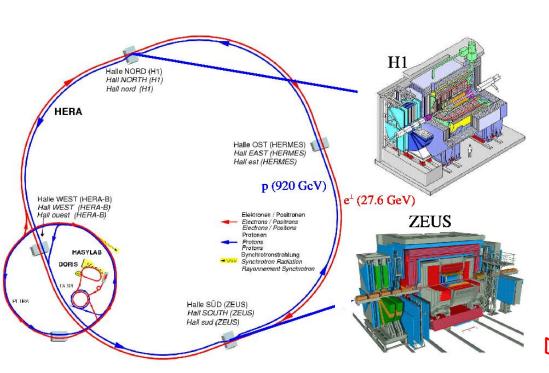
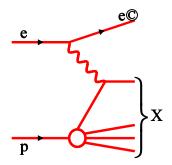
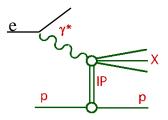
Inclusive and Dijet Diffractive Production at HERA

Alice Valkárová Charles University, Prague

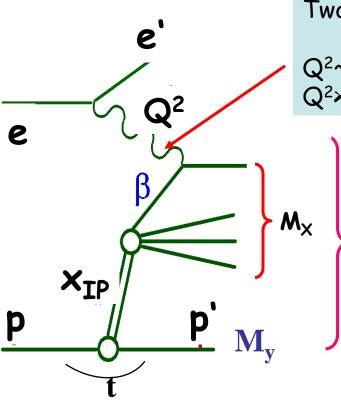
Representing H1 and ZEUS collaborations




14th EDS Workshop, Qui Nhon


HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow \sqrt{s}$ =318 GeV
- · two experiments on colliding beams: H1 and ZEUS
- HERA I,II: ~ 500 pb-1
- · closed July 2007, still excellent data to analyse......



DIS: Probe structure of proton $\rightarrow F_2$

Diffractive DIS: Probe structure of difraction $\rightarrow F_2^D$

Diffraction and diffraction kinematics

 $M_y = m_p$ proton stays intact, needs detector setup to detect protons

 $M_y > m_p$ proton dissociates, contribution should be understood

Two kinematic regions of diffractive events:

 $Q^2\sim 0$ GeV² \rightarrow photoproduction $Q^2>>0$ GeV² \rightarrow deep inelastic scattering (DIS)

HERA: ~10% of events diffractive

W

$$x_{\text{IP}} = \frac{q \cdot (p - p')}{q \cdot p} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

momentum fraction of color singlet exchange

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

fraction of exchange momentum, coupling to γ

$$\frac{t = (p - p')^2}{\text{squared}} \rightarrow \frac{\text{4-momentum transfer}}{\text{squared}}$$

Diffractive reduced cross section

y - inelasticity
$$\rightarrow$$
 1-(E'_e/E_e)

$$\frac{d^{4}\sigma(ep \to eXp)}{d\beta dQ^{2}dx_{P}dt} = \frac{4\pi\alpha_{em}^{2}}{\beta Q^{4}} (1 - y + \frac{y^{2}}{2}) \sigma_{R}^{D(4)}(\beta, Q^{2}, x_{P}, t)$$

$$\sigma_R^{D(4)} o ext{diffractive reduced cross section}$$

$$\sigma_R^{D(4)} pprox F_2^{D(4)}$$
 at low and medium y

$$\sigma_R^{D(4)} = F_2^{D(4)} - rac{y^2}{2(1-y-rac{y^2}{2})} F_L^{D(4)} \qquad \sigma_R^{D(4)} = F_2^{D(4)} ext{ if } \ F_L^{D(4)} = 0$$

$$oldsymbol{\sigma}_R^{D(4)} = oldsymbol{F}_2^{D(4)}$$
 if $oldsymbol{F}_L^{D(4)} = oldsymbol{0}$

Integrate over t when proton is not tagged $\rightarrow \sigma_{\rm R}^{\rm D(3)}(\beta, Q^2, x_{\rm P})$

Methods of diffraction selection

FPS

H1-VFPS

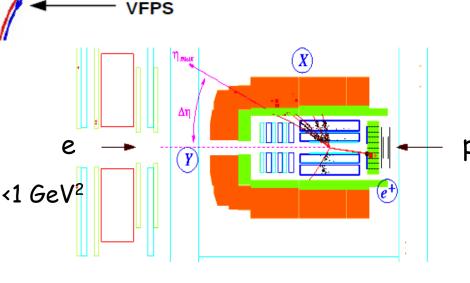
Proton spectrometers TEUS: LPS (1993-2000)

H1: VFPS (2002-2007) FPS (1997-2007)

• free of p-dissociation backg.

