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How rats combine temporal cues

Paulo Guilhardi∗, Richard Keen, Mika L.M. MacInnis, Russell M. Church
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Abstract

The procedures for classical and operant conditioning, and for many timing procedures, involve the delivery of reinforcers
that may be related to the time of previous reinforcers and responses, and to the time of onsets and terminations of stimuli.
The behavior resulting from such procedures can be described as bouts of responding that occur in some pattern at some rate.
A packet theory of timing and conditioning is described that accounts for such behavior under a wide range of procedures.
Applications include the food searching by rats in Skinner boxes under conditions of fixed and random reinforcement, brief and
sustained stimuli, and several response-food contingencies. The approach is used to describe how multiple cues from reinforcers
and stimuli combine to determine the rate and pattern of response bouts.
© 2005 Elsevier B.V. All rights reserved.
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We describe a quantitative model of timing that
enerates times of responses (i.e.,behavior) given

he times of onsets and terminations of stimuli and
einforcers (i.e., theprocedure), and determines how
nformation from multiple time-markers (e.g.,stimulus
nset, stimulus termination, anddelivery of reinforcer)
re combined to control behavior. From simulated
ata, a large number of summary measures can be
alculated that can be compared with correspond-
ng measures obtained from animal experimental
ata.

The behavior of animals is often characterized by
lusters of responses (i.e., bouts of responses) such as
ood searching by rats in an operant chamber (Shull et
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al., 2001), and the patterns of feeding in cows (Tolkamp
and Kyriazaki, 1999). The rates and patterns of bo
are controlled by the particular procedure imposed.
packet theory of timing and conditioning describe
this article is a small modification of the one pre
ously used to account for the pattern and rate of
initiation, and bout characteristics (Kirkpatrick, 2002
Kirkpatrick and Church, 2003).

1. Simple procedures for the study of
conditioning and timing

Many standard procedures involve multiple tim
markers. This section begins with a description o
operant trace procedure involving three time-mar
that we proceed to decompose in order to develo
model.
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1.1. Three time-markers

The primary data produced by any conditioning pro-
cedure are the times of the onsets and terminations of
stimuli, responses, and reinforcers. The top panel of
Fig. 1 shows an operant trace procedure in which a
noise stimulus is followed by a time interval before
food is delivered. This interval is referred to as the
“trace” interval. In this procedure, food is delivered
at the time of the first response after a fixed time from
stimulus termination. In this panel, the time that the
reinforcer is available is indicated by the open trian-
gles (i.e., prime), the time that the reinforced response
occurs is indicated by an arrow, and the time of food
delivery is indicated by a filled triangle. This procedure
contains three time-markers for food: the time of the
previous food, the time of noise onset, and the time of
noise termination.
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1.2. Two time-markers

A slightly simplified version of an operant trace pro-
cedure, shown in the second panel ofFig. 1, contains
a brief pulse of noise with the onset and termination
of the noise occurring almost simultaneously (Dews,
1962). Thus, this procedure contains two time-markers
for food: the time of the previous food, and the time of
the noise pulse.

1.3. One time-marker

A further simplification of this procedure is shown
in the third panel ofFig. 1. The noise stimulus is omit-
ted and food is signaled by a single time-marker: the
time of previous food. This is usually referred to as
a fixed-interval schedule (Ferster and Skinner, 1957;
Schneider, 1969).

An additional simplification of the fixed-interval
procedure is to eliminate the dependency of food de-
livery on a response, as shown in the fourth panel of
Fig. 1. A procedure in which food is delivered at fixed
times, regardless of the occurrence of any responses, is
usually referred to as a “fixed-time procedure,” or “tem-
poral conditioning” (Pavlov, 1927). Food may also be
delivered at random times with the same mean duration,
as shown in the bottom panel ofFig. 1(La Barbera and
Church, 1974). Other reinforcement distributions can
also be used to determine the times at which the animals
obtain food.
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ig. 1. Procedures with three time-markers (a trace conditioning
edure), two time-markers (a fixed interval with one event proce
nd one time-marker (fixed interval, fixed time, and random-
rocedures). The complexity of the procedures decreases fro

o bottom. The symbols indicate food delivery (filled triangle), pr
f food delivery (empty triangle), responses necessary for foo
ivery (arrow), and noise stimulus (filled rectangles). 4 cally
. Behavior in a fixed-time procedure

In this section we apply the packet theory to p
edures with a single time-marker; in subsequent
ions we extend the theory to procedures with tw
hree time-markers. In procedures with more than
ime-marker, a combination rule for the multiple tim
arkers is necessary.
Six rats were trained for 30 sessions on a fixed-

rocedure with food delivered every 120 s and h
ntries into the food cup were recorded. This proce

s shown in the top panel ofFig. 2. A sample of re
ponses from one rat during Session 21 is shown i
econd panel ofFig. 2as a function of session time f
0 blocks of 20 s. The sequence of blocks repres
00 s of the session; each block is not systemati
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related to procedural events. Although in some cases
a response occurred by itself, in most cases the
responses were clustered together, suggesting that they
occurred in bouts. The interresponse time distribution
for the 30 sessions of training is shown in the third
panel ofFig. 2. The distribution was positively skewed
with the most frequent interresponse time occurring
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at 0.282 s. Response rate as a function of time since
food (response gradient) for the last 10 sessions is
shown in the fourth panel ofFig. 2. The response
gradient was initially high, decreased rapidly, and later
increased as the time of the next food approached. The
initial segment of the curve (i.e., the sharp decrease in
response rate) was related to the consumption of the
food pellet, and the final segment of the curve (i.e.,
the gradual increase in response rate) was related to
the anticipation of the delivery of the next food. The
behavior in this fixed-time procedure was orderly:
responses occurred in bouts, and the pattern and rate
of responses were controlled by the procedure.

