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A Turing test of a timing theory�
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Abstract

A quantitative theory of timing or conditioning can be evaluated with a Turing test in which the behavioral results of an
experiment can be compared with the predicted results from the theory. An example is described based upon an experiment in
which 12 rats were trained on three fixed-interval schedules of reinforcement, and a simulation of the predicted results from
a packet theory of timing. An objective classification rule was used to determine whether a sample from the data or a sample
from the theory was more similar to another sample from the theory. With an ideal theory, the expected probability of a correct
classification would be 0.5. The observed probability of a correct classification was 0.6, which was slightly, but reliably, greater
than 0.5. A Turing test provides a graded metric for the evaluation of a quantitative theory.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Time discrimination; Turing test; Theory evaluation

l
s
r
f
a
(
t

a
M

f

in-
od

e of
ich

,

ount
are

-

t
h,

0

Procedures used in the study of animal timing have
ed to the identification of reliable functional relation-
hips between quantitative features of procedures and
esults. For example, a fixed-interval schedule of rein-
orcement leads to a response rate that increases as

function of time since the previous reinforcement
Dews, 1970). The relative response rate (as a propor-
ion of the maximum response) increases as a function
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of the fixed-interval (as a proportion of the total
terval). The same function typically provides a go
approximation of the behavior under a wide rang
fixed-intervals. This is the superposition result, wh
has also been called “timescale invariance” (Church
2002).

Theories of timing have been developed that acc
for these quantitative results. Examples of these
scalar timing theory (Gibbon, 1977), behavioral the
ory of timing (Killeen and Fetterman, 1988), learn-
ing to time model (Machado, 1997), spectral timing
model (Grossberg and Schmajuk, 1991), multiple oscil-
lator model (Church and Broadbent, 1990), the multi-
ple time-scale model (Staddon and Higa, 1999), Packe
theory (Kirkpatrick, 2002; Kirkpatrick and Churc
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2003), but there are many others. (In these quantita-
tive timing theories, the terms “theory” and “model”
are used interchangeably.) One of the purposes of these
theories is to account for the behavior of the animal in
timing procedures based on simple assumptions of a
well-specified process model.

One of the bases for the evaluation of a quantitative
theory of timing is the extent to which it fits observed
data. This is usually done by defining one or more sum-
mary measures of behavior, and comparing the predic-
tions of the model with the values of the observed data.
The variance of the difference of the observed from the
predicted values of the summary measure (unexplained
variance) is typically compared to the variance of the
difference of the observed from the mean values of the
summary measure (total variance). The standard index
is the proportion of variance accounted for:

ω2 = σ2
t − σ2

u

σ2
t

(1)

whereω2 is the proportion of variance accounted for,σ2
u

the unexplained variance, andσ2
t is the total variance.

The main purpose of this article is to show how a
Turing test provides an alternative way to evaluate the
extent to which the predictions of a timing theory fit ob-
served data. It describes a particular timing procedure,
the results that were recorded, summary measures of
the behavior, a quantitative process model (Packet the-
ory), and comparison of the predictions of the model
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sured responses (such as head-entry into the food cup,
lever press, and licking on the tube of a water bottle),
and one or more reinforcers (such as food or shock).
The standard time-line diagram shown in the top panel
of Fig. 1includes a single stimulus (houselight), a sin-
gle response (head-entry), and a single reinforcer (a
pellet of food).

The procedure that is illustrated in the time-line dia-
gram provides information regarding the contingencies
of reinforcement. The time of an onset of a stimulus
(such as the houselight) is indicated by an arrow; the
time after which a response will be reinforced is indi-
cated by an open triangle (labeled “Prime”); the time
of a food delivery is indicated by a solid triangle, and
the times of head-entry responses is indicated by the
vertical marks on the line labeled “Responses.”

The contingencies of reinforcement may be de-
scribed in words, in a diagram, or with formal notation.
They are nearly always described in a paragraph, but
it is difficult to describe a procedure precisely, com-
pletely, and succinctly in words. The contingencies of
reinforcement may also be described with a time-line
diagram (as in the top panel ofFig. 1), but this requires
more space than a formal notation. Unfortunately, the
standard formal notation for conditioning procedures
is too succinct to be useful for many purposes. For
example, this procedure would be described as A+,
where A is the symbol for the houselight, and + is the
symbol for food. This does not provide information
about the duration of the stimulus, the duration be-
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nd the summary measures of behavior. It concl
ith a description of the Turing test, how it can be u

o evaluate a quantitative process model. The que
s the extent to which a person, or a computer algori
an correctly discriminate between data that was
rated by an experimental subject and data gene
y a quantitative theory.

