

Central Diffraction in ALICE

- ALICE detector
- Selection of central diffractive single/double gap events
- Central Meson production in min. bias pp-collisions at $\sqrt{s} = 7$ TeV
- Analysis of $f_0(980)$ and $f_2(1270)$ production
- A hardware L0 trigger for double gap events
- Conclusions, outlook

The ALICE experiment

Acceptance central barrel -0.9 < η < 0.9

Acceptance muon spectr. $-2.5 < \eta < -4.$

ALICE pseudorapidity acceptance

 $\rightarrow additional forward detectors$ (no particle identification) $1 < \eta < 5$ and $-4 < \eta < -1$ $\rightarrow definition of gaps \eta_+, \eta_$ p-p luminosity L = $5 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$: \rightarrow reduced prob. overlapping events diffractive L0 trigger (hardware): *Pixel or TOF mult (central barrel)* $\overline{V0A}$: gap η_+ : $3 < \eta < 5 \rightarrow \Delta \eta \sim 0.5$ $\overline{V0C}$: gap η_- : $-2 < \eta < -4 \rightarrow \Delta \eta \sim 0.5$

high level trigger (software):

 $\begin{array}{l} gap \ \eta_{+} : \ 0.9 < \eta < \ 5.1 \\ gap \ \eta_{-} : -3.7 < \eta < -0.9 \end{array} \right\} \begin{array}{l} V0\text{-FMD-} \\ SPD\text{-}TPC \end{array}$

Rainer Schicker, Uni Heidelberg

ALICE central barrel comparison to other LHC detectors

low magnetic field

η-pt acceptance

			· · · · · · · · · · · · · · · · · · ·
	Magn. field (T)	P _T cutoff GeV/c	Material x/x0 (%)
ALICE	0.2-0.5	0.1-0.25	7
ATLAS	2.0	0.5 (0.08)	20
CMS	4.0	0.75 (0.2)	30
LHCb	4Tm	0.1	3.2

 $\rightarrow low p_T trigger ?$

Rainer Schicker, Uni Heidelberg

ALICE acceptance

• ALICE acceptance matched to diffractive central production:

central C-side barrel A-side $\Delta \eta \sim 3 \ \Delta \eta \sim 2 \ \Delta \eta \sim 4$

gap	had	gap	
-----	-----	-----	--

Activity table

yes	yes	no	gap A
no	yes	no	double gap
no	yes	yes	gap C
yes	yes	yes	no gap

double pomeron

Data taking: pp @ L = $5x10^{30} \text{ cm}^{-2}\text{s} (\rightarrow \frac{d\sigma}{dy}|_{y=0} \text{ nb})$ pPb @ L = $10^{29} \text{ cm}^{-2}\text{s}^{-1}$ PbPb @ L = $10^{27} \text{ cm}^{-2}\text{s}^{-1}$

Rainer Schicker, Uni Heidelberg

Performance ALICE Time-Projection Chamber TPC

- trans. mom. resolution in TPC from analysis of cosmic muons

 particle identification in TPC by energy loss dE/dx

Rainer Schicker, Uni Heidelberg

Central Meson production in pp-collisions at $\sqrt{s} = 7$ TeV

- Data taken in 2010-2011 with minimum bias trigger
- Offline analysis event type: no gap/gap A/gap C/double gap
- Compare single/double gap events to no gap events
- Analysis of multiplicity-distribution
- Analysis of $f_0(980)$ and $f_2(1270)$ production

First analysis min bias data

 3σ cut on single gap, double gap fraction on a run basis

Rainer Schicker, Uni Heidelberg

Data sample min. bias pp-collisions at $\sqrt{s} = 7$ TeV

 Physics selection 	3.5x10 ⁸
Primary vertex	2.9x10 ⁸
• 2-track events total	3.2x10 ⁷
– no gap	3.1×10^{7}
- double gap V0 (L0 trigger)	1.6×10^{5}
 double gap V0-FMD-SPD-TPC 	2.2×10^4

Rainer Schicker, Uni Heidelberg

Multiplicity distribution

• Multiplicity distribution of gap and no gap events (good tracks)

Rainer Schicker, Uni Heidelberg

Invariant mass distribution

• Invariant mass distribution of pion pairs

distribution for double gap events unlike and like-sign pairs

like-sign corrected distribution for double and no-gap events

 \rightarrow enhanced f_0, f_2 production in double gap events

Rainer Schicker, Uni Heidelberg

Hardware double gap L0 trigger

- Hardware double gap L0 trigger for future data taking
- tested sep oct, 2011
- double gap data sample taken
 - estimated number of events about 3 times larger than from analysis of minimum bias events
 - analysis ongoing

Conclusions, outlook

- Analysis of double gap events from min. bias pp-collisions at $\sqrt{s} = 7$ TeV
 - Double gap events show different multiplicity distribution
 - Two track invariant mass distribution of double gap events can be understood as continuum plus f_0 , f_2 resonance contribution
 - f_0 , f_2 enhancement in double gap events as compared to no-gap events
- Analysis ongoing of double gap events taken with hardware L0 trigger
 - improved statistics by a factor of about 3