3. Description of a packet theory of
conditioning and timing

In this section, packet theory will be described with
respect to the fixed-time procedure. In the following
section, the predictions of the model regarding bouts,
patterns, and rates will be compared with experimental
data.

The input to this model is a procedure, such as
the fixed-time procedure shown in the top panel of
Fig. 2. The procedural inputs are the times of the
onsets and terminations of stimuli (e.g. white noise,
clicker, and light), and the times of occurrences of
reinforcers (e.g. food). The outputs from packet theory
are the times of responses. The way packet theory
p four
m nses
(

3

. In
ig. 2. Top panel: fixed time 120 s procedure (one time-marker).
econd panel: head entries of rats as a function of session time.
hird panel: interresponse time distribution. Bottom panel: response
ate as a function of time since food.
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rocesses the procedural inputs is described in
odules: perception, memory, decision, and respo

seeFig. 3).

.1. Perception

Perception follows directly from the procedure
he fixed-time procedure there is only a single input
ime of food delivery, which serves as a time-mar
or the next food delivery. At any instant between fo
eliveries, the animal keeps track of the time since
revious delivery in a manner proportional to phys

ime. Thus, at the time of reinforcement, the dura
etween the successive food deliveries,d, is available
nd the perception of that elapsed interval,s(t), can be
etermined as described in Eq.(1):

(t) = d − t (1)
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Fig. 3. Top panel: fixed-time 120 s procedure. Bottom panel: perception, memory, decision, and interresponse time distribution modules of
packet theory applied to the fixed-time procedure.

wheret is time since the last food. The bottom left panel
of Fig. 3shows perception based on a single duration,
when the duration from the time-marker to the delivery
of reinforcement is 120 s.

3.2. Memory

At the time of reinforcement, the perceptions(t)
is determined, and added to a memory. Memory is a
weighted mean of the individual perceptions as de-
scribed in Eq.(2):

En+1(t) = αs(t) + (1 − α)En(t) (2)

whereE(t) is the memory,s(t) the perception of the
duration of the last interfood interval (d), α the learning
parameter, andn the current number of reinforcements.
At time of reinforcementE(0) is the expected duration
to the next food.

Memory is a weighted mean of all past perceptions
and the current perception. This idea was used byBush
and Mosteller (1955)to describe the learning of the
probability of a response, and it is used here to describe
the learning of expected durations to reinforcement as
a function of physical time.

Both the perception,s(t), and the memory,E(t), are
conditional expectations, the expected time to the next
food as a function of time since the previous food.
In the case of the fixed-time procedure, the memory
at asymptote equals the perception, as shown by the
two solid lines in the perception and memory panels of
Fig. 3. Although this equality holds for fixed-time dis-
tributions, it does not hold for procedures in which the
interfood intervals come from uniform or exponential
distributions (i.e., variable or random time schedules;
see Section6). The explicit expression for the asymp-
totic memory function, given the distribution of inter-
food intervals, is inKirkpatrick (2002)andKirkpatrick
and Church (2003). Presumably it will be possible to
develop a complete explicit solution for the times of oc-
currence of responses given a procedure, but that is not
now available. Therefore, the comparison of the data
with the predictions of packet theory will be based on
simulations.

3.3. Decision

In packet theory, responses are generated by pack-
ets that are determined by the memory and a constant
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operant level of responding. The process used in the
present analysis is described below.

3.3.1. Threshold
A threshold transforms the continuous pattern in

memory into a pattern with two states: A high state
with rate (r) of initiating packets of responses and a low
state with no initiation of new packets of responses. In
every cycle, a single random sample (b) is taken from
a normal distribution (η) with a mean between 0 and 1
(µb) and some coefficient of variation (γb) as described
in Eq.(3):

b = η(µb, γb) (0 ≤ µb ≤ 1) (3)

If the sample is below 0,b is resampled, and if it is
above 1 it is set to 1. Thus,b is a proportion between 0
and 1. The thresholdB is defined in Eq.(4):

B = Pb(E(t)) (0 ≤ t ≤ E(0)) (4)

wherePb is thebth percentile of the memory func-
tion E(t) when t is between 0 andE(0). The thresh-
old (B) is a time such that, when memory is above
B, the decision function is in the low state and when
memory is belowB the decision function is in the high
state.

For example, if the sampledbwere 1/3, the threshold
B for the memory of a fixed interval of 120 s would be
at 80 s (see memory panel ofFig. 3). Note that 1/3
of the memory, fort between zero andE(0), is below
t bove
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cup and random exploratory behavior. It consists of
packets of responses that are generated with a constant
low probability throughout an interval.