• X_{TP} and † measurements

• access to high x_{TP} range (IP and IR)

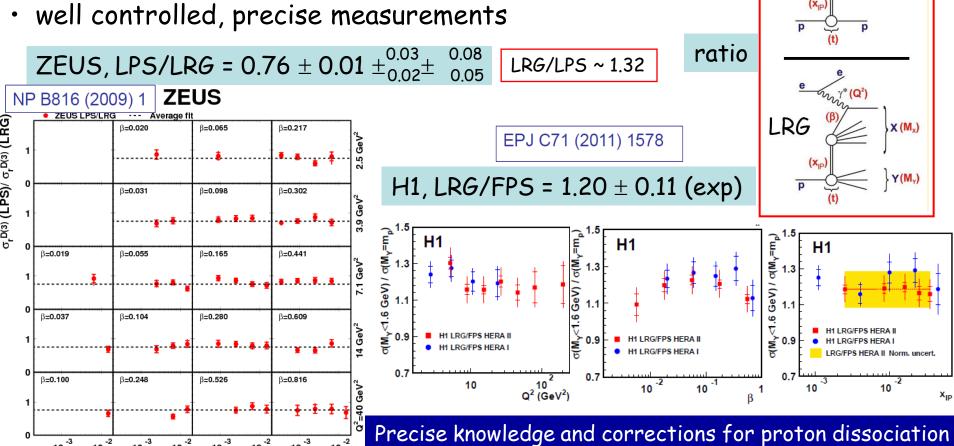

Large Rapidity Gap, H1, ZEUS:

• require no activity beyond η_{max}

*† not measured, integrated over |†|<1 GeV2

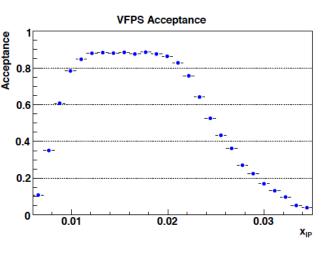
 \cdot very good acceptance at low x_{IP}

p-diss background about 20%


Different systematics - non-trivial to compare!

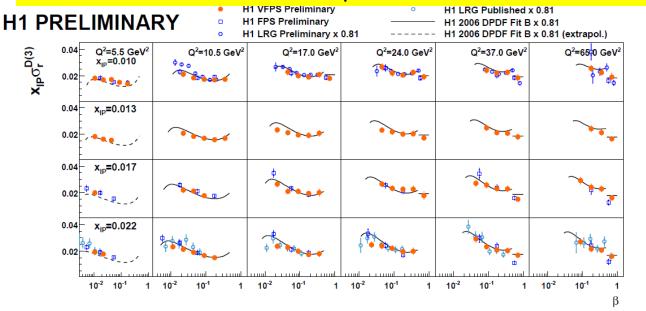
Comparison between methods

LPS


Are "rapidity gap" and "forward proton" methods compatible?

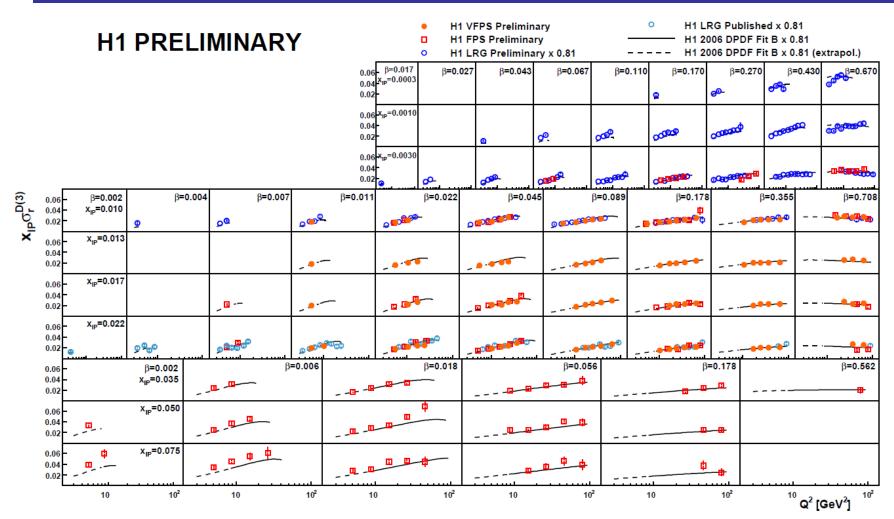
- · LRG selection contains about 20% events of proton diss.
- no significant dependence on any variable

