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Abstract

The procedures for classical and operant conditioning, and for many timing procedures, involve the delivery of reinforcers
that may be related to the time of previous reinforcers and responses, and to the time of onsets and terminations of stimuli.
The behavior resulting from such procedures can be described as bouts of responding that occur in some pattern at some rate
A packet theory of timing and conditioning is described that accounts for such behavior under a wide range of procedures.
Applications include the food searching by rats in Skinner boxes under conditions of fixed and random reinforcement, brief and
sustained stimuli, and several response-food contingencies. The approach is used to describe how multiple cues from reinforcers
and stimuli combine to determine the rate and pattern of response bouts.
© 2005 Elsevier B.V. All rights reserved.
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We describe a quantitative model of timing that al., 2002, and the patterns of feeding in coll®{kamp
generates times of responses (ileehavio) given and Kyriazaki, 1999 The rates and patterns of bouts
the times of onsets and terminations of stimuli and are controlled by the particular procedure imposed. The
reinforcers (i.e., theorocedurd, and determines how  packet theory of timing and conditioning described in
information from multiple time-markers (e.gtimulus this article is a small modification of the one previ-
onsetstimulus terminationanddelivery of reinforcey ously used to account for the pattern and rate of bout
are combined to control behavior. From simulated initiation, and bout characteristicKi¢kpatrick, 2002;
data, a large number of summary measures can beKirkpatrick and Church, 2003
calculated that can be compared with correspond-
ing measures obtained from animal experimental
data. 1. Simple procedures for the study of

The behavior of animals is often characterized by conditioning and timing
clusters of responses (i.e., bouts of responses) such as

food searching by rats in an operant chamisén(l et Many standard procedures involve multiple time-

markers. This section begins with a description of an
"+ Corresponding author. Tel.: +1 401 863 3979; operant trace procedure |nvoIV|r_19 three time-markers
fax: +1 401 863 1300. that we proceed to decompose in order to develop the
E-mail addresspaulaguilhardi@brown.edu (P. Guilhardi). model.
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1.1. Three time-markers 1.2. Two time-markers

The primary data produced by any conditioning pro- A slightly simplified version of an operant trace pro-
cedure are the times of the onsets and terminations ofcedure, shown in the second panekFig. 1, contains
stimuli, responses, and reinforcers. The top panel of a brief pulse of noise with the onset and termination
Fig. 1 shows an operant trace procedure in which a of the noise occurring almost simultaneoudBe(vs,
noise stimulus is followed by a time interval before 1962. Thus, this procedure contains two time-markers
food is delivered. This interval is referred to as the for food: the time of the previous food, and the time of
“trace” interval. In this procedure, food is delivered the noise pulse.
at the time of the first response after a fixed time from
stimulus termination. In this panel, the time that the 1.3. One time-marker
reinforcer is available is indicated by the open trian-
gles (i.e., prime), the time that the reinforced response A further simplification of this procedure is shown
occurs is indicated by an arrow, and the time of food in the third panel ofig. 1L The noise stimulus is omit-
delivery is indicated by a filled triangle. This procedure ted and food is signaled by a single time-marker: the
contains three time-markers for food: the time of the time of previous food. This is usually referred to as
previous food, the time of noise onset, and the time of a fixed-interval schedule~erster and Skinner, 1957;
noise termination. Schneider, 1969

An additional simplification of the fixed-interval
procedure is to eliminate the dependency of food de-

Trace Conditioning Procedure (Three time markers)