3.3.3. Combination of two rates for decision
The rate of packet initiation is the sum of the packet

rate determined by the threshold (r) and the packet rate
determined by the operant level (op).

3.4. Responses

3.4.1. Packets versus bouts
A packet consists of a variable number of re-

sponses with variable interresponse times. Packets of
responses are theoretical; bouts are observed clusters
of responses. Packets of responses can result in over-
lapping bouts of responses. Thus, the observed re-
sponse bouts can differ from the theoretical packets of
responses.

3.4.2. Number of responses in a packet
The number of responses per packet has a Poisson

distribution with a mean of five responses per packet.
The mean number of responses per packet was an
approximation from the observations ofKirkpatrick
(2002)andKirkpatrick and Church (2003).

3.4.3. Interresponse distribution in a packet
am-
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he threshold (high responding state) and 2/3 are a
low responding state).

In the fixed-time procedure, the decision based
emory is a single step function that changes from

o a high (r) probability of occurrences of packets
esponses. The respective decision step function
olid line also shown in the decision panel ofFig. 3. In a
xed-time procedure the threshold is a fixed propor
f memory and its variability is dependent on the m

nterval duration between the time-marker and deliv
f food (constant coefficient of variation), so the sc
roperty is embedded in the theory.

.3.2. Operant level (op)
The operant level, represented by the dotted

hown in the decision panel at the bottom ofFig. 3,
s the rate of emitting a packet of responses for m
ossible reasons, such as the smell of food in the
The interresponse times within a packet were s
led from a Wald (Inverse Gaussian) distribution
escribed in Eq.(5):

(x) =
(

λ

2πx3

)1/2

exp

(
−λ(x − µ)2

2µ2x

)
(5)

hereµ is the center parameter andλ the scale pa
ameter. The parameterµ was set to 0.60 andλ set to
.77 for simulations of all procedures. The Wald d
ity function with these parameters is shown on th
ponse panel ofFig. 3 for interresponse times rangi
rom 0 to 2.5 s. The Wald distribution can arise from
andom-walk process with one absorbing barrier (Luce,
986), but some additional or different processes m
e involved to account for the small but systematic
repancies between the observed and predicted
esponse interval distributions.
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Table 1
Parameters of packet theory of timing and conditioning used for the simulation of the procedures with single and multiple time-markers

Procedure Parameters

Bout Pattern Rate

#R µw σw op α µb γb w1 w2 w3 r pr

Single time-marker
(1) One time-marker

(a) Fixed time (Fig. 4)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.51 1 – – 0.14 0.4

(b) Random Time (Fig. 7)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.51 1 – – 0.05 0.4

(c) Fixed interval (Fig. 8)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.28 0.51 1 – – 0.33 0.4

(d) Fixed interval (Fig. 10, top)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.55 1 – – 0.33 0.4

(e) Fixed interval (Fig. 11, top)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.19 0.92 1 – – 0.30 0.4

Multiple time-markers
(2) Two time-markers

(a) FI with event (Fig. 10, bottom)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.55 1 0.60 – 0.33 0.4
(2) Onset-to-food 5 0.60 0.77 0.004 0.05 0.53 0.55 – 0.40 – 0.33 0.4

(b) FI with event (Fig. 11, second)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.19 0.92 1 0.60 – 0.30 0.4
(2) Onset-to-food 5 0.60 0.77 0.004 0.05 0.40 0.92 – 0.40 – 0.39 0.4

(3) Three time-markers
(a) FI with two events (Fig. 11, third)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.19 0.92 1 0.60 0.36 0.30 0.4
(2) Onset-to-food 5 0.60 0.77 0.004 0.05 0.40 0.92 – 0.40 0.24 0.39 0.4
(3) Termination-to-food 5 0.60 0.77 0.004 0.05 0.80 0.38 – – 0.40 0.49 0.4

(b) FI with state (Fig. 11, bottom)
(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.19 0.92 1 0.60 0.36 0.30 0.4
(2) Noise-to-food 5 0.60 0.77 0.004 0.05 0.40 0.92 – 0.40 0.24 0.39 0.4
(3) Click-to-food 5 0.60 0.77 0.004 0.05 0.80 0.38 – – 0.40 0.49 0.4

3.4.4. Reactive packets
In addition to response packets generated from the

decision function and by the operant level, reactive
response packets were generated with probabilitypr
for each delivery of food. These packets also have
a Poisson distribution with a mean of five responses
and an interresponse time distribution determined by
a Wald density function as described in Eq.(5). The
same parameter values used for the response packets
generated from the decision function and the operant
level were used for the reactive packets. Reactive

response packets replaced any anticipatory response
that had yet not occurred. The parameters used in
the simulation of all procedures are presented in
Table 1.

3.5. Summary of packet theory

In packet theory, responses are organized in packets.
The probability of initiating a packet depends on three
factors, the operant level, whether food was delivered
or not, and the memory function (via a noisy threshold).
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Once a packet starts, a variable, Poisson-distributed
number of responses is emitted, with consecutive re-
sponses separated by variable, Wald-distributed time
intervals.