background- key point in H1- ZEUS data comparison


H1 VFPS

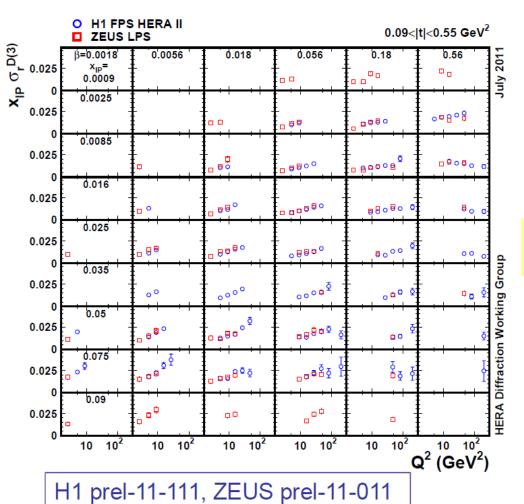
- high acceptance $\sim 90\%$ for $0.009 < x_{IP} < 0.026$ and |t| < 0.5 GeV²
- high track reconstruction efficiency ~ 96%
- low background < 2%

Calibrated using exclusive ρ production, resulting in a well understood high acceptance proton spectrometer


Reduced cross section - comparison of LRG, FPS VFPS methods

 $\sigma_r^{D(3)}$ for |t|<1 GeV²

H1 prel-10-014

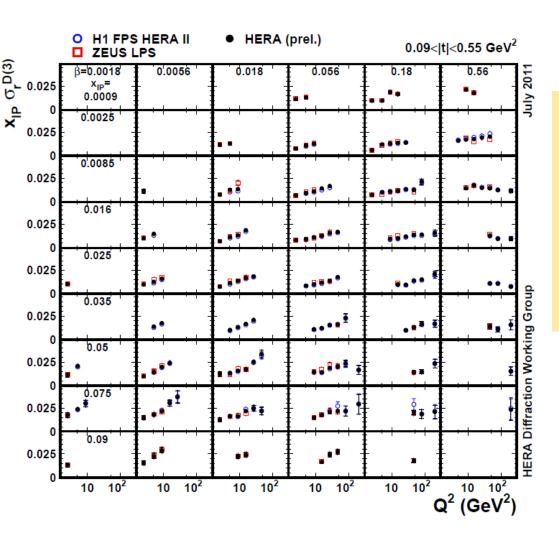

Inclusive -> VFPS & FPS & LRG

→ compilation of VFPS, FPS and LRG data vs H1 DPDF Fit B

$$\frac{\text{VFPS}}{\text{FPS}} = 0.96 \pm 0.02 \text{(stat.)} \pm 0.11 \text{(syst.)} \pm 0.08 \text{(norm.)}$$

H1 FPS & ZEUS LPS

Proton Spectrometer data in 0.09<|t|<0.55GeV²


Q²-dependence in (β, x_{IP}) bins

• H1 FPS norm. uncertainty 4.5%, ZEUS LPS norm. uncertainty 7%

H1 / ZEUS: = 0.91 +/- 0.01(stat.) +/- 0.03(syst.) +/- 0.08(norm.)

- → Reasonable agreement of H1 FPS HERA-2 and ZEUS LPS data in shape & normalisation
- → Combine H1 and ZEUS cross sections to extend phase space and reduce uncertainties

H1 FPS & ZEUS LPS

Big step forward! First combination of H1 and ZEUS diffractive data.

Two experiments calibrate each other resulting in reduction of systematic uncertainties.