. Specification of the procedures

Many timing and conditioning procedures can
escribed by the specification of a small numbe
timuli, reinforcers, and responses, and the contin
ies among these events. Such experiments are
onducted with well-known species in simple envir
ents. They may use one or more stimuli (such
ouselight, white noise, and clicker), one or more m
ween stimuli, the time of delivery of the food duri
he stimulus (or even whether or not the food
elivered shortly after stimulus termination, as in tr
onditioning).

A more complete formal notation is necessar
rovide the information that is in a time-line diagra
he procedure in the top panel ofFig. 1may be written
s:

20 s H; 30 s→ h��/ (2)

ith symbols for light onset (H), light termination (h
ead-entry response (→), and food delivery (��). This
ontains information about the duration of the stimu
he duration between stimuli, and the time of deliver
ood during the stimulus. The extension of this nota
o many different procedures is inAppendix A.
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Fig. 1. Procedure and recording of data. Top panel: times of stimulus onset and termination, food availability, and delivery, and the times of
head-entry responses are shown for two cycles. Bottom left panel: the time-event list contains three columns for the time in seconds from the
beginning of the session, the number of each event, and the name of each event. Bottom right panel: a raster plot of the head-entry responses is
shown as a function of time since onset of the light on 30 consecutive cycles with each head-entry response marked by an open circle. Note that
most of the responses occurred in the latter portions of the 30-s interval.

2. Recording of the results

The primary data consists of a list of times at which
each event occurs (lower left portion ofFig. 1). In this
example, the session began with the delivery of food.
The houselight went on after 20 s, head-entry responses
occurred at 44.00, 45.20, 46.00, and 49.80 s, then food
was primed at 50.00 and 55.00 s, the next head-entry

response occurred, food was delivered, and the house-
light was turned off. The time-event list continues with
the data for the second cycle. Records were kept of
the times (to the nearest 2 ms) and event numbers; the
event numbers and names are redundant. Because they
are more efficient for storage and analysis, numbers are
typically used, but supplemented with a list of the event
name corresponding to each number.
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The lower right portion ofFig. 1shows a raster plot
of the head-entry responses. The data come from one
rat on a 30-s discriminative fixed-interval schedule.
The horizontal axis is the time since stimulus onset,
and the vertical axis is the successive cycles in a
session (from top to bottom). In a 30-s fixed-interval
schedule, responses are clustered toward the end of the
interval.

The procedure used to generate the data for this
application of a Turing test of a quantitative tim-
ing theory was an extension of the simple 30-s dis-
criminative fixed-interval schedule of reinforcement
shown inFig. 1. There were three cycle types (C1, C2,
andC3).

C1 = /20 s H; 30 s→ h��/

C2 = /20 s N; 60 s→ n��/

C3 = /20 s C; 120 s→ c��/

(3)

where H is houselight onset; N is onset of white noise;
and C is onset of a clicker. The lower case letters are for
the terminations of the stimuli. Thus, in this multiple
cued interval procedure, there were three possible inter-
vals (30, 60, and 120 s), each with a different discrim-
inative stimulus. (Of course, the interval and stimulus
type was counterbalanced across rats.) The three types
of cycles were sampled with replacement, as shown by
the following notation:

T =
[(

1

3

)
C1

(
1

3

)
C2

(
1

3

)
C3

]
(4)
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summary measures; it makes it unnecessary to repeat
an experiment in order to analyze a different summary
measure. The availability of primary data facilitates
secondary data analysis (Guilhardi and Church, 2004;
Kurtzman et al., 2002).

A summary measure is often chosen because it
is conventional in a subfield. This is a reasonable
decision because it facilitates comparison of results,
although the comparison is restricted to this single
summary measure. In some cases, a particular sum-
mary measure is chosen because it is considered to
be diagnostic of some important concept or because
it is widely used as an operational definition of some
important concept. The distinction between a sum-
mary measure as diagnostic of a concept or sim-
ply an operational definition of a concept is often
uncertain.

Multiple summary measures are sometimes used
to characterize behavior. In some cases, the summary
measures may be independent of each other (i.e., they
are not redundant). For the results of a multiple cued
interval procedure, the summary measures sensitive to
response rate, response pattern, and response bouts may
be independent of each other.

