

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE

Daniel Tapia Takaki

On behalf of the ALICE Collaboration

Rencontres du Viet Nam: **14th Workshop on Elastic and Diffractive Scattering** (EDS Blois Workshop) Frontiers of QCD: From Puzzles to Discoveries Qui Nhon, Vietnam, 15-21 December 2011

Plan of this talk

- •Ultra-Peripheral (heavy-ion) Collisions
 - What are UPC
 - Why at the LHC
 - Why at ALICE

Performance results by ALICE

- Trigger strategy
- Evidence of vector meson photo-production in UPC
- Distinguishing different production components

Outlook

Why ultra-peripheral heavy-ion collisions

Two ions (or protons) pass by each other with impact parameters b > 2R

Number of photons scales like Z^2 for a single source \Rightarrow exclusive particle production in heavy-ion collisions dominated by electromagnetic interactions.

In Pb+Pb collisions at 5.5 TeV R. Bruce et al., Phys.Rev. 12 071002 (2009)

$$\sigma$$
(hadronic) ~ 8b

σ(EMD) ~ 226 b

Similar studies can be done for p-Pb See talk by D. D'enterria CERN, 17/10/2011

RHIC results by PHENIX

Energy dependence

A big jump in energy ...

At RHIC: W,max ~ 34 GeV

At HERA: W,max ~ 300 GeV

H1: A. Aktas *et al*. Eur.Phys. J.C46:585-603,2006 ZEUS:S. Chekanov et al., Nucl. Phys. B695 (2004) 3. A. Martin et al. Phys.Lett. B 662:252-258, 2008

At LHC: $W_{\gamma N}$, max reaches up to 950 GeV !

Why J/ ψ photoproduction at LHC

Probe the gluon distribution of the nuclei Total J/ ψ cross section: 23 mb (STARLIGHT) v 10.3 mb Strikman, Zhalov, et al.

$$\frac{d\sigma_{\gamma T \to J/\psi T}(t=0)}{dt} = \frac{16\Gamma_{ee}\pi^3}{3\alpha_{em}M_{J/\psi}^5} \left[\alpha_s(\mu^2)xG_T(x,\mu^2)\right]^2$$

At leading order perturbative QCD, it depends quadratically on the gluon distribution

STARLIGHT: S.R.Klein, J.Nystrand Phys. Rev. C 60 (1999) 014903. L. Frankfurt, M. Strikman, M. Zhalov Phys. Lett. B 626 (2005) 72. V.P. Goncalves, M.V.T. Machado Phys. Rev. C 84 (2011) 011902.

New at the LHC: Dependence on neutron emission

Using Zero Degree Calorimeters (ZDC) it is possible to select coherent production with ion excitation, where neutrons are emitted from at least one of the nuclei

XnXn: emission of several neutrons; **On1n and OnXn:** excitation and decay of one of the ions, and **OnOn:** no neutron emission

ArXiv:1109.0737, Sept 2011

14th Workshop on Elastic and Diffractive Scattering – Qui Nhon, Vietnam 20 Dec 2011 **Daniel Tapia Takaki**

Quarkonia measurements at ALICE

Baniel Tapia Takaki 14th Workshop on Elastic and Diffractive Scattering – Qui Nhon, Vietnam 8 20 Dec 2011

2010 analysis

ALICE triggers in 2010 Pb running

<u>3 UPC triggers were active in 2010:</u>

1. TOF-only trigger >= 2 hits in TOF

2. TOF + SPD + VZERO trigger:
>= 2 hits in TOF + >= 2 hits in SPD
+ veto on both VZERO detectors

3. Muon arm + VZERO trigger: at least one muon candidate + veto on VZERO-A

The UPC triggers sensitive to a variety of final states: $\gamma\gamma \rightarrow e^+e^-, \gamma\gamma \rightarrow \mu^+\mu^-, \gamma\gamma \rightarrow f_2(1270) \rightarrow \pi^+\pi^-, \gamma IP \rightarrow J/\Psi \rightarrow e^+e^-$ etc.

detectors at several rapidities ~ 8 units of rapidity \rightarrow both online and offline selections

Exclusive J/ ψ candidates at ALICE

Inclusive reaction in Pb+Pb collisions at 2.76 TeV

Exclusive reaction in UPC Pb+Pb collisions at 2.76 TeV

Exclusive J/ψ production

Two tracks in otherwise an empty detector

ALICE allows a rapidity dependence study!

