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Tracking of the expected time to reinforcement in
temporal conditioning procedures
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In one experiment, the rate and pattern of responding (head entry into the food cup) under different
distributions of intervals between food deliveries were examined. Separate groups of rats received
fixed-time (45, 90, 180, or 360 sec), random-time (45, 90, 180, or 360 sec), or tandem fixed-time (45 or
90 sec) random-time (45 or 90 sec) schedules of reinforcement. Schedule type affected the patternofre-
sponding as a function of time, whereas mean interval duration affectedthe mean rate of responding. Re-
sponses occurred in bouts with characteristics that were invariant across conditions. Packet theory,
which assumes that the momentary probability of bout occurrence is negatively related to the condi-
tional expected time remaining until the next reinforcer, accurately predicted global and local mea-
sures of responding. The success of the model advances the prediction of multiple measures of re-
sponding across different types of time-based schedules.

The focus of empirical and theoretical developmentsin
the field of animal timing has been on the analysis of
fixed-interval performance. If arat is presented with a light
for 30 sec, after which pressing a lever will result in food
delivery, the rat will demonstrate an increasing rate of lev-
erpressing as a function of time since light onset. This re-
sponse pattern indicates that the rat has learned the dura-
tion of the light. Timing theories, such as scalar timing
theory (Gibbon & Church, 1984; Gibbon, Church, & Meck,
1984), multiple oscillator model (Church & Broadbent,
1990), behavioral theory of timing (Killeen & Fetterman,
1988), and the learning to time model (Machado, 1997),
accurately predict fixed-interval timing.

In the natural environment, events rarely occur at pre-
cise periodic intervals. The focus on fixed intervals may
fail to disclose important features of the timing system,
because it has evolved under conditions of temporal un-
certainty. In a few studies, variable-interval performance has
been examined, and these studies have indicated that ex-
ponentialrandom intervalsresultin a relatively constantrate
of responding as a function of time (Catania & Reynolds,
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1968; Church & Lacourse, 2001; Kirkpatrick & Church,
2000b; LaBarbera & Church, 1974; Libby & Church, 1975;
Lund, 1976), in contrast to the increasing response rate ob-
served with fixed intervals.

Various proposals have been made in an attempt to ex-
plain the pattern of responding under fixed and random in-
tervals. The goal is to account for the pattern of responses
as a function of the pattern of delivery of reinforcers. The
top row of functions in Figure 1 are the density functions
for three reinforcement schedules: fixed time (FT) 90, in
which food is delivered every 90 sec; random-time (RT)
90, in which food is delivered at exponentially distributed
intervals with a mean of 90 sec; and FT75-RT15, in which
food is delivered after 75 sec plus an exponentially dis-
tributed interval with a mean of 15 sec. Alternative repre-
sentations of these three density functions include the sur-
vival function, the hazard function, and the conditional
expected time function (shown in rows 2—4 of Figure 1).
Appendix A provides the definitions of these functions.

Scalar timing theory (Gibbon & Church, 1984; Gibbon
et al., 1984) assumes that responding in a fixed-interval
schedule is based on a random sample of the remembered
times of reinforcement but that responding in a variable-
interval schedule is initiated by a random sample of the
shortest remembered times of reinforcement and is termi-
nated by a random sample of the longest remembered
times of reinforcement (Brunner, Fairhurst, Stolovitzky, &
Gibbon, 1997; Brunner, Kacelnik, & Gibbon, 1996).

An alternative approach is to assume that responding
under fixed intervals is based on the density function with
added sources of variance but that responding under ran-
dom intervals is controlled by the hazard function, which
reflects the conditional probability of receiving food,

Copyright 2003 Psychonomic Society, Inc.
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Figure 1. The density, survival, hazard, and conditional expected time functions for a fixed-time
(FT) 90-sec, a random-time (RT) 90-sec, or a tandem FT75-RT15-sec interval. The horizontal axis
of each panel of the figure is the time since an event, such as stimulus onset or food delivery.

given that food, has not yet occurred (Catania & Reynolds,
1968). (See Anger, 1956, for the application of the hazard
function to interresponse time [IRT] distributionsin DRL
schedules.) As is shown in Figure 1, the hazard function
for a random interval is constant over time and, therefore,
could explain the relatively constantrate of responding that
is observed. However, a different distribution form is re-
quired for fixed-interval performance, because the hazard
function does not map onto response rate. One could use
the hazard function with added variability to explain both
fixed- and random-interval performance, but this would
lead to a departure from constancy in the random-interval
case and, therefore, would not accurately fit the data.

A third proposal has been to assume that temporal con-
trol over behavior decreases as variability increases, so that
fixed intervals exhibit strong control but (exponential)
random intervals exhibit no control over behavior (Lund,
1976).

All three approaches propose different processes in ran-
dom and fixed intervals. This leads to the unparsimonious
conclusionthat there may be multiple timing systems, each
tuned to a different distribution form. A simpler alternative
would be to assume that temporal performance is controlled
by some common aspect of different distribution forms.

In addition to an examination of the effects of variabil-
ity on responding, the present experiment provided an as-



sessment of the role of mean interval duration. Interval
duration usually is negatively related to measures of re-
sponse rate or strength (Bitterman, 1964; Black, 1963;
de Villiers & Herrnstein, 1976; Gibbon, Baldock, Locurto,
Gold, & Terrace, 1977; Herrnstein, 1970; Salafia, Terry, &
Daston, 1975; Schneiderman & Gormezano, 1964). This
relationshipis often reported to be nonlinearin form (e.g.,
Herrnstein, 1970). Predictions of the rate of responding
have traditionally required a separate explanation from
predictions of the pattern of responding in interval-based
procedures. For example, Herrnstein’s hyperbolic rule
(de Villiers & Herrnstein, 1976; Herrnstein, 1970) predicts
that the absoluterate of respondingis a nonlinear function
of the rate of reinforcement (the reciprocal of interval du-
ration). Herrnstein’s rule provides a good quantitative fit
to mean response rate data obtained under both fixed- and
random-interval schedules of reinforcement (Davison &
McCarthy, 1988), but it does not make any predictions
about the timing of responding during the interval.

The main goal of the present paper is to integrate the
effects of interval distribution form and mean interval du-
ration with a theoretical framework that also predicts
fixed-interval performance. It has been proposed that the
conditional expected time function could predict respond-
ing under both fixed- and random-interval distributions
(Kirkpatrick & Church, 2000b). Rats were trained with FT
90-sec, RT 90-sec, or tandem FT75-RT15-sec schedules
of food delivery. (In this tandem schedule, food was de-
livered after 75 sec plus a random time with a mean of
15 sec.) The form of the response rate function was nega-
tively related to the form of the conditional expected time
function (bottom of Figure 1): linearly increasing rates of
responding for FT, relatively constant response rates for
RT, and increasing response rates during the FT portion
and relatively constant response rates during the RT por-
tion of the tandem schedule.

The conditional expected time function, shown in the
bottom row of Figure 1, is the mean expected time until
the next food delivery at ¢ sec after an event. The condi-
tional expected time function is given in Equation 1,
where f(x) is the density function of the variate x (Figure 1,
top row) and S, is the survival function at time ¢ (Fig-
ure 1, second row). The density function, f(x), is the prob-
ability density of food delivery at x sec after an event. The
survival function, S, is the probability that food will not
have occurred by time ¢ in the interval:

E, = of {@}dx—r. 1)

x=t t

For simple density functions, such as the ones used in
the present experiment, the conditional expected time
function can be calculated explicitly (see Appendix A),
and for any empirical probability density function, the
conditionalexpected time function can be obtained by nu-
merical integration with the duration of the units (dx) set
at some short interval.

