                                                           Final exam
                                 Physics 206, 2007
1. (6 points total) Pauli matrices.
a) (3 points) Calculate the matrix 
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 is a Pauli matrix.

b) (3 points) Calculate the matrix 
[image: image3.wmf])

2

/

]

[

cos(

x

y

s

s

p

+

, where the Pauli matrix 
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2. (4 points total) Trapped particle. A particle of mass m is confined in one dimension and moves in the potential 
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 which is given by the following equations in three regions 
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. The particle is initially localized in the region 
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 and its energy 
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 before the particle leaves the region 
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3. (10 points total) Resonant scattering. A particle of mass m with the low energy 
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 moves in a spherically symmetric potential 
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.There is a bound state 
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 in the potential 
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 is close to zero. Find the energy dependence of the total scattering cross-section. You can assume that only s-scattering is relevant.
a) (2 points) Find 
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b) (1 point) Calculate 
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c) (2 points) At 
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, express the spherically symmetric solution of the Schroedinger equation with the energy E  via the scattering phase 
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d) (2 points) Use the result of problem 3b) to find 
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e) (3 points) Calculate the scattering cross-section. 

[Hint: the scattering amplitude 
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4. (15 points total) Two-dimensional atom. Electrons are confined in two dimensions and move in the potential 
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. Due to the screening of the electrostatic interaction, the inter-electron interaction can be represented in the form
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a) (2 points) Find the degeneracy of all energy levels of the two-dimensional atom with one electron. Don’t forget the electron spin!
b) (1 point) Write down the ground state energy and all linearly independent ground state wave functions of the one-electron two-dimensional atom. 
[Hint: the ground state wave function of the one-dimensional oscillator has the form 
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c) (1 point) The same question for the first excited energy level of the one-electron atom. 
[Hint: the wave function of the first excited state of the one-dimensional oscillator has the form 
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d) (1 point) Neglecting the electron interaction, write down all linearly independent ground state wave functions for the two-electron atom.
e) (2 points) The same question for the first excited level of the two-electron atom. (How many linearly independent states are there in this level?) To make equations shorter, simply write two-particle wave-functions as combinations of single particle wave-functions.
f)  (3 points) Assume that 
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 is small and find the correction to the ground state energy of the two-electron atom in the first order perturbation theory.
g)  (5 points) The same question for all states in the first excited level. [Hint: these states are degenerate at 
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