3.1. Rate

The mean response rate (in responses per minute)
during the last 15 sessions during the stimulus of the
30, 60 and 120-s interval is shown in the top panel of
F tions
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ach of 12 rats had 30 sessions of 60 cycles per
ion with this procedure, and the last 15 of these
ions was used for the present analysis. This wa
imultaneous group used in phase 1 of an analys
he acquisition of temporal discrimination (Guilhardi
nd Church, submitted for publication).

. Summary measures of results

Typically, analysis of results consists of the desc
ion of summary measures of behavior. Nonethele
s useful to record and retain the primary data. F
he primary data, it is possible to calculate any s
ary measure, but the primary data cannot be re
ted from the summary measures. The availabilit

he primary data greatly facilitates comparison of
ffects of procedures that were reported with diffe
ig. 2. The mean response rates in the three condi
ere (48.2, 44.5, and 36.2 responses per minute

he three intervals, respectively), with the standard e
f the mean shown by the error bars (3.7, 4.3, and
esponses per minute, respectively). The differenc
esponse rate at different interval durations were
ificant (F(2,22)= 21.3,P< 0.001).

.2. Pattern

The mean response rate can be calculated as a
ion of time since stimulus onset for each of the inte
urations. These response gradients show both the
oral pattern and the overall response rate. The re
esponse rate was defined as the mean response r
ided by the maximum rate. The relative response
s a function of time since stimulus onset is show

he middle panel ofFig. 2. The three functions we
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Fig. 2. Three results. Top panel: mean response rate (per minute) as
a function of interval duration. Middle panel: relative response rate
as a fraction of the maximum rate as a function of interval duration.
Bottom panel: relative frequency of interresponse times as a function
of all interresponse times in seconds.

obviously very different and related to the interval du-
ration.

3.3. Bout

The relative frequency distribution of interresponse
times is defined as the frequency distribution of inter-
response times divided by the number of interresponse
times. This distribution is shown in the bottom panel
of Fig. 2. Most of the interresponse interval were under
2 s, and clustered near a mode at 0.272 s.

4. A process theory

With a specification of the procedures, the recording
of the results, and the analysis of summary measures of
behavior, some attempts are often made to explain the
results. This section describes a quantitative theory that
attempts to explain the behavior resulting from timing
procedures.

Quantitative theories of timing typically attempt to
account for selected summary measures of behavior,
and some of them do so for several quite different sum-
mary measures such as relative response gradients as a
measure of timed performance and choice between two
responses as a measure of time perception. A Turing
test can be applied to these theories, but the questions
must be restricted to the specific procedures to which
they apply and the specific summary measures that the
procedures have used.

Packet theory is unique in attempting to account for
the time of occurrence of individual responses in any
procedure in which any stimuli may be regarded as
qualitatively different from all others. Predictions from
Packet theory can be made for any procedure with any
contingency of reinforcement between stimuli, and re-
sponses. The wide range of legitimate procedures pro-
vides input generality; the prediction of times of re-
sponses, which makes it possible to make predictions
about any summary measure, provides output gener-
ality. This makes it particularly suitable for evaluation
with a Turing test.
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The essential features of Packet theory were
cribed byKirkpatrick (2002) and Kirkpatrick and
hurch (2003). This is referred to as Version 1.
as slightly modified byGuilhardi et al. (in press,
hich will be referred to as Version 2. For acquisit
f a temporal discrimination, it was further modifi
y Guilhardi and Church (submitted for publicatio
ut because those modifications had inconseque
ffects on asymptotic performance, it will be refer

o as Version 2a. Version 2a of Packet theory is use
his article.

The input consists of the time of each stimulus o
nd each food delivery. Unless otherwise specified
nit of time will be seconds. This input is transform
y the rules of temporal perception, temporal mem
nd temporal decision to produce bouts of respon
he rules are specified in the equations below, an

ustrated in the four panels ofFig. 3.
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Fig. 3. Packet model of timing. First panel: perception of the time since food. Second panel: memory of the time to food, with a variable
threshold. Third panel: decision to initiate a packet of responses based on memory and an operant rate. Fourth panel: distribution of interresponse
intervals in a packet. See text for details.

4.1. Perception

The perceived time to food is determined by the du-
ration between the last food delivery and the preceding
stimulus onset (perception panel ofFig. 3).

ei(t) = di − t (5)

wheredi is the duration between the last reinforcement
and the preceding stimulus onset,t the time since stim-
ulus onset in seconds, andei(t) is the perceived time
to reinforcement as a function of time since stimulus
onset. In this example, the duration between the last re-
inforcement and the preceding stimulus onset was 30 s.
Thus, the perceived time to reinforcement was 30 s at
stimulus onset and it decreased linearly for 30–0 s. This
transformation contains no free parameters.