The expected time functions may also predict the effect
of interval duration on the mean rate of responding. The
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mean interval duration is equal to the expected time at in-
terval onset. In Figure 1, the expected time to food imme-
diately after an event (such as food or stimulus onset) is
90 sec for the FT90,RT90, and FT75-RT15 intervals. Thus,
the mean rate of responding on all three of these distribu-
tion types should be the same, even though the pattern of
responding should be different.

The present experiment attempted to expand on the
findings of Kirkpatrick and Church (2000b) by delivering
four interval durations from each of three distribution
forms: fixed, random, and tandem. The experiment as-
sessed the generality of the expected time function in pre-
dicting response rate and form across a range of interval
durations and distribution forms. If successful, a single-
process account could serve to unify a large set of empir-
ical phenomenain both classical and operant conditioning.

METHOD

Subjects

Sixty male Sprague Dawley rats (Taconic Laboratories, German-
town, NY) were housed individually in a colony room on a 12:12-h
light:dark cycle (lights off at 8:45 a.m.). Dim red lights provided il-
lumination in the colony room and the testing room during the dark
phase. The rats were fed a daily ration that consisted of 45-mg Noyes
pellets (Improved Formula A) that were delivered during the exper-
imental session and an additional 15 g of FormuLab 5008 food given
in the home cage shortly after the daily sessions. Water was available
ad lib in both the home cages and the experimental chambers. The
rats arrived in the colony at 49 days of age and began training when
they were 67 days old.

Apparatus

Each of the 12 chambers (25 X 30 X 30 cm) was located inside
of a ventilated, noise-attenuating box (74 X 38 X 60 cm). A cham-
ber was equipped with a food cup and a water bottle. A magazine pel-
let dispenser (Model ENV-203) delivered 45-mg Noyes (Improved
Formula A) pellets into the food cup. Each head entry into the food
cup was transduced by an LED photocell. The water bottle was
mounted outside the chamber; water was available through a tube
that protruded through a hole in the back wall of the chamber. Two
Gateway 486 DX2/66 computers running the Med-PC Medstate No-
tation Version 2.0 (Tatham & Zurn, 1989), controlled experimental
events and recorded the time at which events occurred with 10-msec
resolution.

Procedure

The rats received single food pellets on FT, RT, or tandem FT-RT
schedules. The pellets were delivered regardless of any behavior of
the rats. There were four FT schedules of FT45, FT90, FT 180, and
FT360 sec, four RT schedules of RT45, RT90, RT180, and RT360
sec, and four tandem schedules of FT45-RT45, FT45-RT90,
FT90-RT45, and FT90-RT90 sec. For the FT groups, food was de-
livered at regular intervals. For the RT groups, the food—food inter-
val was an exponential distribution with an appropriate mean, which
is a standard and efficient way of generating random variables!
(Evans, Hastings, & Peacock, 1993). For the FT-RT groups, food
was delivered after a fixed duration plus an exponential random du-
ration. For example, in the FT45-RT45 condition, once food was de-
livered, the next food could not occur for at least 45 sec and would
occur, on average, after 90 sec. There were no external cues to sig-
nal the fixed or random portions of the food—food interval. These in-
tervals are expressed as an FT followed by a random waiting time,
because psychologically, the fixed minimum delay would seem to
occur first. However, the schedule could be expressed as a random
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Figure 2. Bimodal distribution of interresponse times in equal
0.05-seclog;, timeintervals. The heavy lineis the best-fitting double-
Gaussian function. The dashed lines are the underlying single-
Gaussian functions. The point where the two single-Gaussian
functions cross (17.8 sec) is the optimal interresponse time crite-
rion for determining the boundaries between bouts.

duration followed by a fixed duration, because the sum of two vari-
ables is the same regardless of order.

The rats were randomly assigned to the fixed, random, and tan-
dem conditions. There were a total of 6 rats per group in the fixed
and random conditions and 3 rats per group in the tandem condi-
tions. Each session lasted for 2 h, and each group was trained until
approximately 320 reinforcements had been received. This required
2,4, 6, 8, and 16 sessions for groups that received mean interval du-
rations of 45, 90, 135, 180, and 360 sec, respectively.

Data Analysis

The time of occurrence of each head entry into the food cup (each
time the photobeam was interrupted) and the time of each food de-
livery were recorded with 10-msec accuracy. Several measures of
performance were calculated over the last half of training.

Local response rate. Local response rates were determined over
the food—food interval by calculating the number of responses (N,)
and the number of seconds of opportunity to response (O,) in each
5-sec bin following food delivery. When the intervals were fixed,
the number of seconds of opportunity to respond in each 5-sec in-
terval was equal to the total number of food—food intervals included
in the analysis; when the intervals contained a random component,
the number of seconds of opportunity to respond differed from bin
to bin. Local rate, expressed as responses per minute, was then de-
fined in each bin as 60xN, /O, .

Bout analyses. A bout should include responses that are suffi-
ciently close to constitute a run of responding, but should not in-
clude longer pauses that indicate a break in responding. Figure 2
contains the distribution of IRT's across all the rats, plotted in loga-
rithmically spaced bins. The distribution of IRTs was bimodal, with
one mode of about 1 sec, a trough of about 10—20 sec, and a second
mode of about 50 sec. The mode of short IRTs primarily contains
pauses in responding during a bout, and the mode of long IRTs con-
tains pauses between bouts.

The optimal criterion for defining bouts would lie between the
two modes, because it would include the short IRTs within the bout
but would exclude longer pauses between bouts. The optimal crite-
rion was determined using a method proposed by Tolkamp and Kyr-

iazakis (1999). First, a distribution of log IRTs was obtained (Fig-
ure 2). If responses occur in bouts, this distribution should be bimodal.
Second, the bimodal IRT distribution was fit with a double-Gaussian
(Equation 2), where p is the probability that an interresponse time
falls in the first distribution, w, is the mean of the first distribution,
o, is the standard deviation of the first distribution, w, is the mean
of the second distribution, and o, is the standard deviation of the sec-
ond distribution. The parameter settings that yielded the best fit with
an w? of .98 were p = .78, u, = 0.17, oy = 0.71, ., _ 1.66, and 0, =
0.38. The means in seconds were u; = 1.50 sec and u, = 45.86 sec.
The two underlying single distributions were determined from the
parameter settings. The cross point of the two distributions is the op-
timal criterion that minimizes the probability of misclassifying
IRTs.? For the data in Figure 2, the optimal criterion was 17.8 sec,
and the probability of misclassification was .07. Some misclassifi-
cation is unavoidable because the distributions overlap.
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‘Within each food—food interval, the start of a bout was identified
when the IRT between two consecutive responses was less than or
equal to 17.8 sec; the first response in the pair was tagged as the start
of a bout. The end of a bout was identified as the last response be-
fore a pause in responding of 17.8 sec or longer. Any number of
bouts could be identified in a food—food interval, but a bout could
not continue beyond the time that food was delivered. Responses
rarely occurred outside of bouts. Across all of the groups, the re-
sponse rate between bouts was 0.3 responses/min.

Several summary measures of the bouts were calculated: (1) the
number of responses in a bout, (2) bout duration, (3) the response
rate in a bout in responses per minute, and (4) the IRT in a bout. In
addition, analyses were conducted on the pauses between bouts, de-
fined as the time from the end of one bout until the start of the next
bout in a food—food interval; this analysis required at least two bouts
in an interval.

Probability of being in a bout. Using the start and end times for
each bout, a calculation was made of the probability of being in a
bout during each second of the food—food interval. Each 5-sec bin
during which the rat produced a bout was filled with a 1. If a bout
started at 34.8 sec and ended at 41.2 sec, the 5-sec bins starting with
30 sec and ending with 45 sec would be filled. The probability of
being in a bout was then the total number of 1s in each bin, divided
by the total number of food—food intervals.