Two types of factorisation

QCD factorisation holds for inclusive and non-inclusive processes:

- photon is point-like (Q² is high enough)
- higher twist corrections are negligible (M_{\times} is high enough) QCD factorisation theoretically proven for DIS (Collins 1998)

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_i} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \cdot \sigma^{\gamma^{*}i}(x, Q^{2})$$

 $f_i^D \rightarrow \text{DPDFs}$ - obey DGLAP, universal for diff. ep DIS (inclusive, dijet, charm) $\sigma^{\gamma^{*i}}$ \rightarrow universal hard scattering cross section (same as in inclusive DIS)

It allows the extraction of DPDFs from the (DIS) data

H1 and ZEUS -QCD fits assuming Regge factorisation for DPDF

For larger x_{TP} also Reggeon contribution!

$$f_i^D(x,Q^2,x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot (f_i^{IP}(\beta = x/x_{IP},Q^2))$$

$$f_{IP/p}(x_{IP},t) = \frac{e^{Bt}}{x_{IP}^{2\alpha(t)-1}}$$
 pomeron flux factor pomeron PDF

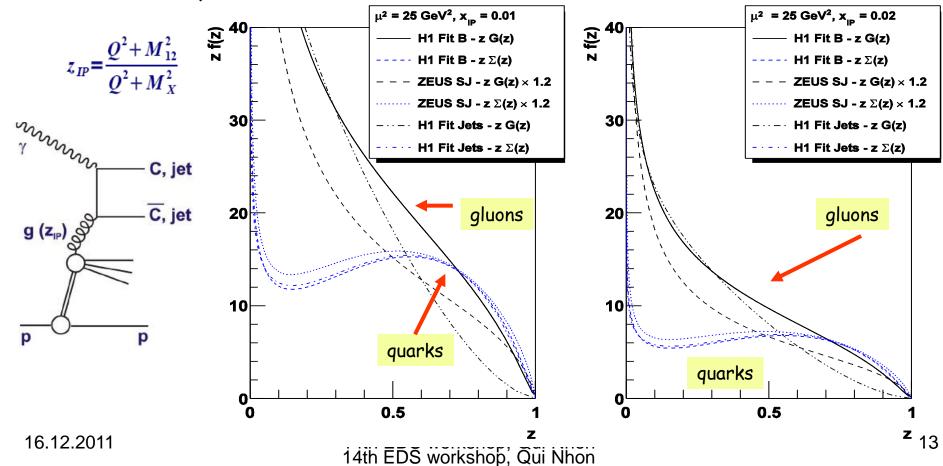
Tests of QCD factorisation

Basic strategy:

- · measure a particular diffractive final state
- compare the measurement with NLO calculation using DPDFs previously extracted

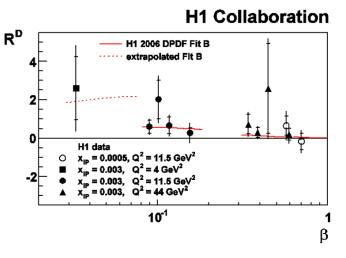
What kind of final states?

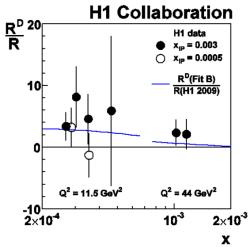
- · processes with a hard scale
- sensitive to gluons (gluons contribute by up to 80% to the DPDFs)


Factorisation confirmed for DIS dijet measurements, D* production in DIS and photoproduction (within large errors) by H1 and ZEUS.

DPDFs in DIS

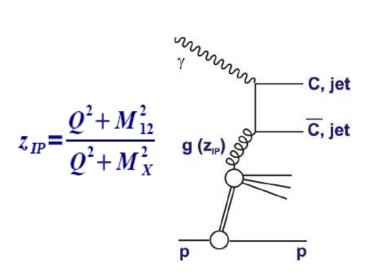
Both collaborations used in the past dijet data to improve DPDFs, mainly its gluonic part (combined inclusive & dijet QCD fits)

