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Abstract

A quantitative theory of timing or conditioning can be evaluated with a Turing test in which the behavioral results of an
experiment can be compared with the predicted results from the theory. An example is described based upon an experiment in
which 12 rats were trained on three fixed-interval schedules of reinforcement, and a simulation of the predicted results from
a packet theory of timing. An objective classification rule was used to determine whether a sample from the data or a sample
from the theory was more similar to another sample from the theory. With an ideal theory, the expected probability of a correct
classification would be 0.5. The observed probability of a correct classification was 0.6, which was slightly, but reliably, greater
than 0.5. A Turing test provides a graded metric for the evaluation of a quantitative theory.
© 2005 Elsevier B.V. All rights reserved.
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Procedures used in the study of animal timing have of the fixed-interval (as a proportion of the total in-
led to the identification of reliable functional relation- terval). The same function typically provides a good
ships between guantitative features of procedures andapproximation of the behavior under a wide range of
results. For example, a fixed-interval schedule of rein- fixed-intervals. This is the superposition result, which
forcement leads to a response rate that increases afas also been called “timescale invarianc€hgrch,

a function of time since the previous reinforcement 2002.

(Dews, 197Q. The relative response rate (as a propor-  Theories of timing have been developed that account

tion of the maximum response) increases as a function for these quantitative results. Examples of these are
scalar timing theoryGibbon, 1977, behavioral the-
ory of timing (Killeen and Fetterman, 1988learn-
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2003, but there are many others. (In these quantita- sured responses (such as head-entry into the food cup,
tive timing theories, the terms “theory” and “model” lever press, and licking on the tube of a water bottle),
are used interchangeably.) One of the purposes of theseand one or more reinforcers (such as food or shock).
theories is to account for the behavior of the animal in The standard time-line diagram shown in the top panel
timing procedures based on simple assumptions of aof Fig. 1includes a single stimulus (houselight), a sin-
well-specified process model. gle response (head-entry), and a single reinforcer (a
One of the bases for the evaluation of a quantitative pellet of food).
theory of timing is the extent to which it fits observed The procedure that is illustrated in the time-line dia-
data. This is usually done by defining one or more sum- gram provides information regarding the contingencies
mary measures of behavior, and comparing the predic- of reinforcement. The time of an onset of a stimulus
tions of the model with the values of the observed data. (such as the houselight) is indicated by an arrow; the
The variance of the difference of the observed from the time after which a response will be reinforced is indi-
predicted values of the summary measure (unexplainedcated by an open triangle (labeled “Prime”); the time
variance) is typically compared to the variance of the of a food delivery is indicated by a solid triangle, and
difference of the observed from the mean values of the the times of head-entry responses is indicated by the
summary measure (total variance). The standard indexvertical marks on the line labeled “Responses.”

is the proportion of variance accounted for: The contingencies of reinforcement may be de-
5 5 scribed in words, in a diagram, or with formal notation.

w2 =t "% ) They are nearly always described in a paragraph, but
Gtz it is difficult to describe a procedure precisely, com-
pletely, and succinctly in words. The contingencies of
wherew? is the proportion of variance accounted fef, reinforcement may also be described with a time-line

the unexplained variance, ang is the total variance. diagram (as in the top panel Big. 1), but this requires

The main purpose of this article is to show how a more space than a formal notation. Unfortunately, the
Turing test provides an alternative way to evaluate the standard formal notation for conditioning procedures
extentto which the predictions of atiming theory fitob- is too succinct to be useful for many purposes. For
served data. It describes a particular timing procedure, example, this procedure would be described as A+,
the results that were recorded, summary measures ofwhere A is the symbol for the houselight, and + is the
the behavior, a quantitative process model (Packet the-symbol for food. This does not provide information
ory), and comparison of the predictions of the model about the duration of the stimulus, the duration be-
and the summary measures of behavior. It concludestween stimuli, the time of delivery of the food during
with a description of the Turing test, how it can be used the stimulus (or even whether or not the food was
to evaluate a quantitative process model. The questiondelivered shortly after stimulus termination, as in trace
is the extentto which a person, ora computer algorithm, conditioning).
can correctly discriminate between data that was gen- A more complete formal notation is necessary to
erated by an experimental subject and data generatedprovide the information that is in a time-line diagram.
by a guantitative theory. The procedure in the top panelfify. 1 may be written

as:

1. Specification of the procedures /205H; 305> hav/ @)
Many timing and conditioning procedures can be

described by the specification of a small number of With symbols for light onset (H), light termination (h),

stimuli, reinforcers, and responses, and the contingen- head-entry responsex), and food delivery4 v). This

cies among these events. Such experiments are ofterfontains information aboutthe duration of the stimulus,

conducted with well-known species in Simp|e environ- the duration between stimuli, and the time of deIivery of

ments. They may use one or more stimuli (such as food during the stimulus. The extension of this notation

houselight, white noise, and clicker), one or more mea- to many different procedures is Appendix A
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Fig. 1. Procedure and recording of data. Top panel: times of stimulus onset and termination, food availability, and delivery, and the times of
head-entry responses are shown for two cycles. Bottom left panel: the time-event list contains three columns for the time in seconds from the
beginning of the session, the number of each event, and the name of each event. Bottom right panel: a raster plot of the head-entry responses is
shown as a function of time since onset of the light on 30 consecutive cycles with each head-entry response marked by an open circle. Note that
most of the responses occurred in the latter portions of the 30-s interval.

2. Recording of the results response occurred, food was delivered, and the house-
light was turned off. The time-event list continues with

The primary data consists of a list of times at which the data for the second cycle. Records were kept of
each event occurs (lower left portioneig. 1). In this the times (to the nearest 2 ms) and event numbers; the
example, the session began with the delivery of food. event numbers and names are redundant. Because they
The houselight went on after 20 s, head-entry responsesare more efficient for storage and analysis, numbers are
occurred at 44.00, 45.20, 46.00, and 49.80 s, then foodtypically used, but supplemented with a list of the event
was primed at 50.00 and 55.00s, the next head-entry name corresponding to each number.
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The lower right portion ofig. 1shows a raster plot  summary measures; it makes it unnecessary to repeat
of the head-entry responses. The data come from onean experiment in order to analyze a different summary
rat on a 30-s discriminative fixed-interval schedule. measure. The availability of primary data facilitates
The horizontal axis is the time since stimulus onset, secondary data analysiG(ilhardi and Church, 2004;
and the vertical axis is the successive cycles in a Kurtzman et al., 2002
session (from top to bottom). In a 30-s fixed-interval A summary measure is often chosen because it
schedule, responses are clustered toward the end of thés conventional in a subfield. This is a reasonable
interval. decision because it facilitates comparison of results,

The procedure used to generate the data for this although the comparison is restricted to this single
application of a Turing test of a quantitative tim- summary measure. In some cases, a particular sum-
ing theory was an extension of the simple 30-s dis- mary measure is chosen because it is considered to
criminative fixed-interval schedule of reinforcement be diagnostic of some important concept or because
shown inFig. 1 There were three cycle typeSy(, Co, it is widely used as an operational definition of some
andCs). important concept. The distinction between a sum-
C1 = /205 H: 305> haY/ n:ary measurt_e as;I gm:cgr!gsnc ?f a conce{at_ orf;s|m-
Cy = /20SN: 605> NAY/ 3) Eri/c:rrtwai?]pera ional definition of a concept is often
C3=/20sC;120s~> cAV/ - .

Multiple summary measures are sometimes used
where H is houselight onset; N is onset of white noise; to characterize behavior. In some cases, the summary
and Cis onset of a clicker. The lower case letters are for measures may be independent of each other (i.e., they
the terminations of the stimuli. Thus, in this multiple are not redundant). For the results of a multiple cued
cued interval procedure, there were three possible inter- interval procedure, the summary measures sensitive to
vals (30, 60, and 120 s), each with a different discrim- responserate, response pattern, and response bouts may
inative stimulus. (Of course, the interval and stimulus be independent of each other.
type was counterbalanced across rats.) The three types
of cycles were sampled with replacement, as shown by 3.1. Rate
the following notation:

1 1 1 The mean response rate (in responses per minute)
T= [(—) C1 (—) Cs (—) C3] 4) during the last 15 sessions during the stimulus of the

3 3 3 30, 60 and 120-s interval is shown in the top panel of
Each of 12 rats had 30 sessions of 60 cycles per ses-Fig. 2 The mean response rates in the three conditions
sion with this procedure, and the last 15 of these ses- were (48.2, 44.5, and 36.2 responses per minute with
sions was used for the present analysis. This was thethe threeintervals, respectively), with the standard error
simultaneous group used in phase 1 of an analysis of of the mean shown by the error bars (3.7, 4.3, and 3.6
the acquisition of temporal discriminatioGilhardi responses per minute, respectively). The differences in
and Church, submitted for publicatipn response rate at different interval durations were sig-

nificant F(2,22)=21.3,P<0.001).