+d-p)

RESULTS

Local Response Rates

The local rate of responding was examined for each
group to determine the effect of interval duration and dis-
tribution form on the rate and pattern of responding in
time. Figure 3 displays the response rate functions for the
groups that received fixed (top panel), random (middle
panel), or tandem (bottom panel) durations between suc-
cessive food deliveries. All of the groups produced an ini-
tial high rate of responding, probably owing to consump-
tion of the previous food pellet. Following that, there were
noticeable differences in the response rate functions. The
groups that received fixed intervals produced increasing
response rate functions, the groups that received random
intervals produced relatively constant response rate func-



20 Fixed
= 151 —— FT45
= —a— FT90
~
A —a— FT180
wn |
g 10 —— FT360
8.
wn
(0]
K5
0 T T T T T T T 1
0 45 90 135 180 225 270 315 360
Time Since Food (sec)
20 ﬂl Random
—e— RT45
= 15 4 —a— RT90
g —— RT180
@ —~— RT360
w2
o
o)
&,
5]
(0]
[

0 T T T T 7 1
0 120 240 360 480 600 720
Time Since Food (sec)
207 Tandem
—a— FT45-RT45
—o— FT45-RT90
g 154
é —a— FT90-RT45
?(,3 —s— FT90-RT90
2 104
@]
8,
wn
L
o5
&y,
0+

90 135 180 225 270 3i5 360
Time Since Food (sec)

0 45

Figure 3. Effects of interval distribution form and mean inter-
val duration on the response rate in responses/minute as a func-
tion of time since food for the fixed, random, and tandem condi-
tions.

tions, and the groups that received tandem intervals pro-
duced response rate functions that contained an increasing
portion followed by a relatively constant portion.

Overall Response Rates
Shorter intervals resulted in higher response rates than
did longer intervals. This effect is displayed more clearly
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in Figure 4, plotted on double-log coordinates, with dif-
ferent distribution forms marked by different symbols. A
mean response rate was calculated for each rat, beginning
at 21 sec after food delivery and continuing until the next
food delivery; the first 20 sec were removed because the
consumption of the food resulted in a temporary increase
in responding that was unrelated to the anticipatory re-
sponse. The points in Figure 4 are the means for the rats
in each group. The mean rates fell along a single straight-
line fit, with a slope of —0.98 and an intercept of 2.66; all
of the data points fell within the 95% confidence interval
band (dashed lines). A regression analysis was conducted
on the log response rates, with the factors of log interval
duration and distribution form, with factors entered si-
multaneously. The overall regression model was signifi-
cant [F(2,9) = 12.9, p < .01]. Log interval duration was
apredictorof log responserate [#(4) = —5.1,p <.01], but
distribution form was not [#(2) = —0.5].

Response Bouts

The local response rate curves in Figure 3 were com-
posed of many individual bouts. Figure 5 displays distri-
butions of four measures of the response bouts: the num-
ber of responses per bout (top left panel), bout duration
(bottom left panel), the IRTs in a bout’ (top right panel),
and the response rate in a bout (bottom right panel). Each
panel of the figure contains separate curves for the groups
that received fixed, random, or tandem schedules. The
curves are averaged across interval duration, which had
no effect on the shape of the curves. The means of each
measure are presented in Table 1 for individual groups. One
striking feature of Figure 5 (and Table 1) is that interval
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Figure 4. Mean response rate is negatively related to mean in-
terval duration: The mean response rate in log,, responses/min-
ute as a function of mean interval durationin log,, seconds. Each
data point is the mean of all the rats that received a particular
condition of training. The solid line through the data points s the
best-fitting straight-line regression, and the dashed lines show the
95 % confidence intervals.
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ution of interresponse times during a bout in successive 0.1-sec intervals. Bottom left panel: the probabil-
ity distribution of bout durations in successive 1-sec intervals. Bottom right panel: the probability distri-

bution of response rates in responses/minute during a bout.

distribution form and interval duration had no effect on
the characteristics of the response bouts. This was con-
firmed by an analysis of variance (ANOVA) conducted on
the mean number of responses, bout duration, response
rate, and IRTs (see Table 1), which revealed no effect of
interval duration [all F's(4,49) < 1] or distribution form [all
Fs(2,49) < 1] and no interaction [all F's(4,49) < 1].

The probability decreased geometrically as a function
of the number of responses in a bout, with a minimum of
2 responses (see the Data Analysis section) and a mean of
5.7 responses (see Table 1). The probability decreased ex-
ponentially as a function of bout duration, with a mean of
12.7 sec. The probability decreased exponentiallyas a func-
tion of IRT, with a mean of 3.0 sec. The probability in-
creased as a function of the response rate (in responses/
minute) up to approximately 15 responses/min and then
decreased exponentially; the median response rate was
40.8 responses/min. A median was used instead of a mean
because there were occasionally very large outliers at the
tail of the distribution of response rates. This was typically

caused by bouts that contained two responses very close
together in time.

Although the overall distribution of IRTs was approxi-
mately exponentially distributed, it is possible that suc-
cessive IRTs were not randomly distributed. For example,
there may have been a tendency to engage in short-long
oscillationsin the time between responses, or the IRT may
have decreased or increased over the course of the bout.
For each response bout containing at least four responses,
an autocorrelation was calculated on the IRTs. A second
autocorrelation was calculated on a random ordering of
the IRTs in each bout 4 If a pattern was present in the IRTS,
the autocorrelation of the actual ordering of the IRTs
would be different from the autocorrelation of the random
ordering.

For each rat, the mean autocorrelation across packets
containing at least four responses was determined; these
means were entered into an ANOVA. There was no dif-
ference in the autocorrelation between original (r = —.22)
andrandom (r = —.22) ordering of the IRTs [F(1,49) < 1].



Table 1
Bout Characteristics for Each of the Fixed, Random,
and Tandem Interval Groups

Mean No.of ~ Mean Bout Response Rate  Mean

Group Responses  Duration (sec) (responses/min) IRT
FT45 6.4 14.0 34.8 2.8
FT90 5.5 11.9 41.3 2.7
FT180 54 14.9 37.8 3.6
FT360 4.8 10.4 40.0 2.6
RT45 6.4 16.1 35.3 3.0
RT90 8.0 14.4 43.3 2.5
RT180 5.3 11.3 40.6 3.0
RT360 5.0 11.9 32.9 3.0
FT45-RT45 9.4 19.3 40.1 2.3
FT45-RT90 4.5 12.1 37.7 3.7
FT90-RT45 3.7 6.6 66.2 2.9
FT90-RT90 4.1 9.6 39.0 33
Mean 5.7 12.7 40.8 3.0

Note—The distributions of number of responses, bout duration, and in-
terresponse time (IRT) were approximately exponential. In an exponen-
tial distribution, about two thirds of the samples will fall below the mean
(Evans, Hastings, & Peacock, 1993).

There was also no effect of interval duration [F'(4,49) =
1.3] or distribution form [F(2,49) < 1] and no interaction
[F(4,49) = 1.3] on the original autocorrelations.

Time Between Bouts

Although the response bouts were unaffected by inter-
val duration or distribution form, both variables affected
the form and rate of responding. Therefore, the different
conditions of training must have differentially affected the
momentary rate of bout production. Figure 6 contains the
probability distribution of pauses between bouts for the
different conditions. The distribution of pauses fell more
gradually as interval duration was increased. The proba-
bility of observing long pauses increased with interval du-
ration, and the probability of observing short pauses de-
creased. The mean duration between bouts increased as a
function of interval duration from around 22 sec in the 45-
sec conditionsto around 110 sec in the 360 sec conditions.
One-way ANOVAs conducted on the mean time between
bouts revealed a significant effect of interval duration
[F(4,49) = 140.0,p < .001], but no effect of distribution
form [F(2,49) = 1.8] and no interval duration X distribu-
tion form interaction [F(4,49) < 1].