Responses J livery on a response, as shown in the fourth panel of
. A 4 Fig. L A procedure in which food is delivered at fixed
Stimuli Food Noise Food . i
A times, regardless of the occurrence of any responses, is
Prontes usually referred to as a “fixed-time procedure,” or “tem-
Fixed Interval with Event Procedure (Two time markers) por_al condltlonlng” P_aVIOV’ 1927 Food may also be
5 ' delivered atrandom times with the same mean duration,
esponses . .
P i I Y as shown in the bottom panelleig. 1(La Barbera and
Stimuli Food Noise p Food Church, 1974 Other reinforcement distributions can
Prime also be used to determine the times at which the animals
obtain food.
Fixed Interval Procedure (One time marker)
Responses )
Stimuli F‘ood A ﬁmd 2. Behavior in a fixed-time procedure
Prime . .
In this section we apply the packet theory to pro-
Fixed Time Procedure (One time marker) cedures with a single time-marker; in subsequent sec-
i 'y tions we extend the theory to procedures with two or
Stimuli Food Food three time-markers. In procedures with more than one
_ _ time-marker, a combination rule for the multiple time-
Random Time Procedure (One time marker) .
markers is necessary.
A A A i - i ixead-ti
— e = e Six rats were trained for 30 sessions on a fixed-time

procedure with food delivered every 120s and head
Fig. 1. Procedures with three time-markers (atrace conditioning pro- entries into the food cup were recorded. This procedure
cedure), two time-markers (afixed interval with one event procedure) is shown in the top panel dfig. 2 A sample of re-
and one time-marker (flxe_d interval, fixed time, and random-time sponses from one rat during Session 21 is shown in the
procedures). The complexity of the procedures decreases from top d | g, 2 f fi f ion ti f
to bottom. The symbols indicate food delivery (filled triangle), prime Second panel arig. 2as a function ot session ime for
of food delivery (empty triangle), responses necessary for food de- 20 blocks of 20s. The sequence of blocks represents

livery (arrow), and noise stimulus (filled rectangles). 400 s of the session; each block is not systematically
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related to procedural events. Although in some casesat 0.282s. Response rate as a function of time since
a response occurred by itself, in most cases the food (response gradient) for the last 10 sessions is
responses were clustered together, suggesting that theyshown in the fourth panel oFig. 2 The response
occurred in bouts. The interresponse time distribution gradient was initially high, decreased rapidly, and later
for the 30 sessions of training is shown in the third increased as the time of the next food approached. The
panel ofFig. 2 The distribution was positively skewed initial segment of the curve (i.e., the sharp decrease in
with the most frequent interresponse time occurring response rate) was related to the consumption of the
food pellet, and the final segment of the curve (i.e.,
the gradual increase in response rate) was related to

Fixed Time Procedure (One time marker) the anticipation of the delivery of the next food. The

behavior in this fixed-time procedure was orderly:

Stimuli FAood Qod responses occurred in bouts, and the pattern and rate
0 Do of responses were controlled by the procedure.
20 @ ac
@ qg[° o0 o o a0 | 3. D_e_scri_ption of a packet theory of
g o o conditioning and timing
3 12 [elc3e1rele] g) @ O
S gl@®° omo ®o0g In this section, packet theory will be described with
% oo R . . respect to the fixed-time procedure. In the following
» 4@ @ ®o oo % 0009 section, the predictions of the model regarding bouts,
0 S oo, mmo ©  ©°, patterns, and rates will be compared with experimental
0 4 8 12 16 20 data.
Time (s) The input to this model is a procedure, such as
025 : : : the fixed-time procedure shown in the top panel of
§ 020 Fig. 2 The procedural inputs are the times of the
g - onsets and terminations of stimuli (e.g. white noise,
g o015 . clicker, and light), and the times of occurrences of
"; reinforcers (e.g. food). The outputs from packet theory
2 o010 .
2 are the times of responses. The way packet theory
% .005 processes the procedural inputs is described in four
x 0 , . ; modules: perception, memory, decision, and responses
0 05 1 15 2 25 (seeFig. 3).
IRT (s)
S 3.1. Perception
o
% I Perception follows directly from the procedure. In
® the fixed-time procedure there is only a single input, the
o time of food delivery, which serves as a time-marker
5 for the next food delivery. At any instant between food
a deliveries, the animal keeps track of the time since the
4 previous delivery in a manner proportional to physical

R 1y P ROTAESS
0 60 120

time. Thus, at the time of reinforcement, the duration
Time since food (s)

between the successive food deliveridss available
and the perception of that elapsed intergé), can be