3. Summary measures of results 3.2. Pattern

Typically, analysis of results consists of the descrip- ~ The mean response rate can be calculated as a func-
tion of summary measures of behavior. Nonetheless, it tion of time since stimulus onset for each of the interval
is useful to record and retain the primary data. From durations. These response gradients show both the tem-
the primary data, it is possible to calculate any sum- poral pattern and the overall response rate. The relative
mary measure, but the primary data cannot be recre- response rate was defined as the mean response rate di-
ated from the summary measures. The availability of vided by the maximum rate. The relative response rate
the primary data greatly facilitates comparison of the as a function of time since stimulus onset is shown in
effects of procedures that were reported with different the middle panel ofig. 2 The three functions were
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__t0 4. A process theory
E s0 I [
< w0 ! I With a specification of the procedures, the recording
® | of the results, and the analysis of summary measures of
§ S0 behavior, some attempts are often made to explain the
g 20 results. This section describes a quantitative theory that
§ 10 attempts to explain the behavior resulting from timing
o procedures.
30 60 120 Quantitative theories of timing typically attempt to
Interval duration (s) account for selected summary measures of behavior,
and some of them do so for several quite different sum-
! mary measures such as relative response gradients as a
0.8 measure of timed performance and choice between two
° responses as a measure of time perception. A Turing
T 06 test can be applied to these theories, but the questions
.f';’ 04 must be restricted to the specific procedures to which
3 they apply and the specific summary measures that the
& 02 procedures have used.
0 Packet theory is unique in attempting to account for

0 20 40 60 80 100 120

o . the time of occurrence of individual responses in any
Time since stimulus onset (s)

procedure in which any stimuli may be regarded as
gualitatively different from all others. Predictions from
Packet theory can be made for any procedure with any
contingency of reinforcement between stimuli, and re-
sponses. The wide range of legitimate procedures pro-
vides input generality; the prediction of times of re-
sponses, which makes it possible to make predictions
about any summary measure, provides output gener-
- ality. This makes it particularly suitable for evaluation
: : - with a Turing test.
0 0.5 1 15 2 -
Interresponse time (s) The essential features of Packet theory were de-
scribed byKirkpatrick (2002) and Kirkpatrick and
Fig. 2. Three results. Top panel: mean response rate (per minute) asChurch (2003) This is referred to as Version 1. It
a function of interval duration. Middle panel: relative response rate \ygg slightly modified byGuilhardi et al. (in press)
as a fraction c_)f the‘maX|mum rate as a function of _|nterval durat|qn. which will be referred to as Version 2. For acquisition
Bottom panel: relative frequency of interresponse times as a function L . . e
of all interresponse times in seconds. of a te_mpor_al discrimination, it was further modl_fled
by Guilhardi and Church (submitted for publication)

obviously very different and related to the interval du- Put because those modifications had inconsequential

Relative frequency
o
2

ration. effects on asymptotic performance, it will be referred
to as Version 2a. Version 2a of Packet theory is used in
3.3. Bout this article.

The input consists of the time of each stimulus onset
The relative frequency distribution of interresponse and each food delivery. Unless otherwise specified, the
times is defined as the frequency distribution of inter- unit of time will be seconds. This input is transformed
response times divided by the number of interresponse by the rules of temporal perception, temporal memory,
times. This distribution is shown in the bottom panel and temporal decision to produce bouts of responses.
of Fig. 2 Most of the interresponse interval were under The rules are specified in the equations below, and il-
2 s, and clustered near a mode at 0.272s. lustrated in the four panels &ig. 3.
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Perception Decision Responses

w
o

Density

Time to food (s)
Packet rate

Time to food (s)
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0 20 30 0 1 2
Time since stimulus onset (s) IRT (s)

Fig. 3. Packet model of timing. First panel: perception of the time since food. Second panel: memory of the time to food, with a variable
threshold. Third panel: decision to initiate a packet of responses based on memory and an operant rate. Fourth panel: distribution of interrespons
intervals in a packet. See text for details.