4.2. Memory

The updated remembered time to food is a weighted
mean of the perceived time to food and the previous
remembered time to food (memory panel ofFig. 3).

Ei+1(t) = α ei(t)+ (1− α)Ei(t) (6)

whereei(t) is the current perceived time to reinforce-
ment as a function of time since stimulus onset,Ei(t)
the previous remembered time to food as a function of
time since stimulus onset,α the learning rate (a value
between 0 and 1), andEi+1(t) is updated remembered
t ex-
a ly
u h

effect at asymptote. Of course, if the perception and the
memory were identical, the remembered time to food
would not be changed by Eq.(6). The initial remem-
bered time to food was vector with a length equal to
the number of seconds from stimulus onset to food
containing random values from a normal distribution
with a mean of 400 s, and a standard deviation of 280 s.
These initial values also did not have much effect at
asymptote.

The horizontal line in the memory panel is a thresh-
old that determines whether the animal will be in the
low or high response state. The proportion of time
during the stimulus in which the animal will be in a
high state is determined as follows: in every cycle, the
threshold is a proportion which is a single random sam-
ple from a normal distribution with a mean of 0.37 and
a coefficient of variation of 0.44; the time of this thresh-
old (b) is the remembered time to food, such that the
proportion below the threshold isb. If the remembered
time to food is above the threshold, the animal is in the
low state; if it is below the threshold, the animal is in
the high state. These transformations consists of five
free parameters (α, µ, σ/µ, and the mean and standard
deviation of the initial remembered time to food). At
asymptote, the most influential parameters areµ, and
σ/u.

4.3. Decision

ket
i the
s

ime to food as a function of stimulus onset. In this
mple, the value ofα was 0.0125 (a value previous
sed for acquisition); the value ofα does not have muc
If the animal is in the high state, the rate of pac
nitiation is r packets per second. This is shown by
tep function in the Decision panel ofFig. 3that begins
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at 0 and then, at 20 s after stimulus onset, goes to the
rate ofr packets per second.

r = −0.8 log10Ei(0)+ 2.0 (7)

whereEi(0) is the expected time to food at onset of a
stimulus.

There is also an operant rate of packet initiation that
occurs throughout all sessions shown by the horizontal
dotted line in the decision panel ofFig. 3. The operant
rate of packet initiation was 0.01 per second. During the
low state the rate of packet initiation was the operant
rate (op), and in the high state it was the sum ofr and op.
This transformation consists of three free parameters:
op, and the slope and intercept of the function relating
rate of packet initiation to the mean interfood interval
(Eq.(7)).

4.4. Response

If a packet is initiated, responses may occur in a clus-
tered manner. The number of responses in the cluster
is a random sample from a Poisson distribution with
a mean of five responses; the distribution of these re-
sponses is distributed as a Wald distribution (an inverse
Gaussian shown in the response panel ofFig. 3) which
has two parameters, a mean of 0.54 s and a standard de-
viation of 0.71 s. This consists of three free parameters
( on of
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Fig. 4. Comparison of predictions of model and behavior of rats.
Top panel: the mean response rate (per minute) as a function of in-
terval duration is shown with solid bars for the simulation and open
bars for the data. Middle panel: relative response rate as a function
of interval duration is shown with thin lines for the simulation and
open symbols for the data. Bottom panel: relative frequency of in-
terresponse times as a function of time since previous response in
seconds with thin lines for the simulation and open symbols for the
data.

5.1. Rate

A comparison of the observed response rate (open
bars) with predictions of the model (solid bars) is shown
in the top panel ofFig. 4. The data and the predictions
are similar (ω2 = 0.973).
mean of Poisson, and mean and standard deviati
ald).

. Comparison of predictions of model and
ummary measures of results

A comparison of the predictions of a quantitat
odel, such as Packet theory, with the behav

esults is usually based on summary measures o
ponding, such as those shown inFig. 2. The primary
uestion is usually the extent to which the mo
rovides a good fit to the data, and the measur
oodness-of-fit is the proportion of variance accou

or by the model,ω2, as defined in Eq.(1). Note tha
his is a comparison of the model under considera
nd an alternative model, that all values are at
ean.
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5.2. Pattern

A comparison of the observed response gradients
(data points) with predictions of the model (thin lines)
is shown in the middle panel ofFig. 4. The data and
the measures are similar (ω2 = 0.994, 0.997, and 0.997
for the 30, 60, and 120-s intervals, respectively).

