (NSs) Strongest magnets

Largest structures

Physics on UHECR Propagation

The 14th EDS Blois Workshop @ Qui nhon, Vietnam, Dec. 15-21, 2011

UHECR Composition

UHECR composition is a controversial issue at present.

Composition seems to change light to heavy nuclei gradually.

elescope Array 850 Preliminary 800 <X.....> 750 700 QGSJET-II QGSJET-0 650 BYLL GSJET-I **OGSJET-0** 60 19.2 19.4 19.6 19.8 18.2 18.4 18.6 18.8 19 log(E/eV) TA Collaboration (2011)

Almost protons even at the highest energies (since the last point consists of just one event, so it could be interpreted as a fluctuation.)

Possibilities

- \checkmark Due to methods to estimate X_{max}?
- \checkmark Astronomical difference between northern and southern sky?

Uncertainty on hadronic interaction models changes interpretations.

 \rightarrow LHCf, ...

Deflection by the Galactic Magnetic Field

Cosmic Abundance

 \rightarrow Cosmic-ray composition implies the environment of sources.

The composition gradually changes via interactions with ambient matter/photons. \rightarrow propagation studies

UHECR Source Candidate Classes

Other Motivations of Propagation Studies

<u>Spectrum</u>

- \checkmark Required energy budget ~ 10⁴⁴ erg Mpc⁻³ yr⁻¹
- ✓ How are source spectra?
- \checkmark What composition explains the spectra?

Arrival Directions

- \checkmark Where are UHECR sources? (astronomy)
- \checkmark Statistical Properties \rightarrow Constraints on sources

Secondary neutrinos / y-rays

✓ Diffuse background flux
 ✓ cosmic history of UHECR sources
 ✓ GCR/EGCR transition HT et al. (2009)
 ✓ Diffuse γ-rays could be a foreground of possible dark matter annihilation signals

Abreu et al. (2010)

Interactions of Protons

The 14th EDS Blois Workshop @ Qui nhon, Vietnam, Dec. 15-21, 2011

Interactions of Heavy Nuclei

Spectral Shape

From a source

- ✓ CMB photons suppress flux above 10²⁰ eV within ~100Mpc (GZK mechanism)
- ✓ Bethe-Heitler process makes a spectral bump for cosmologically distant (~ its attenuation length) sources.

Total spectrum

- ✓ Features mentioned above appear because it is superposition of individual source spectra
- ✓ Ion dominated composition produces the spectrum above the ankle too, but Fe should be dominated because of the threshold of photo-disintegration.

Intergalactic Magnetic Field

Local matter is distributed with structures.

<u>Galaxies in local Universe</u>

Magnetic fields are also structured commonly in simulations, but their results depend on the modeling of magnetic field amplification.

Future magnetic field surveys will increase our knowledge of IGMF.

Arrival Distribution of UHE protons

 \checkmark Event clusters point out the location of nearby sources

✓ This simulated the first Auger data (1672 evts @ E>10¹⁹ eV). In the data, such strong anisotropy was not be found. So, the number density of sources should be larger than 10^{-5} Mpc⁻³.

Implications to UHECR Sources

Reproducibility of anisotropy can constrain UHECR sources

Objects	n _s [Mpc⁻³]
Bright galaxy	1.3×10-2
Seyfert galaxy	1.25×10 ⁻²
Dead Quasar	5×10 ⁻⁴
Fanaroff-Riley 1	8×10 ⁻⁵
Colliding galaxies	7×10 ⁻⁷
BL Lac objects	3×10 ⁻⁷
Fanaroff-Riley 2	3×10 ⁻⁸

Transient Sources

HT & Murase (2011)

Source	Typical Rate $\rho_0 [\text{Gpc}^{-3} \text{yr}^{-1}]$
HL GRB	~ 0.1
LL GRB	~ 400
Hypernovae	~ 2000
Magnetar	~ 12000
Giant Magnetar Flare	~ 10000
Giant AGN Flare	~ 1000
SNe Ibc	~ 20000
Core Collapse SNe	120000

Murase & HT (2009)

Arrival Distribution of UHE Nuclei

Consider a pure Fe case ~ unrealistic, but a conservative case ~

Cosmogenic Neutrinos

Secondary neutrinos of UHECRs

- ✓ Background neutrino flux (i.e., summation of all the neutrinos produced by UHECRs in the Universe.
- ✓ The flux reflects the cosmic history of UHECR sources (sources at z~1 dominantly contribute).
- ✓ The neutrino flux is much lower for mixed composition than that for pure proton composition (→ indicator of composition).

^{log E [GeV]} Kotera, Allard, Olinto (2011), see also HT et al. (2009)

Detection of cosmogenic neutrinos is still a challenging topic, but it has enough benefit.

Cosmogenic y-rays

Secondary γ -rays of UHECRs

Summary

- > Propagation process connects source properties with observables.
- > The determination of UHECR composition is essential to identify unknown sources and to understand the nature of UHECR sources.
- Secondary neutrinos / γ-rays play complementary roles to approach UHECR sources

Galactic Magnetic Field

Faraday rotation measurements well constrain the structure of GMF, but there is still uncertainty.

Galactic plane

axisymmetric (AS) / bisymmetric (BS) Sofue & Fujimoto (1983), Stanev (1997) Halo

```
exponential decay with ~kpc
e.g., Sun et al. (2010)
Asymmetric (A-) / Symmetric (S-)
```

Turbulent field

0.5-2 times as large as coherent components Beck (2000)

z-component

evidence of B_z near the solar system dipole? (no direct evidence)

Correlation between Sources and UHECRs

E_p > 6 × 10¹⁹ eV, n_s=10⁻⁴Mpc⁻³ E_{max}=10²¹ eV, 200 evts, steady