4.1. Perception effect at asymptote. Of course, if the perception and the
memory were identical, the remembered time to food
The perceived time to food is determined by the du- would not be changed by E¢6). The initial remem-
ration between the last food delivery and the preceding bered time to food was vector with a length equal to
stimulus onset (perception panelffy. 3). the number of seconds from stimulus onset to food
containing random values from a normal distribution
ei(t) =di —1 ®) with a mean of 400 s, and a standard deviation of 280 s.
whered; is the duration between the last reinforcement These initial values also did not have much effect at
and the preceding stimulus ongdte time since stim- ~ asymptote.
ulus onset in seconds, ardt) is the perceived time The horizontal line in the memory panel is a thresh-
to reinforcement as a function of time since stimulus old that determines whether the animal will be in the
onset. In this example, the duration between the last re-Iow or high response state. The proportion of time
inforcement and the preceding stimulus onset was 30 s.during the stimulus in which the animal will be in a
Thus, the perceived time to reinforcement was 30's at high state is determined as follows: in every cycle, the
stimulus onset and it decreased linearly for 30—0's. This threshold is a proportion which is a single random sam-

transformation contains no free parameters. ple from a normal distribution with a mean of 0.37 and
a coefficient of variation of 0.44; the time of this thresh-
4.2. Memory old (b) is the remembered time to food, such that the

proportion below the threshold s If the remembered
The updated remembered time to food is a weighted time to food is above the threshold, the animal is in the
mean of the perceived time to food and the previous low state; if it is below the threshold, the animal is in

remembered time to food (memory paneFag. 3). the high state. These transformations consists of five

free parametersy( 1, o/, and the mean and standard
Eina(t) = eei(t) + (1 — ) Ei(r) (6) deviation of the initial remembered time to food). At
wheree (1) is the current perceived time to reinforce- asymptote, the most influential parametersarand
ment as a function of time since stimulus ongg(f) olu.

the previous remembered time to food as a function of

time since stimulus onsat, the learning rate (a value 4.3. Decision

between 0 and 1), and 4 (t) is updated remembered

time to food as a function of stimulus onset. In this ex- If the animal is in the high state, the rate of packet
ample, the value o& was 0.0125 (a value previously initiation isr packets per second. This is shown by the
used for acquisition); the value @does nothave much  step function in the Decision panelig. 3that begins
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at 0 and then, at 20s after stimulus onset, goestothe €0
rate ofr packets per second. S 50|
E 40¢
r=-0.8 Ioglo E,(O) + 2.0 (7) g 30}
| | g 2
whereE;(0) is the expected time to food at onset of a a
stimulus. e
There is also an operant rate of packet initiation that 0 30 60 120
occurs throughout all sessions shown by the horizontal Interval duration (s)
dotted line in the decision panel Bfg. 3. The operant
rate of packet initiation was 0.01 per second. During the 1
low state the rate of packet initiation was the operant %
rate (op), and in the high state it was the sumanfd op. o 08
This transformation consists of three free parameters: S el
op, and the slope and intercept of the function relating ,g
rate of packet initiation to the mean interfood interval < 047
(Eq. (7). C ool
% 20 40 60 8 100 120
4.4. Response Time since stimulus onset (s)
If a packetisinitiated, responses may occurinaclus- 0.02
tered manner. The number of responses in the cluster 2
is a random sample from a Poisson distribution with & 0015}
a mean of five responses; the distribution of these re- % )
sponses is distributed as a Wald distribution (an inverse = 0014
Gaussian shown in the response panéligf 3) which 2 {
has two parameters, amean of 0.54 s and astandard de- ~ 0005
viation of 0.71 s. This consists of three free parameters @ I e
(mean of Poisson, and mean and standard deviation of 05 05 1 15 2
Wald). Interresponse time (s)

Fig. 4. Comparison of predictions of model and behavior of rats.
5. Comparison of predictions of model and tonal curation 5 shown ith s b for the simutaton and open
summary measures of results bars for the data. Middle panel: relative response rate as a function
of interval duration is shown with thin lines for the simulation and
A comparison of the predictions of a quantitative open symbols_ for the data. B_ottom panel:_ relative f_requency of in—_
model, SUCh as Packet theory, with the behavioral terresponge tlm_es 'as a functloq of tlme Since previous response In
. seconds with thin lines for the simulation and open symbols for the
results is usually based on summary measures of re- .,
sponding, such as those showrFig. 2 The primary
question is usually the extent to which the model
provides a good fit to the data, and the measure of 5.1. Rate
goodness-of-fit is the proportion of variance accounted
for by the modelw?, as defined in Eq(1). Note that A comparison of the observed response rate (open
this is a comparison of the model under consideration bars)with predictions of the model (solid bars) is shown

and an alternative model, that all values are at the in the top panel oFig. 4 The data and the predictions
mean. are similar (2 =0.973).