Probability of Being in a Bout

A second measure that would reflect differences in the
momentary probability of bout occurrence is the proba-
bility of being in a bout as a function of time in the inter-
val (see the Data Analysis section). This is shown in Fig-
ure 7 for the fixed, random, and tandem groups of rats.
The shape of these functions is essentially the same as the
shape of the response rate functions. Following the initial
reaction to food delivery, the fixed groups produced lin-
early increasing functions, the random groups produced
constant functions, and the tandem groups produced lin-
early increasing functions followed by constant functions.
Moreover, shorter interval durations resulted in a higher
probability of being in a bout.
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DISCUSSION

The Temporal Structure of Bouts

The present experimentidentified two forms of tempo-
ral structure in the behavior of rats on temporal condi-
tioning procedures. First, the response rate functions were
composed of bouts that were unaffected by interval dura-
tion or distribution form (Figure 5 and Table 1). The bout
characteristics were consistent with a random generating
process, containing approximately six responses emitted
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Figure 6. Probability distribution of pauses between bouts for
fixed (top panel), random (middle panel), and tandem (bottom
panel) intervals of different mean durations.
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with an average IRT of about 3 sec. The distributions of
the number of responses in a bout, bout duration, and IRT
in a bout were approximately exponential in form, and
there were no sequential dependencies between the IRTs
of successive response pairs. This suggests that the struc-
ture of the bouts is unpredictable.

The observation of bouts of behavior was made by Skin-
ner (1938), who found that bursting of responses was in-
dependentof schedule type and attributed it to some char-
acteristic inherent in the organisms themselves (p. 125).
Subsequently, the bout-like nature of many operant and
respondentbehaviors, such as leverpresses, keypecks, ori-
enting responses, magazine behavior, and drinking, has
come to be well accepted (e.g., Blough, 1963; Corbit &
Luschei, 1969; Fagen & Young, 1978; Gilbert, 1958; Mell-
gren & Elsmore, 1991; Nevin & Baum, 1980; Pear & Rec-
tor, 1979; Robinson, Blumberg, Lane, & Kreber, 2000;
Schneider, 1969; Shull, Gaynor, & Grimes, 2001; Skinner,
1938; Slater & Lester, 1982). Because bouts of behavior
are composed of short IRTs, prior findings that short IRTs
are relatively insensitive to experimental manipulations,
as compared with longer IRTs (Blough, 1963; Schaub,
1967; Shull & Brownstein, 1970), are consistent with the
present findings regarding the invariance of bouts. The
present analysis expands on earlier observationsby demon-
strating that many characteristics of bouts are invariant
across arange of interval durations and distribution forms.

Organization of Bouts

‘When rats were trained with fixed, random, and tandem
intervals of different durations between successive food
deliveries, the local response rate as a function of time
since food was affected by the distribution of intervals. On
fixed intervals, response rates increased linearly; on random
intervals, response rates were relatively constant; on tan-
dem intervals, response rates increased linearly during the
FT portion and then were constant during the RT portion
(Figure 3). The forms of the response rate functions under
the fixed and the random durations are consistent with
previous reports in the literature (Catania & Reynolds,
1968; Kirpatrick & Church, 2000a, 2000b; LaBarbera &
Church, 1974; Libby & Church, 1975; Lund, 1976). The
pattern of responding under tandem schedules extends the
earlier finding of Kirkpatrick and Church (2000b) by
demonstrating that the shape of responding is the same
across different FT and RT combinations. The response
rate gradients for the tandem groups indicate that the rats
discerned that there was a minimum delay until the next
food, after which food occurred at random times.

Additional analyses indicated that the response rate
functions were related to the conditional expected time to
food. The mean response rate over the food—food interval
was negatively related to the mean interval duration (Fig-
ure 4), which is encoded as the conditional expected time
to food at interval onset. The effect of interval duration on
mean response rate appeared to be due to a higher rate of
bout production (Figure 7), which was also seen in the
shorter pause times between bouts with shorter interval

durations (Figure 6). Thus, it appears that when the con-
ditional expected time was shorter, bouts of behavior oc-
curred with higher probability and with shorter interbout
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Figure 7. The effects of interval distribution form and mean in-
terval duration on the probability of being in a bout as a function
of time since the previousfood delivery for the fixed, random, and
tandem conditions.



pauses and that this resulted in an increase in overall re-
sponse rate. In other words, the mean food—food interval
controlled the momentary rate of bout production, not the
momentary rate of responding or the rate of respondingin
a bout.

Theoretical Significance

The invariancein the bout characteristicsimplies that the
response bout may be a basic unit of behavior. The most
important feature of the bout analysis is that the external
characteristics of bouts (e.g., pause times between bouts,
rate of bout occurrence, or time of occurrence of bouts) of
different behaviors may be similar, even though the inter-
nal characteristics of the bouts (e.g., number of responses,
IRTs, duration, and response rates) may be different for
different behaviors.

One problem with conventional accounts of responding
under different interval distribution forms has been that
different explanations have been used to account for dif-
ferent dependent variables, such as the overall response rate
and the form of the response gradient. Given that these
two dependent variables are extracted from the same re-
sponse stream, it would be desirable to use a single process
with a single set of assumptions to predict these depen-
dent measures. Another problem with conventional ac-
counts has been that different explanationshave been used
to account for the different forms of responding under
fixed- and random-interval schedules of reinforcement. It
would be desirable to use a single process with a single set
of assumptions to predict the effects of different distribu-
tion forms.

The conditional expected time function provides a basis
for predicting both response rate and form under different
interval distributions with a single mechanism. The pat-
tern of responding in the three different distribution forms
was inversely related to the conditional expected time
function, which reflects the momentary expected time re-
maining until food as a function of time since the last food
(Figure 1). The conditional expected time function for a
fixed interval starts at the duration of the fixed interval
and decreases linearly until the time of food delivery; the
conditional expected time function for a random interval
is constant at the mean of the random-interval distribu-
tion; and the conditional expected time function for a tan-
dem interval starts at the duration of the sum of the fixed
interval and the mean of the random interval, decreases
linearly during the fixed portion, and then remains con-
stant at the mean of the random interval. The expected
time function was the only characterization of the interval
distributionsin Figure 1 that consistently mapped onto the
response forms under all three distributions.

By using the conditional expected time function, one
can invoke the same process for generating responding
under fixed, random, tandem, and all other interval distri-
butions. In other words, all intervals are timed regardless
of distribution form, but the distribution form determines
the pattern of responding in time. In both the timing and
the conditioning literatures, responding that is generated
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under fixed and random conditionsis typically assumed to
occur via separate processes. For example, when food is
delivered at fixed intervals, it is normally assumed that the
increasing rate of responding over the course of the US—
US interval is due to temporal conditioning (Pavlov,
1927), or timing of the US-US interval. On the other
hand, when food is delivered at random intervals, it is nor-
mally assumed that responding is due to conditioning to
the experimental context through an associative mecha-
nism (Balsam & Tomie, 1985). The application of differ-
ent mechanisms to explain responding under conditions
in which food is delivered at fixed versus variable inter-
vals has also been used with scalar timing theory (Brun-
ner et al., 1997; Brunner et al., 1996). The different treat-
ment of responding under fixed and random intervals is
perhaps best exemplified by Gallistel and Gibbon’s (2000)
time-based model of conditioning that involves multiple
decision processes. One of the processes in this model
“decides whether there is one or more (relatively) fixed
latencies of reinforcement, as opposed to a random distri-
bution of reinforcement latencies. This fourth process me-
diates the acquisition of a timed response” (Gallistel &
Gibbon, 2000, p. 307).

Packet Theory

The conditional expected time function was imple-
mented in order to predict the effects of interval duration
and distributionform on responding. The implementation,
packet theory, used a single mechanism with the same as-
sumptions and same parameter settings for all of the con-
ditions.