Fig. 2. Top panel: fixed time 120s procedure (one time-marker). determined as described in Hq)

Second panel: head entries of rats as a function of session time.
Third panel: interresponse time distribution. Bottom panel: response
rate as a function of time since food.

s(t)=d —t (1)
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Fixed Time Procedure (One time marker)
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Fig. 3. Top panel: fixed-time 120s procedure. Bottom panel: perception, memory, decision, and interresponse time distribution modules of

packet theory applied to the fixed-time procedure.

wheret is time since the last food. The bottom left panel

of Fig. 3shows perception based on a single duration,
when the duration from the time-marker to the delivery
of reinforcement is 120 s.

3.2. Memory

At the time of reinforcement, the perceptia(t)
is determined, and added to a memory. Memory is a
weighted mean of the individual perceptions as de-
scribed in Eq(2):

Eni1(t) = as(t) + (1 — a)Ex(2) (2)

whereE(t) is the memorys(t) the perception of the
duration of the last interfood interval), « the learning
parameter, andthe current number of reinforcements.
At time of reinforcemenE(0) is the expected duration
to the next food.

Memory is a weighted mean of all past perceptions
and the current perception. This idea was useBugh
and Mosteller (1955jo0 describe the learning of the

Both the perceptiorg(t), and the memonk(t), are
conditional expectations, the expected time to the next
food as a function of time since the previous food.
In the case of the fixed-time procedure, the memory
at asymptote equals the perception, as shown by the
two solid lines in the perception and memory panels of
Fig. 3. Although this equality holds for fixed-time dis-
tributions, it does not hold for procedures in which the
interfood intervals come from uniform or exponential
distributions (i.e., variable or random time schedules;
see Sectio®). The explicit expression for the asymp-
totic memory function, given the distribution of inter-
food intervals, is irkirkpatrick (2002)andKirkpatrick
and Church (2003)Presumably it will be possible to
develop a complete explicit solution for the times of oc-
currence of responses given a procedure, but that is not
now available. Therefore, the comparison of the data
with the predictions of packet theory will be based on
simulations.

3.3. Decision

probability of a response, and it is used here to describe
the learning of expected durations to reinforcement as
a function of physical time.

In packet theory, responses are generated by pack-
ets that are determined by the memory and a constant
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operant level of responding. The process used in the cup and random exploratory behavior. It consists of
present analysis is described below. packets of responses that are generated with a constant
low probability throughout an interval.

3.3.1. Threshold
A threshold transforms the continuous pattern in 3 3 3 combination of two rates for decision

memory into a pattern with two states: A high state  The rate of packet initiation is the sum of the packet

with rate €) of initiating packets of responses and alow  rate determined by the threshof) énd the packet rate
state with no initiation of new packets of responses. In getermined by the operant level (op).

every cycle, a single random samplg is taken from
a normal distribution:f) with a mean between 0 and 1
(1b) and some coefficient of variatiopy) as described -4 Reésponses

in Eq. (3):
3.4.1. Packets versus bouts

b=n(up, vp) (O=<up=<1) (3) A packet consists of a variable number of re-

sponses with variable interresponse times. Packets of

H ' - responses are theoretical; bouts are observed clusters

above litis setto 1. Thub,is a proportion between 0t regponses. Packets of responses can result in over-

and 1. The thresholB is defined in Eq(4): lapping bouts of responses. Thus, the observed re-

B = Py(E(t)) (0<1< E(0)) (4) sponse bouts can differ from the theoretical packets of
responses.