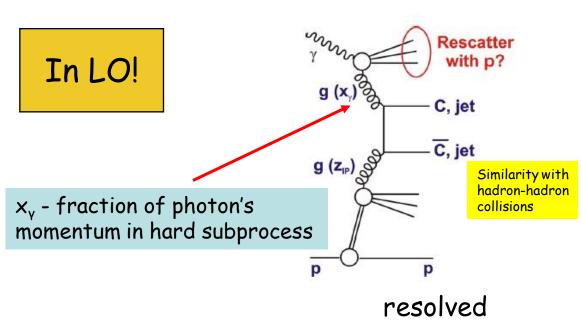

H1: JHEP,0710:042,(2007) -> H1 fit jets


ZEUS: Eur.Phys.J.C52: 83 (2007) -> ZEUS fit SJ

F_L^D structure function

$$R = \sigma_1 / \sigma_T \rightarrow F_1^D / (F_2^D - F_1^D)$$





$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1 - y + y^2/2)} F_L^{D(4)}$$

- → measure σ_R^D at fixed Q²,x_{IP},β, but different y using LRG data at different proton energies (460 GeV,575 GeV,820 GeV,920 GeV)
- → perform linear fits at different beam energies
- → analysis published for full range Q²> 2.5 GeV²
- F_2^D and F_L^D extracted in bins of Q^2, x_{IP} and β
- F₂^D and F_L^D data agree with H1 DPDF fits
- Ratio R^D to R(incl.DIS) → longitudinal component is larger in diffraction

Dijets in photoproduction, γ^*p , $Q^2 \rightarrow 0$

direct
direct photoproduction
photon directly involved in hard
scattering

 $x_v = 1$ (at parton level)

<u>hadron -like component</u>

photon fluctuates into hadronic system, which takes part in hadronic scattering

 \times_{v} < 0.2 (at parton level)

point -like component of resolved photon

dominates in the region of $0.2 < x_v < 1$

Factorisation in hadron-hadron collisions

Exporting DPDFs from HERA to Tevatron does not work

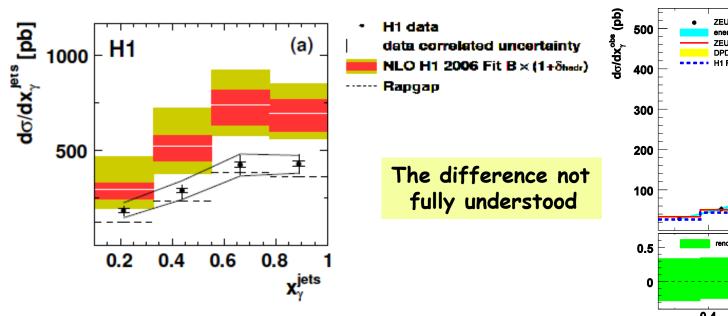
$$S^{2}=\frac{\sigma (data)}{\sigma (theory)}$$

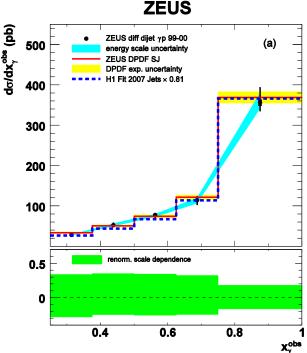
suppression factor

Factorisation broken by β -dependent factor ~ 10, S^2 ~ 0.1.

Succesfully explained in terms of rescattering and absorption (see Kaidalov, Khoze, Martin, Ryskin: Phys. Lett. B567 (2003),61)

KKMR predicted suppression factor for HERA resolved photoproduction

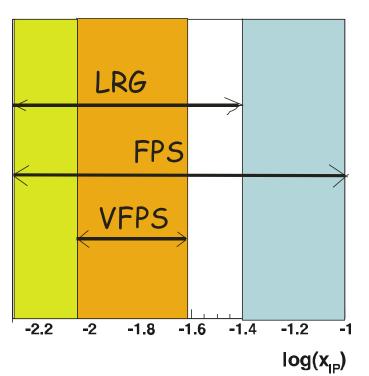

 $5^2 \sim 0.34$


```
In 2010 new theoretical prediction by KKMR: (European Journal of Physics 66,373 (2010)) Suppression 0.34 present only for hadronic part of photon PDF (x_{\gamma}<0.2), for dominant point-like component ——— suppression: quarks GRV 0.71(0.75) E_{T}^{\text{jet1}} >5 (7.5) GeV gluons GRV 0.53(0.58) E_{T}^{\text{jet1}} >5 (7.5) GeV
```

Dijets in photoproduction

Factorisation breaking observed by H1, two analyses, EPJC C51 (2007),549, – suppression ~ 0.5 EPJ C68 (2010),381 – suppression ~ 0.6

not observed by ZEUS, Nucl. Phys. B381 (2010) - no suppression ~ 1.