The two forms of temporal structure that were observed
in the data form the fundamental architecture of the model
(see also Kirkpatrick,2002). The basic principles of packet
theory are that: (1) responses occur in packets containing
a random number of responses that occur at random in-
terresponse intervals and the mean number of responses in
a packet and the mean interresponse interval are invariant
across conditions of training and (2) the momentary prob-
ability of producing a packet of responding is determined
by the conditional expected time function. Note the
change in terminology from bout to packet. Hereafter,
packets will refer to bursts of responses issued by the
model, and bouts will refer to the observed bursts pro-
duced by the model and the rats. This distinction is nec-
essary because two or more packets may occur in close
enough succession to produce responses that would be
classified as a single long bout.

Packet theory contains four modules—perception, mem-
ory, decision, and packet generation—which are diagrammed
in Figure 8 for fixed, random, and tandem intervals. Spe-
cific details about the implementation of the model are
presented in Appendix B.

Perception. The perceptual process generates an ex-
pectation for each interval, e,, at the time of food delivery,
shown in the left portion of Figure 8. Each box displays an
expectation for an individual interval. The individual ex-
pectations encode the amount of time that has passed
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since a predictor event. In the present study, the predictor
event would be the prior food delivery, but it could be any
stimulus event. The formation of the individual expecta-
tion is triggered by the delivery of a to-be-predicted event,
such as food. Thus, the expectations are not updated in
real time but are generated when an event such as food oc-
curs (see Appendix B).

The individual expectations decrease linearly as a func-
tion of time since the predictor event; for each second

since the event, the expectation decreases by 1 sec. A fixed
interval of 90 sec would yield individualexpectationsthat
always decreased linearly from a value of 90 to 0 sec, but
the expectations for a random or tandem interval would
vary (see Figure 8). For example, on one occasion, the
random interval might be 4 sec, which would result in an
expectation that decreased from 4 to 0 sec. On anotheroc-
casion, the random interval might be 52 sec, which would
result in an expectation that decreased from 52 to O sec.

Perception Memory Decision
e =d-t AE = a(e —E,) ptan:
90 I |
44
F’I‘90 nes——--- ———-
: 0 0
0 90 0 90
Time Time
90 ~——— Il ful
44
* 0 0
0 90 0 90
Time Time
90 y bl 14
° 0 0
0 90 0 90
Time Time

Figure 8. Packet theory for determining the momentary probability of producing a
packet of responding for a 90-sec fixed-time (FT), a 90-sec random-time (RT), and a
tandem schedule with a mean of 90 sec. At the time of food delivery, the expectation
for the previous interval (¢, ) is recorded as a function that decreases linearly over the
duration of the interval. The most recent interval is added to memory with a linear
weighting rule, producing the expected time function (E, ), which is the mean expected
time to food as a function of time since an event (e.g., food). To determine the proba-
bility of producing a packet (p,), the expected time function is transformed using the

rule

[max(E)-E, |

 [Eimo)-5)

=0

and is multiplied by n, the expected number of packets per interval (see Appendix B

for details).



Packet theory assumes that subjective time is linearly
related to objective time. For the present implementation,
there were no sources of bias or error in subjective time,
buterror could be introduced by assuming that the current
interval duration (d) is perceived with some variance. For
simplicity of exposition, sources of error were omitted
from the present implementation because they were not
needed to predict the present results.

Memory. Once a new expectation is generated, it is
added to the memory structure, E,, which contains the
weighted sum of all intervals experienced in the past. The
weight given to new expectationscan be between 0 (no ef-
fect) and 1 (maximum effect). A large weight generates an
asymptote rapidly, but with considerable variability; a small
weight generates this asymptote more slowly, but with low
variability.

With small to intermediate weights, the asymptotic
conditionalexpected time function in memory closely ap-
proximates the functions in the bottom panels of Figure 1.
Thus, fixed intervals decrease linearly, random intervals
are constant at the level of the mean, and tandem intervals
decrease during the fixed portion and then remain con-
stant at the level of the mean of the random portion.

Decision. The conditional expected time in memory
predicts the time of the upcoming food delivery. The de-
cision module produces packets on a probabilistic basis,
using a transformed version of the conditional expected
time function. The probability of packet generation (p,) is
inversely related to the expected time in memory. The
probability function is calculated by reversing the direc-
tion of the conditional expected time function and then by
converting the times into probabilities by dividing by the
sum of all values in the function (see Appendix B). The
resulting probabilityis multiplied by n, the expected num-
ber of packets per interval. The sum of all values in the
probability function is equal to n. The expected number of
packets is a responsiveness parameter that is presumably
affected by the time and effort for making a response and
the quality or quantity of reinforcement. Packets of food
cup behavior were generated in two ways: (1) food delivery,
which immediately elicited a response packet with some
probability, and (2) the anticipation of an upcoming food
delivery, which stochastically elicited response packets.

The response rate functions produced by the model will
closely mirror the shape of the probability functions and
will be the inverse of the shape of the conditional expected
time in memory (Figure 8). In addition, the effect of in-
terval duration on mean response rate falls directly out of
the decision module. If n were set to 4.0, then on a 45-sec
interval there would be 0.088 packets per second (4 packets/
45 sec), and on 90-, 180-, and 360-sec intervals there
would be 0.044,0.022, and 0.011 packets per second, re-
spectively. The mean response rate is a direct function of
the number of packets per second in the interval, which is
inversely related to mean interval duration.

Packet generation. The characteristics of the response
packets in the model were determined by the data from the
rats (see Figure 5 and Table 1). The top portion of each of
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the decision panels in Figure 8 contains sample response
packets. The longer vertical lines are responses that started
and ended packets, and the shorter lines are responses in
the middle of packets. The packets contained a random
number of responses and lasted for a random duration. Be-
cause the response packets were the same for all the con-
ditions, there were only two parameters that affected the
productionof anticipatory response packets in the present
version of packet theory: (1) e, which controlled the rela-
tive weight given to new intervals stored in memory, and
(2) n, the expected number of response packets in an in-
terval. Because all of the analyses from the rats and the
model were conducted at asymptote, the parameter «
would have little or no effect on the outcome. A third pa-
rameter was p, the probability of producing a reactive
packet following food delivery (see the description
below).

Model Simulations

Simulations of packet theory were conducted in Mat-
Lab (The Mathworks, Natick, MA), using the implemen-
tation procedures described in Appendix B. The model re-
ceived training on each of the procedures, for a total of
1,920 intervals. The number of intervals received by the
model was equal to the sum of the intervals received by
each of the fixed and random groups of rats (320 intervals
per rat X 6 rats = 1,920 intervals). The same parameter
settings for generating anticipatory packets were used for
the simulation of all 12 interval conditions that were de-
livered to the rats, with « = .05 and n = 1.9. The time of
each food delivery passed to the model, and each response
made by the model was recorded with a time stamp, with
10-msec resolution.

Anticipatory packets of responding were initiated by
the model if the probability of packet production, p,, ex-
ceeded a random number X that was uniformly distributed
between 0 and 1. Reactive packets were produced follow-
ing food delivery; these were initiated with some proba-
bility, p, with a mean of .77 (range, .55-1.0 for different
model simulations on different conditions). The rats, on
average, produced reactive packets 75% of the time, indi-
cating that the food pellet was sometimes consumed dur-
ing a packet that would be considered anticipatory of the
upcoming food delivery. Although the probability of a re-
active packet was added as a parameter to the model, it
was only required for an accurate description of head
entry responding in the first few seconds following food
delivery.