5.3. Bout

A comparison of the observed bout structure (open
circles) with predictions of the model (thin line) is
shown in the bottom panel ofFig. 4. Although the dis-
crepancies of the observed and predicted functions are
not large (ω2 = 0.974), the systematic pattern of devia-
tions clearly indicates that the predicted function is just
an approximation.

5.4. Evaluation of the model based on summary
measures

Based on the summary measures of rate and pattern
shown inFig. 4, it appears that the predictions of the
model are nearly identical to the data. The predictions
of bout structure indicated that the function forms were
not correct, but the discrepancies were small.

The model had five parameters for memory, three
for decision, and three for response. A single estimate
of each of these 11 parameters was used in fitting the
413 data points inFig. 4. Some of the estimates have
o and
s ures.
T

ea-
s to
d acket
t ued
i -
c de-
s dant
s cued
i

6

inal
T f a
t

6.1. Original Turing test

In 1950, Alan Turing introduced a method to an-
swer the question, “Can machines think?” He proposed
a behavioristic approach, a modification of the imi-
tation game, in which an interrogator asks questions
and attempts to determine whether the typed answers
are coming from a person or a programmed computer
(Turing, 1950). This test is now known as “the Tur-
ing test.” People are regarded as intelligent, so, if the
interrogator is not able to distinguish between the an-
swers from a person and a computer, it may be that the
computer is also intelligent, i.e., it can think. Turing’s
prediction was:

“I believe that in about 50 years’ time it will be possible
to programme computers, with a storage capacity of
about 109, to make them play the imitation game so well
than anaverageinterrogator will not have more than
70 percent chanceof making the right identification
afterfiveminutesof questioning.” (Turing, 1950, p. 442,
italics added)

The italics were added to emphasize the graded na-
ture of the criterion that consisted of the skill of the
interrogator, the percentage of correct identification,
and the length of the questioning.

6.2. A Turing test of a behavioral theory
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e ; in
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T the
a ; the
nly negligible effects on the summary measures,
ome of the estimates may apply to other proced
hus, the model is not unduly complex.

On the basis of the analysis of these summary m
ures, it would appear to be difficult or impossible
iscriminate between data that was generated by P

heory and data generated by a rat in this multiple c
nterval procedure. Section7 will show that such a dis
rimination can be made. This will indicate that,
pite excellent fits based on these three nonredun
ummary measures, the Packet theory of multiple
nterval procedure is incomplete.

. A Turing test

The purpose of this section is to describe the orig
uring test, and its application to the evaluation o

iming theory.
The Turing test can be readily adapted to eval
quantitative theory of behavior. In the original T

ng test, an interrogator asks questions to a perso
computer program; in the adaptation of the Tu

est, an experimenter administers a procedure to a
mal or a computer program. In the original Turing te
ither a person or a computer program provides th
wers; in the adaptation of the Turing test, either
nimal or the computer program responds. In the o

nal Turing test, an interrogator classifies the answ
ither coming from a person or a computer program

he adaptation of the Turing test, a computer algor
lassifies the results as coming either from an an
r from a computer program (Church, 1997, 2001).

The adaptation of the original Turing test to evalu
quantitative theory of behavior is illustrated inFig. 5.
he procedure delivers stimuli and reinforcers to
nimal and receives responses from the animal
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Fig. 5. A Turing test for the evaluation of a quantitative theory of behavior. The same procedure is used for delivering stimuli and reinforcers
to the animal and the model, and receiving responses from the animal and the model. The observed data consists of times of the events (stimuli,
reinforcements, and responses) from the animal and the procedure; the simulated data consists of times of events from the model and the
procedure. (Church, 1997, Copyright 1997 by the American Psychological Association. Adapted with permission).

observed data consists of a list of times at which
various events occur, such as stimulus onset and
termination, reinforcer delivery, and responses (see
alsoFig. 1). The procedure also delivers stimuli and
reinforcers to the model and receives responses from
the model; the simulated data consists of another list
of times at which various events occur.

The list of the observed data can be compared with
the list of simulated data to determine whether a partic-
ular list was produced by an animal or by a computer
model. This should be done with an objective evalua-
tion algorithm.Church (1997)wrote:

“Our goal should be to develop models that produce se-
quences of times of occurrence of events (stimuli and
responses) that are indistinguishable from those pro-
duced by the animal under many experimental proce-
dures and data analysis techniques (a Turing test).”

The original article included a figure similar toFig. 5
that included an extension to evaluate models with each
other, as well as with the data.