4. Application of packet theory to a fixed-time
procedure

Next we show the results of a simulation of packet
theory in a fixed-time procedure. Packet theory was
simulated for the fixed-time procedure shown in the
top panel ofFig. 4. A sample of the output of the sim-
ulation is shown as a function of time for 20 blocks
of 20 s observed during the last half of the simula-
tion (Fig. 4, second panel). Although in some cases
a response occurred by itself, in most cases responses
were clustered together, suggesting that they occurred
in bouts. The pattern obtained from the simulation re-
sembled the pattern observed in the data (Fig. 2, second
panel).

The interresponse time distribution observed in the
data (empty circles), in the simulation (filled circles)
and the theoretical Wald density function with the pa-
rameterµ set to 0.60 andλ set to 0.77 are shown in the
third panel ofFig. 4. The most frequent interresponse
times occurred at 0.192 s for the simulated distribution,
0.222 s for the theoretical distribution, and 0.282 s for
the data distribution. The simulated interresponse time
distribution (generated by the model) and the observed
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Fig. 4. Top panel: fixed time 120 s procedure. Second panel: simu-
lated responses as a function of session time. Third panel: interre-
sponse time distribution observed (empty circles), simulated (filled
circles) and theoretical (solid line). The theoretical function was a
Wald distribution with the location parameter (µ) set to 0.60 and the
scale parameter (σ) set to 0.77. Bottom panel: response rate observed
(empty circles) and response rate predicted by the model (solid line)
as a function of time since food. The response was a head entry into
a food cup by rats on a fixed-time procedure.
nterresponse time distribution (generated by the
mal) were both very similar to the theoretical W
unction.

Response rate (rpm) as a function of time since
s) observed in the data (empty circles) and in the s
ation (solid line) was high initially, decreased rapid
nd later increased as the time of the next food
roached, as shown in the bottom panel ofFig. 4. The
roportion of variance accounted for by the model (ω2)
as 0.96.

. Similarity of bouts under different
rocedures

The bouts of behavior observed during the fix
ime procedure were well characterized by the W
istribution shown by the solid line in third panel
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Fig. 4. The generality of the Wald distribution to de-
scribe the interresponse times within a bout of head
entry responses by rats for many procedures is shown
in Fig. 5. The relative frequency of interresponse times
for classical procedures with fixed and random rein-
forcement distributions (fixed time, FT, and random
time, RT), for procedures with different response con-
tingencies (fixed and random time, FT and RT, and fixed
interval, FI), and for different interval durations (45, 90,
120, and 180 s) was compared to the Wald distribution
(with the same parameters used in the third panel of
Fig. 4). The theoretical line fit to the mean of the six
data functions accounted for 95% of the variance. The
fit of the Wald distribution was impressive, because the
same parameters were used for a wide range of proce-
dures.

The extent to which packet theory can be gener-
alized to simulate response rate curves from different
procedures, such as the random-time (change in rein-
forcement distribution) and fixed-interval (change in
response contingency) procedures, with no changes in
its assumptions and few changes in parameter settings,
is described next.

Fig. 5. Interresponse time distribution in classical conditioning pro-
cedures for different reinforcement distributions (fixed time, FT, and
random time, RT), operant conditioning procedures (fixed interval,
FI) and for different interval durations (45, 90, 120, 180 and 360 s).
The response was a head entry into the food cup by rats. The solid
line is the theoretical Wald distribution functions with the location
parameter (µ) set to 0.60 and the scale parameter (σ) set to 0.77.
Data from the four fixed-interval functions were provided by Eliza-
beth Kyonka.

F l: perception, memory, decision, and response modules of packet theory applied
t

ig. 6. Top panel: random time 120 s procedure. Bottom pane
o the random-time procedure.
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6. Application of packet theory to a
random-time procedure

The random-time procedure, shown in the top panel
of Fig. 6, is identical to the fixed-time procedure, ex-
cept that the times of food deliveries are distributed
randomly (a random sample from an exponential dis-
tribution with a single parameter,µ). Packet theory for
the random-time procedure is identical to the one for
the fixed-time procedure. The differences in the output
of the model follow from the difference in the pro-
cedure (reinforcement distribution). This is illustrated
in Fig. 6. The perceptions may be greater or less than
120 s. When these are combined in memory, using the
same equations as in the fixed case (Eq.(2)), the asymp-
totic memory function approaches a flat line near 120 s.
In this example, as in the fixed-time procedure, the pro-
portion of the memory below the thresholdB is 1/3 (see
Eqs.(3) and(4)). On a particular cycle, the packet rate
varies from the operant level tor more than once per

F Bot-
t se rate
p food
( on a
r

cycle (see decision panel ofFig. 6). As in the fixed case,
when a packet is initiated, it consists of a mean of five
responses with interresponse times approximated by a
Wald function (Eq.(5)).