Each packet contained a random number of responses
that were approximately exponentially distributed and
lasted for a random duration. If the model called for a new
packet before a previous packet was finished, the new
packet began while the previous packet continued. This
rule resulted in summation of the new packet with a por-
tion of the old packet. Thus, two theoretical packets called
for by the model may produce a single observed bout that
would be detected using the data analysis routines (see the
FT90 conditionin Figure 8 for an example of two packets
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Figure 9. Bout characteristics produced by simulations of packet theory. Top left: the probabil-
ity distribution of the number of responses per bout. Top right: the probability distribution of in-
terresponse times during a bout in successive 0.1-sec intervals. Bottom left: the probability distri-
bution of bout durations in successive 1-sec intervals. Bottom right: the probability distribution of
response rates in responses/minute during a bout.

running together). Responses were not generated outside
of packets.

The model’s observed bout characteristics are shown in
Figure 9 for the fixed, random, and tandem intervals. All
four distributions were similar to those for the rats (Fig-
ure 5). The model produced bouts that contained 5.6 re-
sponses, emitted over a mean duration of 11.9 sec, with a
median response rate of 37.8 responses/min in a bout and
a mean IRT of 2.6 sec in a bout. The bout characteristics
were highly similar to those for the rats (mean w2 = .90).
The fact that bouts closely approximating those of rats can
be obtained with a random generating process indicates
that the bout characteristics probably emerge from a sim-
ple process.

Figure 10 contains the response rate functions produced
by the model for each of the training conditionsas a func-
tion of time since food. The fixed, random, and tandem
schedules are displayed in separate panels of the figure.
There are a number of similarities between the data from
the rats (Figure 3) and the data from the model: (1) The re-
sponse rate functions were initially high and then de-
creased for 5-10 sec following the receipt of food, but
thereafter the response rate functions differed between

conditions of training; (2) response rates increased lin-
early for FT schedules, were relatively constant for RT
schedules, and increased linearly and then were relatively
constant for the tandem schedules; (3) shorter mean inter-
val durations resulted in higher rates of responding than
did longer interval durations; and (4) the overall response
rates produced by the model were similar to the response
rates produced by the rats (note that the same response
rate scale was used for Figures 3 and 10). The w? was cal-
culated for each of the model fits to the group curves in
Figure 3. The mean w? for the fixed groups was .92, for
the random groups it was .87, and for the tandem groups
it was .86.

The effect of mean interval duration on the mean re-
sponse rate produced by the packet model is shown in Fig-
ure 11, which is plotted on a log—log scale, as were the rat
data in Figure 4. The mean response rate by the model was
calculated from 21 sec after food until the mean interval
duration, as with the rats. The solid line through the data
points is the straight-line regression on the function relat-
ing log mean response rate to log interval duration, which
had a slope of —1.0 and an interceptof 2.77 (r2 = .99,p <
.001). The regression parameters for the model were sim-
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Figure 10. Results of the simulations of packet theory for the
fixed, random, and tandem intervals received by the rats, with
the parameters of @ = .05 and n = 1.9. Each curve is the response
rate produced by the model in responses/minute as a function of
time since food.

ilar to the regression parameters from the rat data, which
had a slope of —0.98 and an intercept of 2.66. However, the
model predicted much less variability in responding to
different interval distributions with the same mean inter-
val duration. The w? for the model fits to the mean re-
sponse rates in Figure 4 was .74. The poor fit of the model
to the data was due to the model’s overpredicting response
rates in the RT45-sec and tandem FT45-RT45-sec groups.
It is not clear why the RT45 sec condition failed to pro-
duce a higher response rate than did the RT90-sec condi-
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tion in the rats (Figure 3), given that the rate of reinforce-
ment was doubled in the RT45-sec condition. Doubling of
the reinforcement rate would normally produce a notice-
able increase in response rate (e.g., de Villiers & Herrn-
stein, 1976).

Theory Evaluation and Extensions

There are at least four features that a good theory should
possess. It should be simple, inflexible, accurate, and gen-
eral. A simple theory should have a small number of free
parameters. Packet theory contains three parameters for
generating packets: «, n, and p. There were two additional
parameters for generating responses within packets, but
these would be allowed to vary only across response types
and, therefore, would not be classified as free parameters.
The responsiveness parameter n was the primary parame-
ter that was adjusted in the present simulations; the mem-
ory updating parameter « is relatively unimportant for
predicting asymptotic behavior, and the reactive packet pa-
rameter p would be used only in situations in which mod-
eling the unconditioned (reactive) response is desired. An
inflexible theory should have a limited number of possi-
ble outcomes for a given procedure (Cutting,2000). Packet
theory is inflexible in that it predicts only a particular re-
sponse form for a given distribution and a particular re-
sponse rate for a given mean interval. The overall respon-
siveness can be manipulated by changing n, but in the
present implementation, it was required that n be the same
for all the conditions. If n were allowed to vary between
conditions, the goodness of fit would increase, but the
model would become undesirably more flexible. An ac-
curate theory should fit data closely. Packet theory ac-
counted for a high percentage of the variance in the data,
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accurately predicting the mean rate as a function of mean
interval duration, the form of the response rate gradients
under different conditions, and the bout characteristics.
These data comprised more than 2,000 points, many of
which were independent. A general theory should fit many
measures of responding obtained under many different
procedures. Packet theory fit four dependent measures of
responding obtained from 12 procedures. However, for the
theory to be considered truly general, it will have to be ap-
plied to a much wider range of procedures, a task that is
outside the scope of the present article.

A major strength of packet theory is that it provides a
parsimonious single-process account of a variety of em-
pirical phenomena that have traditionally involved sepa-
rate explanations. The most important contribution is the
prediction of the rate and pattern of responding under any
interval distribution, using a single mechanism. An impor-
tant difference between packet theory and conventional
approachesis the supposition that timing occurs under any
interval distribution, including random intervals, and that
the form and rate of responding in time is determined by
the intervals that have been received in training.

A second contribution of the present approach is that
the scalar property emerges automatically from the ex-
pected time functions, which are determined by the inter-
val distribution form. Response rate functions superpose
if they are plotted on a relative time (and relative rate)
scale. This empirical observation has been referred to as
the scalar property (Gibbon, 1977). Packet theory pro-
duces the scalar property because a fixed 90-sec interval
will have an expected time function that is three times as
long in duration, as compared with a fixed 30-sec interval.
Therefore, the increasing portion of the response rate
function will be three times as wide for a 90-sec interval
as for a 30-sec interval, which is the scalar property of
time perception (see the Scalar Property in FT and FI
Schedules section in Appendix B for a more complete ex-
planation). In contrast, scalar timing theory (Gibbon &
Church, 1984; Gibbon et al., 1984), which was developed
to explain the scalar property, produces scalar variation by
the addition of sources of variance in the perception, mem-
ory, and/or decision processes of the model, which re-
quires the parameters of mean and standard deviation for
each source of variance.

The present data present considerable problems for the-
ories of conditioning and timing. Associative theories of
conditioning (e.g., Mackintosh, 1975; Pearce & Hall,
1980; Rescorla & Wagner, 1972) can produce responding
on temporal conditioning procedures, if it is assumed that
conditioning occurs to the background, but these models
do not produce temporal gradients of responding (Fig-
ure 3). Real-time models of conditioning (e.g., Sutton &
Barto, 1981, 1990) can produce temporal gradients, as
well as effects of the food—food interval on mean response
rate. However, these models have difficulty in producing
the scalar property, and they do not produce the appropri-
ate response form on random and tandem intervals. Rate
expectancy theory (Gallistel & Gibbon, 2000) does not

predict any conditioning on temporal conditioning proce-
dures, because the critical factor is a comparison of rates
of reinforcement in the stimulus versus the background.
Given that the temporal conditioning procedure does not
contain a stimulus, there is no basis for comparison and,
therefore, no basis for acquisition of responding. Finally,
timing theories (Church & Broadbent, 1990; Gibbon &
Church, 1984; Gibbon et al., 1984; Machado, 1997) accu-
rately predict the pattern of responding on fixed intervals,
but they do not inherently predict interval duration effects
on the mean response rate. In many timing models, re-
sponse rates are adjusted after the simulations are con-
ducted. Temporal conditioning (also known as context
conditioningand magazine training) involves a single event
and a single distribution of interevent intervals and, in
many respects, is the simplest of conditioning procedures.
The failure of such a broad range of different theories to
predict a small set of dependent variables in such a simple
procedure motivates the search for new alternatives.