52 R.M. Church, P. Guilhardi / Behavioural Processes 69 (2005) 45-58
5.2. Pattern 6.1. Original Turing test

A comparison of the observed response gradients In 1950, Alan Turing introduced a method to an-
(data points) with predictions of the model (thin lines) swer the question, “Can machines think?” He proposed
is shown in the middle panel d¢fig. 4 The data and  a behavioristic approach, a modification of the imi-
the measures are similas{=0.994, 0.997, and 0.997 tation game, in which an interrogator asks questions

for the 30, 60, and 120-s intervals, respectively). and attempts to determine whether the typed answers
are coming from a person or a programmed computer
5.3. Bout (Turing, 1950. This test is now known as “the Tur-

] ing test.” People are regarded as intelligent, so, if the
~ A comparison of the observed bout structure (open interrogator is not able to distinguish between the an-

shown in the bottom panel &ig. 4. Although the dis-  computer is also intelligent, i.e., it can think. Turing’s
crepancies of the observed and predicted functions areprediction was:

not large {2 =0.974), the systematic pattern of devia-

tions clear!y indicates that the predicted functionis just «| pejieve thatin about 50 years’ time it will be possible
an approximation. to programme computers, with a storage capacity of
about 18, to make them play the imitation game so well
than anaverageinterrogator will not have more than
70 percent chancef making the right identification

Based on the summary measures of rate and patternaﬁernve minutesfquestioning”Turing, 1950p. 442,

shown inFig. 4, it appears that the predictions of the italics added)
model are nearly identical to the data. The predictions
of bout structure indicated that the function forms were

not correct, but the discrepancies were small.

The model had five parameters for memory, three
for decision, and three for response. A single estimate
of each of these 11 parameters was used in fitting the
413 data points ifrig. 4. Some of the estimates have
only negligible effects on the summary measures, and
some of the estimates may apply to other procedures.
Thus, the model is not unduly complex.

5.4. Evaluation of the model based on summary
measures

The italics were added to emphasize the graded na-
ture of the criterion that consisted of the skill of the
interrogator, the percentage of correct identification,
and the length of the questioning.

6.2. A Turing test of a behavioral theory

The Turing test can be readily adapted to evaluate
a quantitative theory of behavior. In the original Tur-
On the basis of the analysis of these summary mea- Ing test, an mterroga.to_r asks questhns toa person or
a computer program; in the adaptation of the Turing

sures, it would appear to be difficult or impossible to test, an experimenter administers a procedure to an an-
discriminate between data thatwas generated by Packet "~ | P b

theory and data generated by a rat in this multiple cued g?[ﬁle?;a Cec;rsnopnu(t)errapéggr;;alrﬂélrn t:)e ?;ﬁ'n?(l)\%g;%?;h_
interval procedure. Sectiofwill show that such a dis- P P prog P

crimination can be made. This will indicate that, de- swers; in the adaptation of the Turing test, either the

spite excellent fits based on these three nonredundantan'maI or the computer program responds. In the orig-

. inal Turing test, an interrogator classifies the answer as
summary measures, the Packet theory of multiple cued _. . p
; o either coming from a person or a computer program; in
interval procedure is incomplete.

the adaptation of the Turing test, a computer algorithm
classifies the results as coming either from an animal
6. A Turing test or from a computer progranChurch, 1997, 2001
The adaptation of the original Turing test to evaluate
The purpose of this sectionis to describe the original a quantitative theory of behavior is illustratedHiy. 5.
Turing test, and its application to the evaluation of a The procedure delivers stimuli and reinforcers to the
timing theory. animal and receives responses from the animal; the
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e— Stimuli «— —-Stimuli —»
. &Rfs & Rfs
Animal Procedure Model
—sResponses—» [*+—Responses<
Response Generator Stimulus Generator Response Generator

Observed Data Simulated Data
Time.Event (1) Time.Event(1)
Time.Event (2) Time.Event(2)
Time.Event(n) Time.Event(n)

Fig. 5. A Turing test for the evaluation of a quantitative theory of behavior. The same procedure is used for delivering stimuli and reinforcers

to the animal and the model, and receiving responses from the animal and the model. The observed data consists of times of the events (stimuli,
reinforcements, and responses) from the animal and the procedure; the simulated data consists of times of events from the model and the
procedure.Church, 1997Copyright 1997 by the American Psychological Association. Adapted with permission).

observed data consists of a list of times at which 7. Comparison of predictions of a model and

various events occur, such as stimulus onset andthe primary data

termination, reinforcer delivery, and responses (see

alsoFig. 1). The procedure also delivers stimuli and In the present experiment, the events were stim-
reinforcers to the model and receives responses fromuli (houselight, noise, and clicker), a response (head-
the model; the simulated data consists of another list entry), and a reinforcer (food), as shown in K8).

of times at which various events occur. One cycle of this experiment consisted of the interval

The list of the observed data can be compared with between two successive deliveries of food. This might
the list of simulated data to determine whether a partic- be a 20-s interval followed by the onset of a houselight,
ular list was produced by an animal or by a computer a 30-s interval followed by a head-entry response, ter-
model. This should be done with an objective evalua- mination of the houselight and delivery of food (Eq.
tion algorithm.Church (1997wrote: (2)).