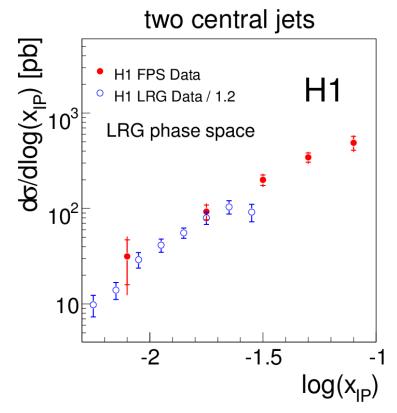


New measurements with proton spectrometers

H1 spectrometers FPS & VFPS

H1 - phase space of Large Rapidity Gap and proton spectrometers FPS and VFPS dijet measurement in $x_{\rm IP}$

Proton spectrometers cover different phase space than LRG measurements...

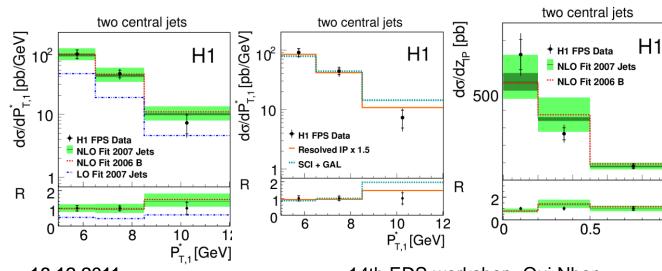

Dijet measurements - FPS

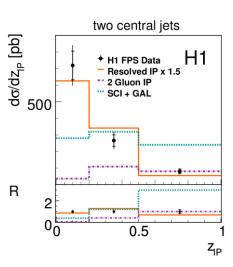
Forward proton spectrometer FPS - H1

Check of the consistency with published LRG dijet measurement - significant extension of the phase space (times 3 in x_{IP}).

$$4 < Q^{2} < 80 \text{ GeV}^{2}$$
 $0.1 < y < 0.7$
 $p_{T1}^{*} > 5.5 \text{ GeV}$
 $p_{T2}^{*} > 4 \text{ GeV}$

Both measurements are consistent in the overlapping region.

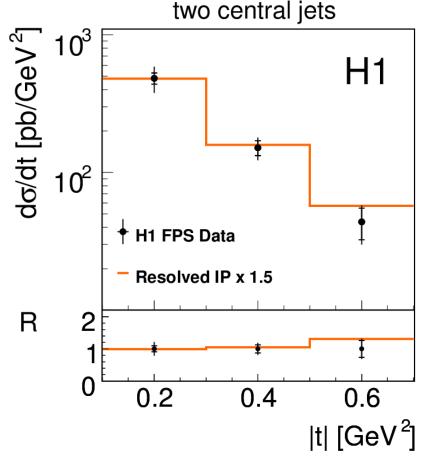

H1 FPS - two central jets -DIS


$$4 < Q^{2} < 110 \text{ GeV}^{2}$$
 $0.05 < y < 0.7$
 $X_{IP} < 0.1$
 $p_{T1}^{*} > 5 \text{ GeV}$
 $p_{T2}^{*} > 4 \text{ GeV}$
 $-1 < \eta_{1,2} < 2.5$

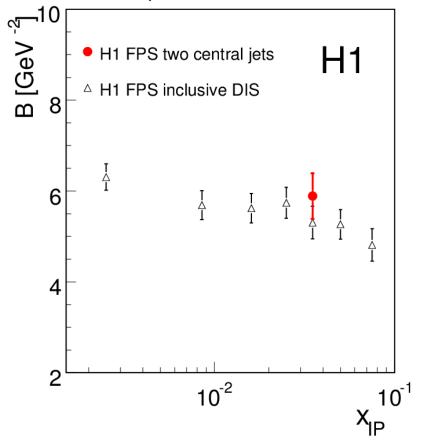
- Good general description of the data by NLO (NLOJET++) using DPDFs Fit 2006 B and 2007 Jets
- Resolved IP model in RAPGAP describes the shapes but underestimates the cross section
- Models 2 gluon IP and SCI + GAL are off