Althoughpacket theory provides a better account of the
present data set than do alternative theories of condition-
ing and timing, it should be applied to a broader range of
phenomena to demonstrate generality. Several extensions
are needed to expand the range of procedures that can be
modeled by packet theory.

First, the most natural and important extension of packet
theory would be to implement the model to deal with two
or more intervals between events. This extension is nec-
essary to deal with a multitude of experimental procedures
in both operant and classical conditioning. For example, a
delay conditioning procedure is defined by two intervals:
food to food and stimulus onset to food. The extension of
packet theory to the two-interval case requires two addi-
tional assumptions, but no additional parameters. First is
the assumption that separate events, such as food and
stimulus onset, establish separate expectations, and sec-
ond is the assumption that an expectation is activated at
the onset of its associated event and continues until food
delivery. In delay conditioning, the food-initiated expec-
tation would produce packets during the intertrial inter-
val. Following stimulus onset, both food-initiated and
stimulus-initiated expectations would be concurrently ac-
tive and able to produce packets. If a stimulus expectation
initiated a packet before a food-initiated packet was fin-
ished, temporal summation of packets would result in a
longer observed bout. One prediction of the model is that
if there are two sources of packet production, response
rate will be higher and observed bout durations will be
longer than they would be if there were only one source of
packet production (see Desmond & Moore, 1991, and
Kirkpatrick & Church, 2000a, for evidence of summation
of response strength during simultaneous timing of two
intervals).

A limitation of the present version is that packet theory
cannot predict the ogival mean response rate functions
that are often observed under fixed intervals with more
extensive training. This is a serious concern that may be
addressed by assuming that there is an ogival transforma-



tion of the probability function by the decision module of
the model. An ogival transformation, with the parameters
of mean and slope, can result in response forms including
relatively constant, linearly increasing, ogival, and step
functions. The ogival transformation may prove particu-
larly important in modeling dynamic changes in the form
of the response rate function during acquisition (Machado
& Cevik, 1998), as well as in dealing with individual dif-
ferences in the form of the response rate function. Further
work will be needed to determine the effectiveness and va-
lidity of adding two parameters to the model in order to
produce some flexibility in the response form from a sin-
gle expected time function.

Another limitation is that, currently, there is no means
of ceasing responding after the expected time of rein-
forcement is surpassed, as in the peak procedure (Roberts,
1981). One possibility would be to assume that packets
continueto be initiated after the expected time of food has
passed, but only until the expected number of packets, 7,
is reached. Because packets are produced probabilisti-
cally, the expected number of packets may not be ex-
hausted prior to the expected time of food. These packets
could then be produced probabilistically after the ex-
pected time of food, which would lead to a decreasing re-
sponse rate on the right side of the peak. Further work will
be needed to determine whether this implementation
would be sufficient to produce peak functions of the ap-
propriate form.

Finally, the present version produces packets of head
entry behavior, but it is possible that packet theory may be
extended to other response systems. The present analysis
may be particularly applicable to discrete behaviors that
occur in anticipation of upcoming food delivery, such as
keypecks, leverpresses, and orienting responses. The
model could be implemented for different responses by
changing the characteristics of the packets (number of re-
sponses and IRT). The model may also be able to deal with
single-response paradigms. For example, a packet of eye-
blink responding would typically contain a single response
that would change in magnitude over time. The temporal
characteristics of the eyeblink could be encoded in the
packet module. Continuousresponses, such as conditioned
freezing or maze running, may be modeled as a bout of
engagement, with the relative time spent freezing or run-
ning determined by the conditionalexpected time to food.
For example, overall running speed in an alley is deter-
mined by the relative time spent engaged in running; there
is little change in running speed during a period of en-
gagement (Cotton, 1953; Drew, 1939).

It is likely that the mechanics of the response affect the
characteristics of the packet, so these would need specify-
ing for other response paradigms. It is additionally possi-
ble that experimental variables, such as the size of the
chambers, sensitivity of the equipment (e.g., the amount
of force required to close the switch when a lever is pressed),
and the presence of a response contingency, may affect the
characteristics of the packets (Shull et al., 2001).
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Summary and Conclusions

There are a number of important empirical observations
in the present data set that will need accounting for by cur-
rent and future theories of timing and conditioning. First
is the effect of the form of the distribution of food—food
intervals on the form of the response rate gradient. Second
is the effect of interval duration on mean response rate.
Third is the observation that responding occurs in bouts,
with characteristics that are invariant across conditions.
Fourth is the observation that the bout characteristics of
number of responses, IRT, and bout duration appear to
arise from a random generating process.

The present article also provides some movement for-
ward in the modeling of multiple dependent measures, one
of which is usually considered a measure of conditioning
(mean response rate) and one of which is traditionally
considered a measure of timing (response rate as a func-
tion of time) within a single theoretical framework. Al-
though packet theory may require some extension to fit a
wide range of response forms under a wide range of pro-
cedures, the present implementation is a parsimonious,
single-process account of the rate and pattern of respond-
ing on time-based schedules of reinforcement where a sin-
gle interval is delivered with some mean and distribution
form. This approach challenges conventional accounts,
which have required separate processes to explain the de-
pendent measures of response rate and response form, as
well as requiring separate assumptions to explain different
response forms obtained under different interval distribu-
tions. A single process with a limited set of parameters
may be sufficient to predict the results from a wide range
of procedures in both operant and classical conditioning.
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NOTES

1. Random intervals were sampled from an exponential distribution,
using the equation R = —b In X, where R is the random interval in sec-
onds with a resolution of 10 msec, b is the mean of the exponential dis-
tribution, In is the natural logarithm, and X is a random number selected
from a uniform distribution ranging from O to 1. The exponential distri-
bution has only a single parameter of the mean, and the standard devia-
tion is equal to the mean.
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2. The IRT distributions for the different groups of rats were highly
similar until around 30 sec. Thereafter, mean interval duration deter-
mined the width of the second peak. A number of analyses were con-
ducted to explore the effect of IRT criterion on features of the bouts. It
was discovered that longer criteria resulted in larger and longer duration
bouts. However, the invariance in bout characteristics across experimen-
tal conditions was unaffected by the choice of criterion, provided that
the criterion was less than 30 sec (the point at which the IRT distributions
diverged).
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3. The IRTs are displayed in 0.1-sec linearly spaced bins. These IRTs
are equivalent to the first mode of the double-peaked IRT distribution in
Figure 2. The IRTs are displayed here in linearly spaced bins, to demon-
strate that the distribution is closely approximated by an exponential.

4. The autocorrelation is a correlation coefficient between x and y cal-
culated with x equal to IRTs 1 to n—1 and y equal to IRTs 2 to n. Because
the distribution of IRTs contains many short times and fewer long times,
long IRTs will rarely be followed by a long IRT. Thus, the expected au-
tocorrelation of a random sample of IRTs would not be zero.

APPENDIX A
Definitions

Note: ¢ is duration of fixed interval, and A is duration of random interval in seconds.