Six rats were trained for 30 sessions on a random-
time procedure with food delivered at times that
were exponentially distributed with a mean of 120 s
(Fig. 7, top panel). Head entries into the food cup were
recorded. The bout structure of responding by the rats
(interresponse time distribution) on the random-time
procedure with a mean of 120 s is shown inFig. 5with
open squares for the data (RT 120) and the solid line for
the Wald distribution used for all the procedures.Fig. 7
shows the response gradients from data of the last half
of training for the rats (open circles) and for the sim-
ulation (solid line). The behavior is characterized by
a reaction to food, followed by a low and relatively
constant response rate until the next food delivery. The
simulated and observed response gradients were very
similar. The proportion of variance accounted for by
the model (ω2) was 0.71, a value that is satisfactory
considering that the mean is a reasonable estimate of
the gradient.

7. Application of packet theory to a
fixed-interval procedure

The fixed-interval procedure is identical to the
fixed-time procedure, except that the food deliveries
a of the
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ig. 7. Top panel: random-time procedure (one time-marker).
om panel: response rate observed (empty circles) and respon
redicted by the model (solid line) as a function of time since
s). The response was a head entry into a food cup by rats
andom-time procedure.
re dependent upon a response after termination
nterval (Fig. 8). Packet theory for the fixed-interv
rocedure is identical to the one for the fixed-t
rocedure; the differences in the output of the m

ollow from the difference in the procedure (respo
ependency). The addition of a response depend
roduces a short but consistent delay between
einforcer availability (prime) and reinforcer delive
he interval perceived from a time-marker to food
ased on the actual delivery of food and not on f
vailability. Therefore, the distribution in memory w
e slightly longer and more variable for a fixed-inter

han for a fixed-time procedure. As in the fixed-ti
nd random-time procedures, if a packet is initiate
onsists of a mean of five responses with interresp
imes approximated by a Wald function (Eq.(5)).

Six rats were trained for 30 sessions on a fix
nterval procedure with food primed 120 s followi
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Fig. 8. Top panel: fixed-interval procedure (one time-marker). Bot-
tom panel: response rate observed (empty circles) and response rate
predicted by the model (solid line) as a function of time since food
(s). The response was a head entry into the food cup by rats on a
fixed-interval procedure.

the previous food delivery (Fig. 8, top panel) and deliv-
ered at the first head entry response after prime. Head
entries into the food cup were recorded. The bottom
panel ofFig. 8shows the response gradients from data
of the last half of training for the rats (open circles) and
for the simulation (solid line). As in the fixed-time pro-
cedure, the behavior was characterized by a reaction to
food, followed by a low rate that increased as the time of
the next food approached. The simulated and observed
response gradients were very similar. The proportion
of variance accounted for by the model (ω2) was 0.99.

8. Combination rules for multiple
time-markers

The fixed-time, random-time, and fixed-interval
procedures have one time-marker that indicates when
the next food will be delivered. Packet theory accounted
for the pattern, rate, and bout structures in the data un-

der these procedures. In most procedures there is more
than one time-marker. The problem is how these multi-
ple sources of information affect the animals’ behavior
(Church et al., 2003; Meck and Church, 1984). In the
next section, additional data will be described for cases
in which multiple time-markers are present. Three ways
in which different time-markers can be combined to
generate packets of responses will be described. These
alternative combination rules will be compared with the
results of procedures with two and three time-markers.

The procedure shown inFig. 9(top panel) is a fixed-
time 120 s procedure with the addition of a brief noise
stimulus 90 s after food delivery. As in the case of a
fixed-time procedure with no additional stimulus, the
previous food is a time-marker for the next food deliv-
ery. This interval is called the food-food interval, which
in this example, is 120 s. In this procedure, the noise is
a second source of information about the time at which
the next food will be available. This interval between
the noise and food is referred to as noise–food interval,
which in this example, is 30 s. The two intervals may be
treated independently in the sense that each generates
an expectation function in memory.

The decision function (rate of initiating packets of
responses) described in the fixed-time case is a step
function determined by the thresholdB. For the two-
event procedure described above, the food–food and
noise–food functions occur together; they start at dif-
ferent times but overlap in time. (In this example, the
functions overlap from 90 s until the time of food de-
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t fined
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W
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ivery, 120 s.) The functions are shown in the mid
anels ofFig. 9 and are labeled food–food (FF) a
oise–food (NF). A combination rule specifies the
f packet generation at times when the functions o

ap. Three ways that two decision functions can
ombined (most recent, weighted mean, and sum
hown in the bottom panels ofFig. 9. In all three case
he generation of packets by the model can be de
y the summation of the packets generated by the
ecision functions, each weighted by a constantw).
ith different values ofw, the changes inw deter-
ine whether the combination rule is “most rece

weighted mean,” or “sum”.
Most recent(bottom ofFig. 9, left panel). The de

ision function that represents the most recent t
arker is used exclusively to generate packets (i.e
eight of the function generated by the most re

ime-marker NF is set to equal 1 and the weight of
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function determined by the previous time-marker FF
set to 0 following the presentation of the noise event).
This is the simplest combination rule with no free pa-
rameters.

Weightedmean(bottom ofFig. 9, center panel). The
weighted mean is a linear average of the two decision
functions. The weights range between 0 and 1, and the
sum of the two weights is equal to 1 (one free param-

F
t
f

ig. 9. Top panel: fixed interval with event procedure (two time-marker
he preceding food (left panel) and brief presentation of noise (right pan
unctions of the two time-markers: most recent (left panel), weighted
s). Middle panels: decision module of packet theory for two time-markers:
el). Bottom panels: three possible combination rules based on the decision

mean (center panel), and sum (right panel). See text for details.
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eter). The center panel inFig. 9 shows an example in
which the weight of the FF was set to 0.5; thus, the
weight of the NF was 0.5.