 $\sigma(\text{data}) = 254 \ 20(\text{stat}) \ 27(\text{syst}) \text{ pb}$

 $\sigma(NLO-FitB)= 270^{134}(stat) 16(syst) pb$

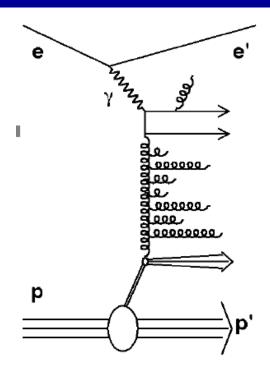


 Z_p


14th EDS workshop, Qui Nhon

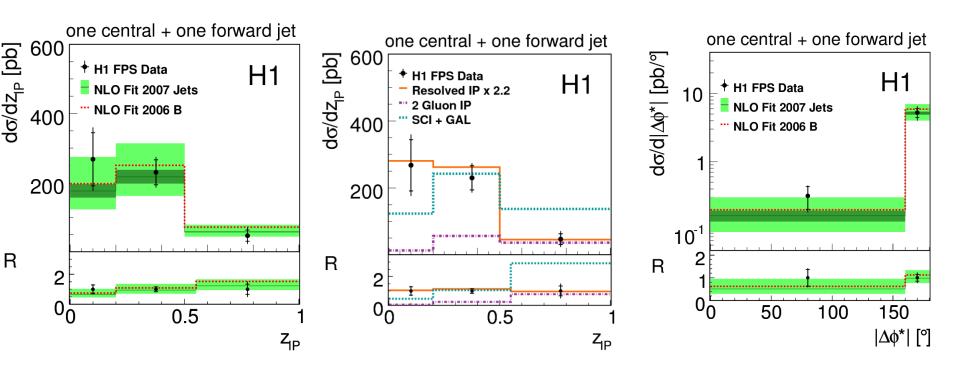
FPS - two central jets

Fit exp(Bt) B=5.89 0.50 (exp) GeV^{-2}


Results consistent with previous inclusive measurement - proton vertex factorisation holds

14th EDS workshop, Qui Nhon

FPS - diffractive forward jets

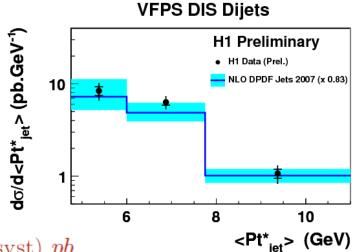

- Forward jets with leading proton in DDIS - search for physics beyond DGLAP
- the possibility to investigate the jets close to the proton direction
- the selection of 1 central + 1 forward jet
- · compared with NLOJET++ with DPDF H1 fit B


```
4 < Q<sup>2</sup> < 110 GeV<sup>2</sup>
0.05 < y < 0.7
x<sub>IP</sub> < 0.1
|†| < 1 GeV<sup>2</sup>
```

$$P^*_{T,cent}$$
, $P^*_{T,forw} > 3.5 \, GeV$
 $M_{jj} > 12 \, GeV$
 $-1 < \eta_{cent} < 2.5, 1 < \eta_{forw} < 2.8, \eta_{forw} > \eta_{cent}$

H1 FPS - diffractive forward jets

NLO based on the DGLAP approach describes data well, LO MC models are again off....(see DESY-11-166).

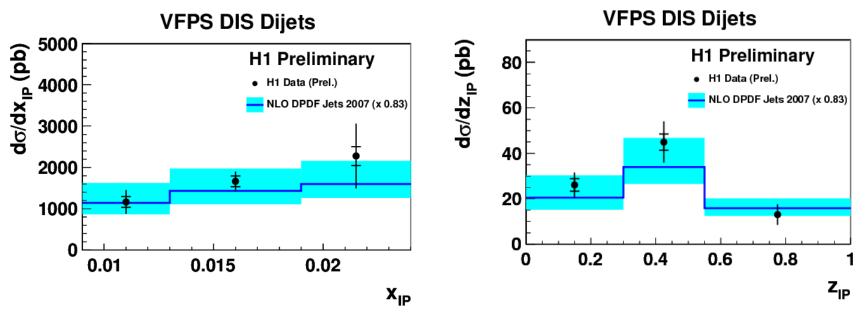

DIS - VFPS dijets

$$egin{array}{ll} 0.009 < x_{\mathbb{P}} < 0.024 \ 5 < Q^2 < 80 \; GeV^2 \ 0.1 < y < 0.65 \ -3 < \eta^*_{j1,j2} < 0 \end{array}$$