Density Functions

a

Fixed fx) =1

Jx) =0
Random f(x) = Ae N
Tandem fx)=0

f) = heNo=o

Survival Functions  Scx) =1 — J fondt
=0

Fixed Sx) =1

S(x)=0
Random S(x) = e M
Tandem Six) =1

S(x) = e A0
h(x) = f(x)/ S(x)

Hazard Functions

Fixed hx) =1
h(x) =0
Random h(x) = A
Tandem h(x) =0
h(x) = A

Conditional Expected Time Functions  E,

b
| f(x)dx =Pr(a<x<b)

xX=c
X #Fc

0=x<o
0=x<c
c=x<oo

x<c
xX=c
0=
0=x<c
c=x<oo

xX=c
X #Fc

0=x<o
0=x<c
c=x<oo

oo

J [xf(x)/S[]dx—t

x=t
Fixed E=c—x 0=x<c
Random E =\ 0=x<o
Tandem E=c—x 0=x<c
E =\ c=x<oo
APPENDIX B
Packet Theory Implementation
Perception

Each interval in training produced an expectation, implemented according to Equation B1. A
perceived expectation was determined by subtracting a series of 1-sec time steps in the interval
ranging from time O (prior food delivery) to time d (next food delivery) from the total interval du-
ration d. This resulted in a linearly decreasing function from d to 0 over the interval duration. For
example, a 45-sec interval would result in a perceived expectation that decreased from 45 to 0 in
1-sec increments:

e,=d—1t,0=t=d, e, =0 otherwise. (B1)
Memory

The memory module in packet theory consisted of a weighted sum of the perceived expecta-
tions, updated accordingto Equation B2, where ¢, is the expectationfrom the currentinterval at time
t, E, is the expectationin memory at time f for all intervals prior to the currentinterval, and a is a

weighting parameter. The functionin memory is a close approximationto the conditionalexpected
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APPENDIX B (Continued)

time function (Equation 1). After the first interval, the conditional expected time in memory was
set to the first perceived expectation. Thereafter, new intervals were added with weight &. A new
perceived interval was added to memory over time steps from O to d, where d is the most recent
interval duration. Thus, a new expectationfrom a 45-sec interval would be added to memory over
time steps from O to 45. The conditional expected time function for time steps greater than 45 sec
would remain unchanged on that update:

AE=a(e,— E,) 0=r=d. (B2)

Decision
The decision rule for producing anticipatory response packets is determined by a probability
function, p,, which is given in Equation B3a, where 7 is the expected number of anticipatory re-
sponsepacketsin aninterval and E}is a transformedexpectation. The probability function, p,, was
calcu-latedup to time step D and, thereafter,remained at the value that was reached at D; for times
greater than D (the mean interval duration), p, remained at the value that was achieved when the
time step was equal to D (Equation B3b). This is because the transformed expectationis defined
only over time steps 0 to D:
p,=nEy 0=t=D (B3a)
DP;=Pi=p t>D. (B3b)
The transformed expectation, E7, is calculated by subtracting the expectationat time ¢ from the
maximum of the expected time function (usually the value at time 0, which is equal to the mean
of the interval duration), to get a transposed expectation (E;), as in Equation B4a. This results in
a reversal in the direction of the expected time function, which is intuitively plausible because,
whenever the conditional expected time to food is short (i.e., as the upcoming food delivery be-
comes increasingly imminent), the probability of responding should be high. For a fixed 90-sec
interval, the maximum conditional expected time to food would be 90 sec, which occurs at inter-
val onset. The subtraction would result in the expected time at time 0 being 0 (90 — 90 = 0), the
expected time at time 1 being 1 (90— 89 = 1), and so forth:

E]=max(E,) — E, 0=t=D (B4a)
Ej =——. (B4b)

The difference of the conditionalexpected time at each time step from the maximum is then di-
vided by the sum of the differences, which normalizes the function to create a probability, which
is denoted as the transformed expectation, E; in Equation B4b. The sum of the transformed ex-
pectation from times O to D is equal to 1.0. The transformed expectation is only calculated over
time steps 0 to D, where D is the mean interval duration. This was necessary because,on a random-
time schedule,intervalslonger than D are relativelyrare, so that transformedexpectationbecomes
unstable at intervals much greater than D. This solution also works for a fixed interval, where the
expectationis undefined beyond the time when food is expected to occur (time D).

The probability function, p,, is then determined by multiplying the responsivenessparameter n
with the transformed expectation function E7. The sum of the probability functionis equal to the
value of n so that n becomes the expected number of packets per interval.

Packet Generation

A packetis generated from two functions: the number of responsesin the packet, 0, and the IRT
in a packet, 8. The number of responsesin a packet is obtained from Equation B5, where In is the
natural logarithm and X is a uniformly distributed random number between 0 and 1. All values of
m are rounded up to the nearestinteger. The distributionof the number of responses per packet pro-
duced by the model is a geometrically decreasing function with a minimum of 2 and a mean of
4.2. The mean of the geometric was 1.5 responses smaller than the mean of the distribution of re-
sponse numbers produced by the rats. This was because the geometric distributionhas fewer large
numbers of responses, as compared with the distribution of the rats; that is, the geometric ap-
proaches zero more quickly. Interestingly, with the packet summation rule, the model simulations
yielded bouts that contained a mean of 5.6 responses. It is possible that the longer response bouts
produced by the rats also emerged from two smaller bouts’ running together. A geometric distri-
bution, the discrete equivalent of the exponential distribution, was used because the distribution
of the number of responsesis approximately exponentialin shape but is composed only of integer
numbers of responses. The geometric is the discrete equivalent of the exponential distribution.
The mean of the geometric distribution was determined by fitting a geometric function to the dis-
tribution of number of responses in a bout that was produced by the rats (the mean of the curves
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in the upper left panel of Figure 5). The geometric distributionhas a single parameter ( p) that de-
termines the mean of the distribution. The parameter p of the best-fitting function to the rat data
was used to determine the number of responsesin a packetin the model (p = 1/3.2 = 0.31):

nz[&—l]+2. (BS)
In(1-p)

The IRTs were determined by Equation B6, where X is a uniformly distributedrandom number
between 0 and 1 and b is the mean. The IRT distribution was determined by fitting a double ex-
ponential function (the mean of two exponential density functions) to the mean IRT distributions
across all of the rats. The double exponential was necessary because there were more long IRTS
than would be predicted by a single exponential. Double exponentialfunctions have been used pre-
viously to fit IRT functions (Davis, 1996). The double exponential was the weighted sum of two
exponentials of different means, with the relative weighting parameter p. The resulting parame-
ters were p = .5, b, = 0.8, and b, = 5.2. The value of b for each exponentialwas substitutedinto
Equation B6 for generatingrandom samples from the exponentialdistribution(b = 0.8 or b = 5.2).
A random value was independently selected from one of the exponentialdistributions with a prob-
ability of .5. In other words, half the time, the IRT was selected from the exponential with a mean
of 0.8, and half of the time the IRT was selected from an exponential with a mean of 5.2:

6 = —bIn(X). (B6)

The Scalar Property in FT and FI Schedules

The prediction of the scalar property emerges from Equations B4a and B4b. For a FT (or fixed-
interval) schedule, the conditional expected time E, is equal to D — £, where D is the fixed interval
duration and ¢ is the time in the interval (see Equations B1 and B2); at time 0, the conditional ex-
pected time is equal to the duration of the fixed interval, D. The transposed expectation E” (Equa-
tion B4a) therefore becomes D — (D — 1), or t. In other words, the transposed expectation will in-
crease linearly from O to D as t increases from O to D. The transformed expectation, E*
(Equation B4b), now becomes

The sum of all # values between 0 and D is
DD+,

so that the transformed expectation is
_ 2t

DD+, ‘
Thus, the transformed expectation function and resulting probability function ( p,) are proportional
to t/D2. The scalar property is observed when the response rate functions are normalized by di-
viding the response rate at each time by the maximum response rate. In other words, the proba-
bility of response (p,) is divided by the maximum probability of response. The maximum proba-
bility of response occurs at time ¢ = D, so that the relative probability of response as a function of
time in an interval is determined by p,/max(p,), which is proportional to (¢/D?)/D, or t/D. Thus,
the relative probability of responding is proportional to the relative time in an interval #/D, which
is the scalar property.
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