Sum(bottom ofFig. 9, right panel). The combina-
tion rule is a sum of the two decision functions each
weighted independently. The two parameters are not
constrained (i.e., there were two free parameters). The
right panel inFig. 9 shows an example in which the
weight of the FF is set to 1 and the weight of the NF is
also set to 1.

The combination rules described above were used
to simulate packet theory for procedures with two
and three time-markers. In the case of three time-
markers, there are two additional free parameters for
the weighted mean and the sum combination rules. The
comparison between the data and model simulation was
conducted and the choice among combination rules was
based on an informal criteria that maximized the good-
ness of fit, and minimized the complexity (defined by

the number of free parameters) of the combination rule.
The simulations of the procedures with two and three
time-markers are described in the next two sections.

9. Application of packet theory to two
time-markers

Ten rats were trained for 30 sessions on a fixed-
interval-with-event procedure (two time-markers) as
shown in the left panels ofFig. 10. In this procedure,
food was delivered dependent upon a head entry into
the food cup after 120 s (standard fixed-interval proce-
dure, top left panel). On some occasions (p= 0.63), a
1 s presentation of white noise occurred 90 s after the
previous food delivery, and provided an additional sig-
nal for the time of the next food availability (bottom
left panel). During these occasions, the procedure was
a fixed interval with the addition of a signal at 90 s. Note

F o sign observed
( d line) l (top) and
o

ig. 10. Left panels: fixed interval with event procedure with n
empty circles) and response rate predicted by the model (soli
ccasions with signal (bottom).
al (top) and with signal (bottom). Right panels: response rate
as a function of time since food for the occasions with no signa
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that this procedure is the same as that described inFig. 9
with the introduction of a response dependency and is
also referred to as a tandem FT–FI schedule (Marr and
Zeiler, 1974).

The results of the last 10 sessions of training are
shown in the right panels ofFig. 10. When there was

no signal (one time-marker), response rate initially de-
creased and then increased as the time of the next food
approached (empty circles, top right panel). On the oc-
casions in which there was a signal at 90 s, response
rate also decreased initially and then increased as the
time of the next food approached. In addition, there

F
e
a
o

ig. 11. Left panels: trace procedure with cycles with no signal (top p
vents (third panel), and cycles with the presentation of a stimulus s
nd response rate predicted by the model (solid line) as a function o
ne brief event (second panel), cycles with two brief events (third pan
anel), cycles with one brief event (second panel), cycles with two brief
tate (bottom panel). Right panels: response rate observed (empty circles)
f time since food(s) for the cycles with no signal (top panel), cycles with
el), and cycles with a stimulus state (bottom panel).
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was a dip at the time at which the brief signal occurred.
That is, at the time of the signal, there was a sudden de-
crease in response rate, followed by an increase in the
slope of the function (bottom right panel). The decrease
in response rate following the signal is consistent with
results previously described (Kelleher, 1966; Marr and
Zeiler, 1974).

The solid lines are the simulation of packet theory
to the data. On the occasions in which no signal oc-
curred, packet theory is identical to that for the fixed-
time, random-time, and fixed-interval procedures. The
variance accounted for (ω2) by the model was 0.98. On
the occasions in which a signal occurred, packet the-
ory is also identical to that for the fixed-time, random-
time, and fixed-interval procedures with the addition of
a perception, a memory, and a decision module for the
additional time-marker, and the addition of a combina-
tion rule. On the occasions in which the two decision
functions were generating packets, the weights were
0.6 for the food-to-food function and 0.4 for the noise-
to-food function. The weighted average combination
rule predicted the data well with one free parameter
(seeTable 1). Note that the parameters for the common
function (food–food) for the two time-marker case and
the one time-marker case were the same. Moreover,
the combination rule parameters (w) were the same for
the two time-marker procedures (Figs. 10 and 11). The
variance accounted for by the model (ω2) was 0.98.
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ended at 110 s after the previous food, providing two
additional signals (stimulus onset and termination) for
the time of the next reinforcement (fourth left panel).
Note that on some occasions there was only one time-
marker (top panels), on other occasions there were two
time-markers (second panels), and still on others, three
time-markers (third and bottom panels).

The results for the last five sessions of training are
shown in the right panels ofFig. 11. When there was
no signal (one time-marker), response rate initially de-
creased and then increased as the time of the next food
approached (empty circles, top right panel). On the oc-
casions in which there was a signal at 90 s response
rate also decreased initially and then increased as the
time of the next food approached. In addition, at the
time of the signal, there was a sudden decrease in re-
sponse rate followed by an increase in rate with an
increase in the slope of the function (empty circles,
second right panel). On the occasions in which there
were two time-markers (either the noise and clicker,
or onset and termination of the noise), response rate
initially decreased and then increased as the time of
the next food approached. In addition, at the times of
the two signals, there was a sudden decrease in re-
sponse rate followed by an increase in response rate
with an increase in the slope of the function after
each time-marker (empty circles, third and bottom pan-
els).