The observed rat data (dashed line) came from one
cycle from arat; the simulated model data (dotted line)
came from one cycle of Packet theory; the sample
model data (thick black line) came from another cy-
cle of Packet theoryHig. 6). The dependent variable,
local rate, was calculated directly from the times of
responses as a function of time since stimulus onset.
The local rate in responses per minute at a given time

“Our goal should be to develop models that produce se-
guences of times of occurrence of events (stimuli and
responses) that are indistinguishable from those pro-
duced by the animal under many experimental proce-
dures and data analysis techniques (a Turing test).”

The original article included a figure similarfdg. 5 is the reciprocal of the interresponse time in minutes.
thatincluded an extension to evaluate models with each Thus, if two responses are separated by a 1-s interval,
other, as well as with the data. the local rate is 60 response per minute (i.e., interre-

It would now seem reasonable to relax the goal from sponse time was 1/60 min per response, the reciprocal
“indistinguishable” to “less than 1% error.” The current  of which is 60 responses per minute). To reduce the in-
error is about 10%, as described in the next section. If fluence of large fluctuations in response rate with very
the error rate can be reduced by one-half in each of the small changes in short interresponse times, the loga-
next 5 years (10, 5, 2.5, 1.25, and 0.625), the goal of rithm of the local rate is used in the analysis. It should
an error rate of less than 1% can be reached in 5 years.be noted that this local rate measure contains all the
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information available in the times of responses in the
primary data—it is possible to reconstruct the original

times of the responses based on a sequence of local rate

functions for each cycle. (This is also true of the more
familiar cumulative record that could also be used.)

The psychophysical procedure that was used is
known as a matching-to-sample. The task was to
determine whether the observed data or the simulated
data more closely resembled (matched) the sample.
In this case, it is clear that the sample was more
similar to the observed data than the simulated
data. Thus, the classification on this cycle would be
incorrect.

Of course, there was no need to rely upon human
judgments of similarity. The objective index used was:

1
1

1
=0

if median|r — s| > medianm — s|,
else

(8)

where the logarithm (base 10) of the local response rate
in responses per minute of the rat, model, and sample
werer, m, ands, respectively.

Since the sample was drawn from the model, a
correct identificationl(=1) was when the model and
the sample were more similar than the rat and the
sample. The mean probability of a correct identifica-
tion (and the standard error of the mean) is shown for
the three fixed-interval conditions (30, 60, and 120s)
in the bottom panel ofig. 6. There were 12 rats,
and about 150 cycles for each rat at each of the three
intervals.

The mean probability of a correct identification was
0.60, with a standard error of 0.07. This is reliably
greater than 0.5Q4; =8.6,P <0.001). The probability
of correctidentification increased as a function of inter-
val (F2 22=4.9,P <0.02). Although the mean probabil-
ity of a correct identification of 0.60 demonstrates that
Packet theory was substantially better than the worst
possible theory in which correct classification would
always occur (1.0), it is reliably worse than an ideal
theory in which correct classification would occur at
chance (0.5).

The essential features of the index used for classi-
fication (Eq.(8)) are: (a) the similarity measures are
based on data which contain all information necessary
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Fig. 6. Application of a Turing test to a time discrimination pro-
cedure. Top panel: local response rate as a function of time since
stimulus onset is shown for a single cycle for a rat, a model, and an
unknown sample. Bottom panel: the probability of correct detection
and the standard error is shown for the three fixed-interval conditions.

required to reproduce the times of each response;
other measures that are also sufficient to reproduce the
times of each response include the cumulative number
of responses on each cycle. The median absolute
differences provide an objective measure of similarity;
the sum of squared differences (least square criterion)
provides an alternative measure. Thus, other indices
may be used for classification of cycles.

The probability of a correct identification of each
cycle, averaged over many cycles, provides a graded
metric for the evaluation of a quantitative theory of
timing. The value of the difference or ratio between
two measures, such as the median absolute differences
in Eq.(8), provides an alternative, and potentially more
sensitive, graded metric.