It would now seem reasonable to relax the goal from
“indistinguishable” to “less than 1% error.” The current
error is about 10%, as described in the next section. If
the error rate can be reduced by one-half in each of the
next 5 years (10, 5, 2.5, 1.25, and 0.625), the goal of
an error rate of less than 1% can be reached in 5 years.

7. Comparison of predictions of a model and
the primary data

In the present experiment, the events were stim-
uli (houselight, noise, and clicker), a response (head-
entry), and a reinforcer (food), as shown in Eq.(3).
One cycle of this experiment consisted of the interval
between two successive deliveries of food. This might
be a 20-s interval followed by the onset of a houselight,
a 30-s interval followed by a head-entry response, ter-
mination of the houselight and delivery of food (Eq.
(2)).

The observed rat data (dashed line) came from one
cycle from a rat; the simulated model data (dotted line)
came from one cycle of Packet theory; the sample
model data (thick black line) came from another cy-
cle of Packet theory (Fig. 6). The dependent variable,
local rate, was calculated directly from the times of
responses as a function of time since stimulus onset.
The local rate in responses per minute at a given time
is the reciprocal of the interresponse time in minutes.
Thus, if two responses are separated by a 1-s interval,
the local rate is 60 response per minute (i.e., interre-
sponse time was 1/60 min per response, the reciprocal
of which is 60 responses per minute). To reduce the in-
fluence of large fluctuations in response rate with very
small changes in short interresponse times, the loga-
rithm of the local rate is used in the analysis. It should
be noted that this local rate measure contains all the



54 R.M. Church, P. Guilhardi / Behavioural Processes 69 (2005) 45–58

information available in the times of responses in the
primary data–it is possible to reconstruct the original
times of the responses based on a sequence of local rate
functions for each cycle. (This is also true of the more
familiar cumulative record that could also be used.)

The psychophysical procedure that was used is
known as a matching-to-sample. The task was to
determine whether the observed data or the simulated
data more closely resembled (matched) the sample.
In this case, it is clear that the sample was more
similar to the observed data than the simulated
data. Thus, the classification on this cycle would be
incorrect.

Of course, there was no need to rely upon human
judgments of similarity. The objective index used was:

if median|r − s| > median|m− s|, I = 1
else I = 0

(8)

where the logarithm (base 10) of the local response rate
in responses per minute of the rat, model, and sample
werer, m, ands, respectively.

Since the sample was drawn from the model, a
correct identification (I = 1) was when the model and
the sample were more similar than the rat and the
sample. The mean probability of a correct identifica-
tion (and the standard error of the mean) is shown for
the three fixed-interval conditions (30, 60, and 120 s)
in the bottom panel ofFig. 6. There were 12 rats,
and about 150 cycles for each rat at each of the three
i
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Fig. 6. Application of a Turing test to a time discrimination pro-
cedure. Top panel: local response rate as a function of time since
stimulus onset is shown for a single cycle for a rat, a model, and an
unknown sample. Bottom panel: the probability of correct detection
and the standard error is shown for the three fixed-interval conditions.

required to reproduce the times of each response;
other measures that are also sufficient to reproduce the
times of each response include the cumulative number
of responses on each cycle. The median absolute
differences provide an objective measure of similarity;
the sum of squared differences (least square criterion)
provides an alternative measure. Thus, other indices
may be used for classification of cycles.

The probability of a correct identification of each
cycle, averaged over many cycles, provides a graded
metric for the evaluation of a quantitative theory of
timing. The value of the difference or ratio between
two measures, such as the median absolute differences
in Eq.(8), provides an alternative, and potentially more
sensitive, graded metric.

A graded metric provides rapid feedback regarding
the consequences of modifications of the theory. This
can be used for the identification of critical features of
the theory, and it can be used for parameter estimation.
ntervals.
The mean probability of a correct identification w

.60, with a standard error of 0.07. This is relia
reater than 0.50 (t11 = 8.6,P< 0.001). The probabilit
f correct identification increased as a function of in
al (F2,22= 4.9,P< 0.02). Although the mean probab
ty of a correct identification of 0.60 demonstrates
acket theory was substantially better than the w
ossible theory in which correct classification wo
lways occur (1.0), it is reliably worse than an id

heory in which correct classification would occur
hance (0.5).

The essential features of the index used for cla
cation (Eq.(8)) are: (a) the similarity measures a
ased on data which contain all information neces

o recreate the times of responses, and (b) an obje
imilarity measure is used. The logarithm of the lo
esponse rate on each cycle contains all the inform
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The estimates of the parameters used in this article
were based on informal searches of the parameter space
based on summary statistics, such as those shown in
Fig. 5. Standard iterative methods for fitting nonlinear
equations may be used to improve the estimates of
the parameters. The cycle-by-cycle data can be used,
but to avoid overfitting, the same cycles should not
be used for estimating parameters and evaluating the
goodness of fit (Brown, 2000; Stone, 1974).