- At least 2 central jets
- Jets selected in $\gamma^* p$ frame
- $P_{t,jet1}^* > 5.5 GeV$
- $P_{t,jet2}^* > 4GeV$

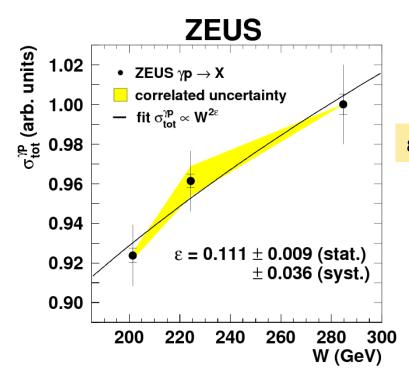
1400 events selected...

NLOjet++ calculations with H1 2007 jets DPDF (times 0.83 to account for diff.dissociation)


The total cross section:

H1 VFPS Preliminary : $25.3 \pm 1.4 \text{ (stat.)} \pm 6.5 \text{ (syst) } pb$

NLO DPDF Fit Jet 2007 : $19.9^{+7.4}_{-4.4} \pm 0.5(had.) pb$


DIS -VFPS dijets

Very good agreement of data distributions with NLO calculations in normalization and the shape.

y*p total cross section

 γ^*p total cross section measured by ZEUS for 3 values of centre-of-mass energy W, (Phys.Lett.B 697 (2011),184)

Parametrisation $\sigma_{tot}^{yp} \sim W^{2\epsilon}$

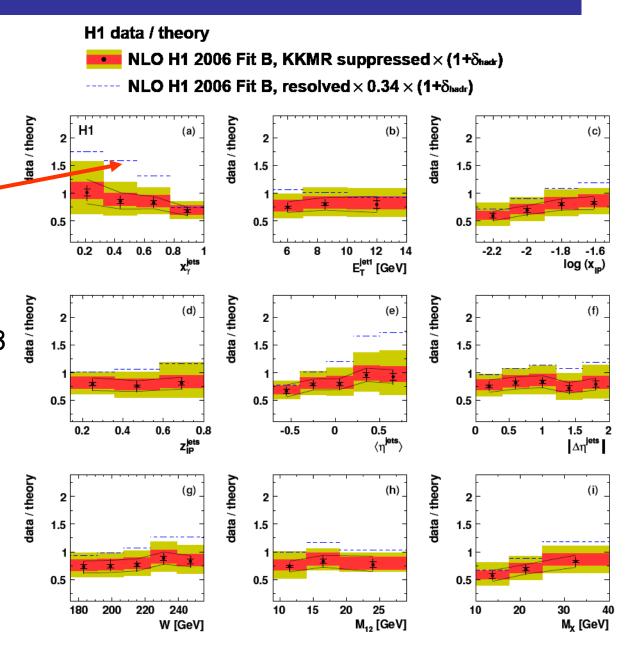
 $\varepsilon = 0.111 \pm 0.009 \text{ (stat)} \pm 0.036 \text{ (syst)}$

Reggeon contribution on the level of few percent, is compatible with the energy dependence measured in hh collisions (0.0959±0.0021) Donachie - Landshof

Conclusions

- HERA continues to provide unique diffractive data......
- · agreement in detail between different analysis methods
- combination of H1 and ZEUS diffractive data with tagged proton gives consistent results
- H1 first measurement of F_L^D
- H1 and ZEUS results for factorisation breaking in diffractive dijet photoproduction are not conclusive, new analyses desirable...
- new DIS inclusive and diffractive dijets measurements with H1 proton spectrometers FPS and VFPS:
 - * dijets in the central region described by NLO
 - * forward jets described by NLO, no evidence for beyond DGLAP contributions
- ZEUS W dependence of the total γ^*p cross section in agreement with hh collisions

Backup


Comparison with KKMR models

NLO calculations

Model KKMR 2003: resolved part suppressed by 0.34.

Model KKMR 2010: quarks suppressed by 0.71 gluons suppressed by 0.53

Model KKMR 2010 agrees with H1 data better than model 2003 but shape description is still better with global suppression.