A graded metric provides rapid feedback regarding

to recreate the times of responses, and (b) an objectivethe consequences of modifications of the theory. This

similarity measure is used. The logarithm of the local
response rate on each cycle contains all the information

can be used for the identification of critical features of
the theory, and it can be used for parameter estimation.
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The estimates of the parameters used in this article problems on which we have worked are quite differ-
were based on informal searches of the parameter spacent, but | have been heavily influenced by methods he
based on summary statistics, such as those shown inhas used. | have been impressed by his emphasis on
Fig. 5. Standard iterative methods for fitting nonlinear the behavior of individual animals, the psychophysical
equations may be used to improve the estimates of approach to research, within-subject experimental de-
the parameters. The cycle-by-cycle data can be used,signs, clear specifications of input and output variables
but to avoid overfitting, the same cycles should not with beautiful functional relationships between them
be used for estimating parameters and evaluating thethat warrant careful study, and his elegant and simple

goodness of fitBrown, 2000; Stone, 1974 guantitative models of data that direct attention to the
Of course, goodness of fit is not the only basis underlying processes. Many ofthe importantinfluences
for evaluation of a quantitative modé\iyung, 2000; are typically uncited, and frequently not conscious. |

Myung and Pitt, 2002; Pitt et al., 20pZSome authors  am asimpressed now as | was when | first learned about

find goodness of fit not to provide much support for a his identification of response bouts of pigeons with dif-

model Roberts and Pashler, 200@vhile others con-  ferent functional relationdBlough, 1963, his original

sider it to be a necessary but not sufficient criterion demonstration of selection of the least-frequent rein-

(Rodgers and Rowe, 20pZProbably most investiga-  forcement timesElough, 1969, and his creative de-

tors would want a quantitative model that fit the data, velopment of a quantitative model of operant general-

but would also seek other criteria such as generality, ization and discriminationBlough, 197%. (RMC)

simplicity, clarity, successful generation of new hy-

potheses that are subsequently verified, and facilitation

of understanding\lyung and Pitt, 200R Appendix A

A Turing test provides a way to obtain input gener-

ality by the use of the same theory to account for the a 1. A notation for timing and conditioning

results of many different procedures; it also provides a procedures

way to obtain output generality by the use of the same

theory to account for the results of many differentsum-  Thjs procedural notation, referred to as the Brown

mary measures of behavior. Notation System, provides an hierarchical structure in
which the primary elements are times of events. These
elements are combined into cycles, which are combined

Acknowledgements into treatments, sessions, phases, and experiments.

National Institute of Mental Health Grant MH44234
to Brown University supported this research. A.2. Elements
Although his name is not mentioned in the body of
this article, Don Blough’s influence on my research, in-
cluding the research described in this article, has been - 4 -
profound. We have been colleagues in the Psychology the procedure and the behavior of the animal. Capital
Department at Brown University for 48 years, and | letters are l_Jsed for onset; lower case letters are used
have considered him to be an academic brother. For for termination; both are used for a stimulus pulse. For
several years, we co-taught a graduate seminar in quan-£X@mple,
titative models in Psychology in which | learned a great
deal from him about psychophysical methods, signal

A.2.1. Stimulus
A stimulus is determined by the procedure, or by

detection theory, multidimensional scaling, and mod- stimulus on off Pulse
gls of regc.tion time. (I taL_Jght segtic_ms on cqndition— Houselight H h ah
ing and timing models.) With an original classic LINC  noise N n NN
computer that he obtained in 1964, he introduced me Clicker C c Cc
to the modern world of online computers which he has Leftlever \\:v v \x

w W

continued to use skillfully and creatively. The research Rightlever
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A.2.2. Response A.2.6. Procedural change
A response is a measured behavior of the animal. A procedural change is a change in the contingen-
For example, cies of reinforcement that are not accompanied by any

external event (stimulus, response, or reinforcer).