Rapidity dependence

STARLIGHT simulations for coherent J/ψ

Three J/ ψ analyses are possible at ALICE:

Both dileptons (muons or electrons) at central rapidity, -0.9<y<0.9 Both muons at forward rapidity, -4.0 <y< -2.5 One forward muon and the other at mid-rapidity

 J/ψ can be reconstructed down to zero P_{t}

Performance results – 2010 Pb+Pb data

After background subtraction No particle ID was applied

Coherent production?!

STARLIGHT gives for coherent $\sigma = 23$ mb, and $\sigma = 11$ mb for incoherent. So, roughly 2/3 for coherent and 1/3 for incoherent. The rapidity distribution is wider for the incoherent part, so in the muon arm the fraction of incoherent should be a bit larger.

<u>Strikman, Tverskoy, Zhalov (PLB 626 (2005) 72)</u> found that 85% of the incoherent J/ ψ should have a signal in one of the ZDCs. For coherent J/ ψ it is only about 28%

To be confirmed by ZDC analysis ...

Daniel Tapia Takaki 14th Workshop on Elastic and Diffractive Scattering – Qui Nhon, Vietnam 20 Dec 2011

Neutron emission – 2010 Pb+Pb data

16 20 Dec 2011

14th Workshop on Elastic and Diffractive Scattering – Qui Nhon, Vietnam **Daniel Tapia Takaki**

2011 analysis

ALICE triggers in 2011 Pb running

2 **UPC triggers were active in 2011:**

Central rapidity: TOF trigger requiring a hit multiplicity to be between 2 and 6, vetoing signals from both VZERO detectors, and with at least 2 hits in SPD. In addition, at least one of the triggered tracks by TOF has the angular correlation $150 < \Delta \phi < 180$ degrees

~8 M central barrel UPC triggers collected in 2011

Forward rapidity: Same as in 2010. Muon arm + VZERO trigger: at least one muon candidate + veto on VZERO-A.

~ 3.4 M muon UPC triggers collected in 2011

Collected statistics:

an order of magnitude larger than in 2010

J/ψ at central rapidity – 2011 Pb+Pb data

Particle ID by TPC, for muons Gaussian fit At least one track has a P_{+} larger than 1 GeV/*c*

J/ ψ at forward rapidity – 2011 Pb+Pb data

MUON in coincidence with VZERO-C, but VZERO-A vetoed

For the moment, no veto at central rapidity

20

Veto activity on VZERO-C outside muon acceptance Exactly two good tracks in the muon acceptance Both tracks match the trigger At least one track has a $P_t > 1$ GeV/c

One more thing ...

ρ^0 production at central rapidity – 2010 data

Exclusive photoproduction of $\rho^0 \rightarrow \pi^+\pi^-$ is the dominant channel

Total cross section: 3.9 b.

S.R. Klein, J. Nystrand Phys. Rev. C 60 (1999) 014903

ALICE Acceptance: \approx 9%.

Uncorrected M_{inv} distribution of events in the low p_T peak indicates ρ^0 production.

Both invariant mass and transverse momentum are described by STARLIGHT simulations

Mid-rapidity $\leftrightarrow \gamma$ -nucleon CM energy $W_{\gamma p} = 45 \text{ GeV}$ Earlier measurements with fixed target electron beams $W_{\gamma p} = 3 - 4 \text{ GeV}$ and by STAR at RHIC $W_{\gamma p} = 12.5 \text{ GeV}.$

ρ^0 photo-production at central rapidity – 2010 data

- Coherent production characterised by low transverse momentum of the final state, determined by the nuclear form factor, $p_T < \approx 100 \text{ MeV/c.}$

- STAR results: arXiv:1107.4630 [nucl-ex] Jul 2011

23

ρ^0 photo-production at central rapidity – 2010 data

- Coherent production characterised by low transverse momentum of the final state, determined by the nuclear form factor, $p_T < \approx 100 \text{ MeV/c.}$

Results after requiring no neutron emission using ZDCs, *i.e.* No neutron breakup

24

 Next step: Determine ρ⁰ photoproduction cross section

Summary

The ALICE experiment allows the study of vector meson photoproduction in ultra-peripheral nucleus-nucleus collisions. Large rapidity gaps can be defined. ρ^0 , J/ Ψ were already observed.

Exclusive J/ Ψ is being studied by ALICE at both central and forward rapidity ---> access to info on gluon density

2011 statistics: a order of magnitude larger than in 2010.