The solid lines are the simulation of packet theory to
the data. On the occasions in which no signal occurred,
p e,
r ari-
a he
o cket
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0. Application of packet theory to three
ime-markers

Twenty-four rats were trained for 20 sessions
trace conditioning procedure (3 time-markers fix

nterval procedure) as shown in the left panels
ig. 11. In this procedure, food was delivered dep
ent upon a head entry response into the food cup
fter the previous food (standard fixed-interval pro
ure, top left panel). On some occasions (p= 0.2), a
.5 s presentation of white noise occurred 90 s afte
revious food delivery and provided an additional
al for the time of next food (second left panel).
ther occasions (p= 0.2), in addition to the noise, a
ther 0.5 s presentation of a clicker occurred at 110

er the previous food and provided an additional sig
or the time of the next food (third left panel). On oth
ccasions (p= 0.2), a white noise started at 90 s a
acket theory was identical to that for the fixed-tim
andom-time, and fixed-interval procedures. The v
nce accounted for (ω2) by the model was 0.98. On t
ccasions in which two time-markers occurred, pa

heory is identical to that described in the previous
ion for the two time-marker case. The weighted a
ge combination rule predicted the data well with

ree parameter (seeTable 1). The variance account
or by the model (ω2) was 0.97.

On the occasions in which three time-mark
ccurred, packet theory is identical to the two tim
arker theory with the addition of a percepti
memory, and a decision module for the th

ime-marker, and the addition of one parameter to
eighted average combination rule (seeTable 1). The
eight parameters (w) were the same as in the tw

ime-marker cases, whenever there were two dec
unctions generating packets of responses. When
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was an additional decision function (either determined
by the termination of the noise, or a click sound) the
parameters were 0.36 for the food-to-food, 0.24 for
the onset-to-food, and 0.4 for the termination-to-food.
The weighted average combination rule predicted
the data well with one free parameter. The variance
accounted for (ω2) by the model was 0.96.

11. Discussion

Packet theory provides a quantitative account of
the times of responses of rats in procedures that dif-
fered on four dimensions—the distribution of times
between successive reinforcers (fixed or random), the
interval between reinforcers (45, 90, 120, 180, 360 s),
the contingency between response and reinforcer (clas-
sical or operant), and the number of time-markers
(1, 2 or 3).

11.1. Comparison of behavior in different
procedures

11.1.1. Similarities
In all these procedures, the characteristics of the

bouts, the operant rate, and the learning rate were
similar. The distribution of head entries within a bout
could be characterized by a Wald distribution with the
location parameter equal to 0.60 s and the scale param-
eter equal to 0.77 s. The same low operant rate (0.004
r ures.
T r all
p
n cted
o lose
t itial
a ne
fi n
p for
t e on
t hen
t n,
1

1
pri-

m e of
r d co-

efficient of variation of the threshold, and the rate of
packet generation. A single parameter, rate of packet
generation (r), was sufficient to account for the dif-
ferences between the fixed- and random-time proce-
dures. The three interval procedures were simulated
with variations in the rate of packet generation and the
mean and variability of the threshold. These three pa-
rameters were also varied to account for the data in the
procedures with multiple time-markers. Ideally all the
parameters would be the same across all conditions, or
there would be a simple rule to account for the effects
of the procedures on the parameters that were different
under different conditions.

11.2. Combination rules

In procedures involving two or three time-markers,
the observed behavior was a result of a combination
of the effects of the individual time-markers, including
the possibility of interactions between time-markers.
For the procedures involving multiple time-markers,
a weighted average combination rule was sufficient to
account for the data. This consisted of a weight for each
of the time-markers that had occurred at a given time
during the cycle, with the sum of the weights equal to
1.0. The weights were consistent across procedures.

11.3. Evaluation of packet theory

11.3.1. Fit of the data by the model
per-

c ap-
p wn
i 7,
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a seg-
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s tage
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fl ined
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d

1
was

p pa-
esponses per minute) was used for all proced
he same learning rate (0.05) was also used fo
rocedures, although the actual learning rate,α, could
ot be identified by the analyses that were condu
n asymptotic data. The 0.05 learning rate was c

o the learning rate previously used to describe in
cquisition of fixed intervals and transitions from o
xed interval to another (Guilhardi and Church, i
ress). It could also be set close to 1 to account

he dependency of the post-reinforcement paus
he just-preceding interfood interval, especially w
he interfood interval is short (Wynne and Staddo
992).

1.1.2. Differences
The effects of the procedures on behavior were

arily due to their effects on the pattern and rat
esponding. The procedures affected the mean an
The data was reasonably fit by the model. The
entage of variance accounted for was high and
roximately the same in 9 of the 10 functions sho

n Figs. 4, 5, 8, 10 and 11(0.95, 0.96, 0.96, 0.9
.97, 0.98, 0.98, 0.98, and 0.99). In the case o
andom procedure (Fig. 7), the percentage of varian
ccounted for was only 0.71, but the theory had
ents appropriate to the reaction to food and the

tant expected time to food. The measure of percen
f variance accounted for is not particularly useful
at functions since it is a comparison of the unexpla
ariance of the data relative to the unexplained vari
f the mean of the data. In this case, the mean o
ata is a good approximation of the data.