Response On Off Pulse Wingding3 font

Head - - N g, f,andn Procedural change On Off Pulse

Left lever ! 1 4 I, h,and o Prime A v AV r,s andrs
Right lever N b 1 K,J,and E

Lick O R

Note that special characters are available in Wingding3 font. For A.2.7. Time

example, a right-pointing arrow is produced by the lower-case g. X i . .
P ght-p g P y g A time is a number and unit relative to the onset of

acycle,
A.2.3. Reinforcer
A reinforcer is a stimulus with certain convention-
ally recognized special properties. 20s Example of fixed time of 20s
2m For 2min
2h For2h
~20s Example of random time (random
Reinforcer On off Pulse sample from exponential distribution
Food R v av 0, ¢ andpg with a mean of 20s).
b 1:1:2 E le of uniformly distri i
Shock 4 A AN v, x. andyx u( 0s) xample of uniform ydlst'rlbuted.tlm.e
(random sample from uniform distri-
bution with a minimum of 1's, a max-
imum of 20 s at 1-s intervals.
A.2.4. Event
An event is the onset and/or termination of a stimu-
lus, response, or reinforcer. A.3. Combinations of elements
A.2.5. State A.3.1. Cycle
A state is the pattern of presence or absence of stim- A cycle is composed of one or more states, with a
uli, responses, and reinforcers. specification of the times and events that occur within
each state. A cycle is begun and ended with abackslash;
a semicolon is used to separate different states within a
cycle; times and events within parentheses are in effect
when the state is in effect.
C1=/20s|AV/ %An example of a cycle of a fixed-interval schedule of reinforcement in which food is delivered
following the first left lever response after a 20-s interval.
C=/120s N; 30sav n/ %An example of a cycle of a cycle consisting of a 120-s interval followed by the onset of noise.

After 30-s, food is delivered and the noise is terminated. Note that a cycle may also be specified by
several times and events, separated by a semicolon (;).

C3=/120s N; 30s{60saY) n/ %This differs fromC, only by delivering food at random times (with a mean of 60 s) during the
30s thatthe light is off. There may be 0, 1, or more than 1 delivery of food during this 30-s interval.
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A.3.2. Treatment A.3.5. Experiment
A treatment is one or more cycles that may be re-  An experiment is a specification of the number of
peated. Five types are: phases.
Simple.T = [Cq] %The same cycle type E=30S An experiment consist of 30 sessions
may be repeated.
SequentialT = [C1C2--- C3] %Several different

types of cycles may be
repeated in the same

order. A.4. Examples of notation for timing and
Probabilistic. % Arandomsampleof  conditioning procedures
T =[p1C1p2C2--- pnCy] a single type of cycle

may be repeated. (This
is random sampling
with replacement.)

A.4.1. The present experiment

PermutationT = p[C1Cz - - C,] C1=/20s H; 305> hav/ %Cycle with houselight, 30-s
A random order of several types of %Several types of cy- Fl
cycles may be repeated. (This is cles may be executed C,=/20s N: 605> nA v/ %Cycle with noise, 60-s FI
random sampling without simultaneously  and  c;=/205C; 120> cAV/ %Cycle with clicker, 120-s Fl
replacement). independently. T =[(1/3)C1 (1/3)C2 (1/3)Cs] %Treatment consists of ran-
ConcurrentT = [C1&C2--- &C,] dom selection of cycle
S=60T %60 cycles per session
P=30S %30 session in phase
E=P %One phase in experiment
A.3.3. Session A.4.2. Atemporal discrimination procedure

A session is a specification of the treatment between  This was the procedure used for pretraining and
the time the animal enters and leaves the box. It may training byChurch and Deluty (1977)
be specified either in terms of time, number of cycles,
or number of treatments or a criterion of performance.
For example, C1=/60sav/ %Food delivered every 60's

C2=/V 10(}AV)v; W 10(LAY)/  %Left lever inserted, each of
10 left lever responses are

S=120mT %A sessions consists of 120min of a followed by food; left lever
treatment is withdrawn; same for right
S=30C %A session consists of 30 repetition of a lever
cycle
s=107 %A session consists of 10 repetitions of & ¢, — 35 1; 25 1; (VW] Avwwor  %lflightis offfor 2 s, leftlever
treatment Lovw)/ followed by food
C4=/301=8sL; (VW vw or %lIf light is off for 8s, right
Llavvw)/ lever followed by food
T1=Cy %Treatment was magazine
training
$1=60T, %Session was 60 treatments
A.3.4. Phase P1=5 %Phase 1 was one session
A phase refers the series of sessions with the sameT,=c, %Treatmentwas lever training
treatment. It may be defined either in terms of the num- $=2T: %Session was 2 treatments
ber of sessions or some criterion of performance. For P2=2%2 %Phase 2 was 2 sessions
example T3=[.5C3 .5C4] %Treatment is prObab!lISth
! S3=50mT3 %Sessions were 50 min
P3=20S3 %Phase 3 was 20 sessions
E=[P1 P2 P3] %Experiment was phases 1, 2,

P=20S %A phase consists of 20 sessions and 3
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