Of course, goodness of fit is not the only basis
for evaluation of a quantitative model (Myung, 2000;
Myung and Pitt, 2002; Pitt et al., 2002). Some authors
find goodness of fit not to provide much support for a
model (Roberts and Pashler, 2000), while others con-
sider it to be a necessary but not sufficient criterion
(Rodgers and Rowe, 2002). Probably most investiga-
tors would want a quantitative model that fit the data,
but would also seek other criteria such as generality,
simplicity, clarity, successful generation of new hy-
potheses that are subsequently verified, and facilitation
of understanding (Myung and Pitt, 2002).

A Turing test provides a way to obtain input gener-
ality by the use of the same theory to account for the
results of many different procedures; it also provides a
way to obtain output generality by the use of the same
theory to account for the results of many different sum-
mary measures of behavior.

Acknowledgements

34
t

of
t , in-
c been
p logy
D d I
h . For
s uan-
t eat
d gnal
d od-
e on-
i C
c me
t has
c rch

problems on which we have worked are quite differ-
ent, but I have been heavily influenced by methods he
has used. I have been impressed by his emphasis on
the behavior of individual animals, the psychophysical
approach to research, within-subject experimental de-
signs, clear specifications of input and output variables
with beautiful functional relationships between them
that warrant careful study, and his elegant and simple
quantitative models of data that direct attention to the
underlying processes. Many of the important influences
are typically uncited, and frequently not conscious. I
am as impressed now as I was when I first learned about
his identification of response bouts of pigeons with dif-
ferent functional relations (Blough, 1963), his original
demonstration of selection of the least-frequent rein-
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Appendix A

A.1. A notation for timing and conditioning
procedures

This procedural notation, referred to as the Brown
Notation System, provides an hierarchical structure in
which the primary elements are times of events. These
elements are combined into cycles, which are combined
i ts.
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National Institute of Mental Health Grant MH442
o Brown University supported this research.

Although his name is not mentioned in the body
his article, Don Blough’s influence on my research
luding the research described in this article, has
rofound. We have been colleagues in the Psycho
epartment at Brown University for 48 years, an
ave considered him to be an academic brother
everal years, we co-taught a graduate seminar in q
itative models in Psychology in which I learned a gr
eal from him about psychophysical methods, si
etection theory, multidimensional scaling, and m
ls of reaction time. (I taught sections on conditi

ng and timing models.) With an original classic LIN
omputer that he obtained in 1964, he introduced
o the modern world of online computers which he
ontinued to use skillfully and creatively. The resea
nto treatments, sessions, phases, and experimen

.2. Elements

.2.1. Stimulus
A stimulus is determined by the procedure, or

he procedure and the behavior of the animal. Ca
etters are used for onset; lower case letters are
or termination; both are used for a stimulus pulse.
xample,

timulus On Off Puls

ouselight H h Hh
oise N n Nn
licker C c Cc
eft lever V v Vv
ight lever W w Ww
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A.2.2. Response
A response is a measured behavior of the animal.

For example,

Response On Off Pulse Wingding3 font

Head → ← ↔ g, f, and n
Left lever ↓ ↑ � I, h, and o
Right lever ↓↓ ↑↑ ↓↑ K, J, and E
Lick R

Note that special characters are available in Wingding3 font. For
example, a right-pointing arrow is produced by the lower-case g.

A.2.3. Reinforcer
A reinforcer is a stimulus with certain convention-

ally recognized special properties.

Reinforcer On Off Pulse

Food � � �� p, q, andpq
Shock y, x, andyx

A.2.4. Event
An event is the onset and/or termination of a stimu-

lus, response, or reinforcer.

A.2.5. State
stim-

u

A.2.6. Procedural change
A procedural change is a change in the contingen-

cies of reinforcement that are not accompanied by any
external event (stimulus, response, or reinforcer).

Procedural change On Off Pulse
Prime � � �� r, s, andr s

A.2.7. Time
A time is a number and unit relative to the onset of

a cycle,

20 s Example of fixed time of 20 s
2 m For 2 min
2 h For 2 h
∼20 s Example of random time (random

sample from exponential distribution
with a mean of 20 s).

u (1:1:20 s) Example of uniformly distributed time
(random sample from uniform distri-
bution with a minimum of 1 s, a max-
imum of 20 s at 1-s intervals.