Outlook

Measurements of absolute and differential cross sections Study of ρ^0 , J/ Ψ as a function of neutron emission Similar studies in proton-proton collisions are also ongoing

Additional slides

Coherent production?!

STARLIGHT gives for coherent $\sigma = 23$ mb, and $\sigma = 11$ mb for incoherent. So, roughly 2/3 for coherent and 1/3 for incoherent. The rapidity distribution is wider for the incoherent part, so in the muon arm the fraction of incoherent should be a bit larger.

Further discrimination between coherent and incoherent production can be obtained by using the ZDCs.

<u>Strikman, Tverskoy, Zhalov (PLB 626 (2005)</u> <u>72)</u> found that 85% of the incoherent J/ ψ should have a signal in one of the ZDCs. For coherent J/ ψ it is only about 28%

27

To be confirmed by ZDC analysis ...

STARLIGHT

ZDC analysis

Using Zero Degree Calorimeters (ZDC) it is possible to select coherent production with ion excitation, where neutrons are emitted from at least one of the nuclei \rightarrow See C. Oppedisano's talk at Quark Matter 2011, Annecy, France

Resolution on 1n peak 20.0% ZNC, 21.2% ZNA

Plots for single electromagnetic dissociation

At leading order perturbative QCD

$$\frac{d\sigma_{\gamma T \to J/\psi T}(t=0)}{dt} = \frac{16\Gamma_{ee}\pi^3}{3\alpha_{em}M_{J/\psi}^5} \left[\alpha_s(\mu^2)xG_T(x,\mu^2)\right]^2$$

- $F_{ee} =$ width of the leptonic decay
- $G_{T}(x,m^2)$ is the gluon density
- $x = M^2(J/\psi) / S_{yT}$
- $\mu^2 = M^2(J/\psi) / 4$

Note that it depends quadratically on the gluon distribution

Daniel Tapia Takaki

For the J/ ψ photoproduction off the nuclei

$$\sigma_{\gamma A \to VA}(\omega) = \frac{d\sigma_{\gamma N \to VN}(\omega, t_{min})}{dt} \left[\frac{G_A(\frac{M_V^2}{s}, Q^2)}{G_N(\frac{M_V^2}{s}, Q^2)} \right]^2 \int_{-\infty}^{t_{min}} dt \left| \int d^2 b dz e^{i\vec{q}_\perp \cdot \vec{b}} e^{-q_{\parallel} z} \rho(\vec{b}, z) \right|^2.$$

Photoproduction on nucleons

Nuclear gluon density

Nuclear form factor

Leading twist JHEP 0308 (2003) 043

 G_A/G_N can be calculated within the theory of leading twist nuclear shadowing

Main ingredients:

•Collin's factorisation theorem for hard diffraction

DGLAP evolution equations

 Nucleon diffractive PDFs from HERA give a reasonable energy dependence. PDFs are available for both LO and NLO

Daniel Tapia Takaki

Using Zero Degree Calorimeters (ZDC) it is possible to select coherent production with ion excitation, where neutrons are emitted from at least one of the nuclei \rightarrow See Chiara Oppedisano's talk at Quark Matter 2011, Annecy, France

Fitting: sum of 6 Gaussian functions: pedestal (1 free parameter, mean and normalisation fixed to zero) + 1n peak (3 free parameters) + xn peak (free normalisation, mean value = x*1n Gaussian mean, sigma)

ALICE ZDCs

ALICE neutron ZDCs (ZNs)
placed at 0° w.r.t LHC axis, ~114 m far from IP on both sides (ZNC on C side, ZNA on A side), "spaghetti" calorimeters, dimensions (7x7x100) cm³

The ZDC system is completed by:

- 2 proton calorimeters placed at ~114 m from the IP external to the beam pipe
- 2 small (7x7x21) cm³ EM calorimeters (ZEM1, ZEM2) placed at ~7.5 m from the IP, at ± 8 cm from LHC axis, only on A side covering the range 4.8< η <5.7

ZN acceptance for neutrons emitted in EMD of Pb nuclei at $\sqrt{s} = 2.76$ A TeV 99 %

DATA

Sample ♦ dedicated RUN, 2.8·10⁶ events collected Trigger ♦ OR of the ZNs ♦ same input sent to Van der Meer scan scalers Energy thresholds ♦ ZNC~500 GeV, ZNA~450 GeV (3σ below 1n mean value)

- ZNC vs. ZNA signal
 - single EMD processes

mutual EMD processes