1.3.2. Simplicity of the model
One of the strengths of this model was that it

ossible to use the same values for many of the
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rameters across all the procedures. The three parame-
ters that were used to simulate the data accounted for
1080 data points in the gradients (120 data points in
each of 9 figures). The 3000 data points in the 6 rela-
tive distributions of the interresponse intervals shown
in Fig. 5(500 data points for each of 6 conditions) did
not require any parameter adjustment across different
procedures. Because of the high ratio of data points to
adjusted parameters, the model is reasonably simple.

11.3.3. Generality of the model
The generality of the model refers both to the gen-

erality of the input that the model can accept, and the
generality of the output that the model can deliver. The
generality of the input to the model refers to the range
of procedures that are fit by the model. Packet theory
was applied to procedures involving one, two, and three
time-markers in classical and instrumental procedures
with different time intervals and reinforcement distri-
butions. Thus, the model is reasonably general in terms
of the input it can accept.

The generality of the output of the model refers to
the range of measures of behavior that it fits. The po-
tential generality of the model is considerable. Because
the model predicts times of responses, the simulation
can be used to estimate any dependent measure that can
be calculated from the original data (e.g., interresponse
time distributions, response gradients, and discrimina-
tion ratios). The original data containing times of onset
and termination of stimuli and responses generated by
t n of
s avail-
a are
p tion
a ass a
T nt
m

del
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s es-
s s)
s ed-
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t .

1
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data may be averaged across a session, multiple ses-
sions, and across rats. The averaging across multi-
ple observations can produce changes in the function
shape, as well as reductions in variability. The change
in function shape produced by averaging is particularly
apparent when the primary data is averaged across a
session of individual rats. For example, the primary
data of fixed-interval responding is a step function
which, when averaged across interfood intervals, pro-
duces an ogival function (Schneider, 1969). The pri-
mary simulated data of packet theory consists of step
functions similar to those produced by individual ani-
mals on individual interfood intervals.

The simulation of packet theory produced the pri-
mary data for approximately the same amount of train-
ing received by an individual rat on any procedure.
Thus, it would be possible to compare the theory to
the primary data or averaging across multiple obser-
vations on a single session, across sessions, or across
individuals. The original data and the simulated data are
available athttp://www.brown.edu/Research/Timelab.

11.4. Comparison of this version with the previous
version of packet theory

The version of packet theory used in this article is
a slightly modified version of the one described by
Kirkpatrick (2002)andKirkpatrick and Church (2003).
It will be called “Version 2” to distinguish it from the
original version that will be called “Version 1”.
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he rats, as well as the times of onset and terminatio
timuli and responses generated by the model are
ble. In the present paper, fits from the simulation
resented only for the interresponse time distribu
nd the response gradients, but a model that can p
uring test (Church, 2001) must fit all other depende
easures as well (Guilhardi and Church, in press).
Although the variance accounted for by the mo

as high in most of the procedures described, a m
ensitive evaluation of the model will show the nec
ity of improvements.Church and Guilhardi (in pres
howed that although the fit of the model on a fix
nterval procedure was excellent, the model is still
inguishable from the real data using a Turing test

1.3.4. Fits to individual animals
The primary data consists of the times of respo

etween individual interfood intervals. The prim
The major change to Version 2 is that a thresh
ith a mean and coefficient of variation was introduc

n Version 1 the probability of packet initiation w
inearly related to the memory of the time since fo
he threshold in Version 2 provides the flexibility
ther relationships (such as a step function) betw

he memory of the time since food and the probab
f packet initiation. The simulated mean response
ver many cycles is ogival in shape. A second cha

n Version 2 was in the use of a Wald distribution
he description of the bouts of behavior. This had o
small effect on the predicted times of responses

t was more consistent with the data.

1.5. Further developments of the model

The generality of the model must be exami
urther. This involves comparing the predictions of

http://www.brown.edu/research/timelab
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model to experimental results, with many additional
procedures (input generality), and on many measures
of head entries as well as other classes of responses
(output generality). This research will undoubtedly
identify failures of the present version of the model
that will need to be rectified. In some cases, these
changes may not make the model more complex,
such as a change in the bout-generating function.
In other cases, however, it may be necessary to
introduce an additional concept with free parameters.
For example, it may be necessary to introduce some
perceptual variability to account for quantitative
results in various procedures, such as the peak proce-
dure.

The meaning of the parameter values (shown
in Table 1) must also be examined further. The
parameters that are constant across all procedures may
be regarded as characteristic of the animal, but what
is the meaning of those that are different for different
procedures? In the present analysis these parameters
include the mean and standard deviation of the thresh-
old, and the rate of packet elicitation. In some cases,
the amount of training or the reinforcement rate may
be the cause, but these influences must be identified
explicitly to be satisfactory. Otherwise, one must
assume that the animal has a procedure detector that it
can use to set its parameters. Although not described
in this article, the model can be applied to individual
animals. When this is done, it is clear that there
are reliable individual differences in the parameters
a ain
c roce-
d

A

34
t
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