A.3. Combinations of elements

A.3.1. Cycle
th a

s thin
e lash;
a hin a
c ffect
w

cle of ivered
lever re
ycle of noise.
livered cified by
ents, s
only b g the

ff. Ther terval.
A state is the pattern of presence or absence of
li, responses, and reinforcers.

C1 = /20 s↓��/ %An example of a cy
following the first left

C2 = /120 s N; 30 s�� n/ %An example of a c
After 30-s, food is de
several times and ev

C3 = /120 s N; 30 s (∼60 s��) n/ %This differs fromC2

30 s that the light is o
A cycle is composed of one or more states, wi
pecification of the times and events that occur wi
ach state. A cycle is begun and ended with a backs
semicolon is used to separate different states wit
ycle; times and events within parentheses are in e
hen the state is in effect.

a fixed-interval schedule of reinforcement in which food is del
sponse after a 20-s interval.

a cycle consisting of a 120-s interval followed by the onset of
and the noise is terminated. Note that a cycle may also be spe
eparated by a semicolon (;).
y delivering food at random times (with a mean of 60 s) durin
e may be 0, 1, or more than 1 delivery of food during this 30-s in
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A.3.2. Treatment
A treatment is one or more cycles that may be re-

peated. Five types are:

Simple.T = [C1] %The same cycle type
may be repeated.

Sequential.T = [C1C2 · · ·C3] %Several different
types of cycles may be
repeated in the same
order.

Probabilistic.
T = [p1C1p2C2 · · ·pnCn]

% A random sample of
a single type of cycle
may be repeated. (This
is random sampling
with replacement.)

Permutation.T = p[C1C2 · · ·Cn]
A random order of several types of
cycles may be repeated. (This is
random sampling without
replacement).

Concurrent.T = [C1&C2 · · ·&Cn]

%Several types of cy-
cles may be executed
simultaneously and
independently.

A.3.3. Session
A session is a specification of the treatment between

the time the animal enters and leaves the box. It may
be specified either in terms of time, number of cycles,
or number of treatments or a criterion of performance.
For example,

f a

f a

of a

A
ame

t um-
b For
e

ons

A.3.5. Experiment
An experiment is a specification of the number of

phases.

E= 30S An experiment consist of 30 sessions

A.4. Examples of notation for timing and
conditioning procedures

A.4.1. The present experiment

C1 = /20 s H; 30 s→h��/ %Cycle with houselight, 30-s
FI

C2 = /20 s N; 60 s→n��/ %Cycle with noise, 60-s FI
C3 = /20 s C; 120 s→ c��/ %Cycle with clicker, 120-s FI
T = [(1/3)C1 (1/3)C2 (1/3)C3] %Treatment consists of ran-

dom selection of cycle
S= 60T %60 cycles per session
P= 30S %30 session in phase
E=P %One phase in experiment

A.4.2. A temporal discrimination procedure
This was the procedure used for pretraining and

training byChurch and Deluty (1977)

C1 = /60 s��/ %Food delivered every 60 s
C2 = /V 10(↓��)v; W 10(↓��)/ %Left lever inserted, each of

re
r
ht

r

t

ine

ts

ng

, 2,
S= 120 mT %A sessions consists of 120 min o
treatment

S= 30C %A session consists of 30 repetition o
cycle

S= 10T %A session consists of 10 repetitions
treatment

.3.4. Phase
A phase refers the series of sessions with the s

reatment. It may be defined either in terms of the n
er of sessions or some criterion of performance.
xample,

P= 20S %A phase consists of 20 sessi
10 left lever responses a
followed by food; left leve
is withdrawn; same for rig
lever

C3 = /30 s l; 2 s L; (VW↓��vw or
↓↓vw)/

%If light is off for 2 s, left leve
followed by food

C4 = /30 l = 8 s L; (VW↓vw or
↓↓��vw)/

%If light is off for 8 s, righ
lever followed by food

T1 =C1 %Treatment was magaz
training

S1 = 60T1 %Session was 60 treatmen
P1 =S1 %Phase 1 was one session
T2 =C2 %Treatment was lever traini
S2 = 2T2 %Session was 2 treatments
P2 = 2S2 %Phase 2 was 2 sessions
T3 = [.5C3 .5C4] %Treatment is probabilistic
S3 = 50 mT3 %Sessions were 50 min
P3 = 20S3 %Phase 3 was 20 sessions
E= [P1 P2 P3] %Experiment was phases 1

and 3
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