If the sample is below 0h is resampled, and if it is

where Py, is the bth percentile of the memory func-
tion E(t) whent is between 0 ande(0). The thresh-
old (B) is a time such that, when memory is above
B, the decision function is in the low state and when

3.4.2. Number of responses in a packet

The number of responses per packet has a Poisson
. - S ) distribution with a mean of five responses per packet.
memory is belowB the decision functionisinthe high  +.5 1 \ean number of responses pper pacpketpwas an

state. o ; ;
approximation from the observations Kifrkpatrick
For example, ifthe sampldxvere 1/3, the threshold (2p(?02)andKirkpatrick and Church (2003) P
B for the memory of a fixed interval of 120 s would be

at 80s (see memory panel Bfg. 3). Note that 1/3

of the memory, foit between zero ang(0), is below 3.4.3. Interresponse distribution in a packet

the threshold (high responding state) and 2/3 are above ~ The interresponse times within a packet were sam-

(low responding state). pled from a Wald (Inverse Gaussian) distribution as
In the fixed-time procedure, the decision based on described in E(5):

memory is a single step function that changes from zero 12 5

to a high ¢) probability of occurrences of packets of £ = (/\> exp(—k(x — W) ) 5)

responses. The respective decision step function is the 2mx3 2u2x

solid line also shown in the decision panekag. 3. In a

fixed-time procedure the threshold is a fixed proportion whereu is the center parameter andthe scale pa-

of memory and its variability is dependent on the mean rameter. The parametgrwas set to 0.60 anil set to

interval duration between the time-marker and delivery 0.77 for simulations of all procedures. The Wald den-

of food (constant coefficient of variation), so the scalar sity function with these parameters is shown on the re-

property is embedded in the theory. sponse panel dfig. 3for interresponse times ranging
from 0 to 2.5s. The Wald distribution can arise from a
3.3.2. Operant level (op) random-walk process with one absorbing bartieiog,
The operant level, represented by the dotted line 1986, but some additional or different processes may
shown in the decision panel at the bottomFag. 3, be involved to account for the small but systematic dis-

is the rate of emitting a packet of responses for many crepancies between the observed and predicted inter-
possible reasons, such as the smell of food in the food response interval distributions.
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-FCZ?;emltaters of packet theory of timing and conditioning used for the simulation of the procedures with single and multiple time-markers
Procedure Parameters

Bout Pattern Rate

#R w ow op a b Vb w1 w2 w3 r Pr

Single time-marker
(1) One time-marker
(a) Fixed time Fig. 4)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.51 1 - - 0.14 0.4
(b) Random TimeFKig. 7)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.51 1 - - 0.05 0.4
(c) Fixed interval Fig. 8)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.28 0.51 1 - - 0.33 0.4
(d) Fixed interval Fig. 10 top)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.55 1 - - 0.33 0.4
(e) Fixed interval Fig. 11, top)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.19 0.92 1 - - 0.30 04

Multiple time-markers
(2) Two time-markers
(a) FI with event Fig. 10 bottom)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.24 0.55 1 0.60 - 0.33 0.4

(2) Onset-to-food 5 0.60 0.77 0.004 0.05 0.53 0.55 - 0.40 - 0.33 0.4
(b) FI with event Fig. 11, second)

(1) Food-to-food 5 0.60 0.77 0.004 0.05 0.19 0.92 1 0.60 - 0.30 0.4

(2) Onset-to-food 5 0.60 0.77 0.004 0.05 0.40 0.92 - 0.40 - 0.39 0.4

(3) Three time-markers
(a) FI with two eventsKig. 11, third)

(1) Food-to-food 5 0.60 0.77 0.004 005 019 092 1 0.60 036 030 04
(2) Onset-to-food 5 060 077 0004 005 040 092 - 040 024 039 04
(3) Termination-to-food 5 060 077 0004 005 080 038 - - 040 049 04
(b) FI with state Fig. 11, bottom)
(1) Food-to-food 5 0.60 0.77 0.004 005 019 092 1 060 036 030 04
(2) Noise-to-food 5 060 077 0004 005 040 092 - 040 024 039 04
(3) Click-to-food 5 0.60 077 0.004 005 080 038 - - 040 049 04
3.4.4. Reactive packets response packets replaced any anticipatory response

In addition to response packets generated from the that had yet not occurred. The parameters used in
decision function and by the operant level, reactive the simulation of all procedures are presented in
response packets were generated with probalplity Table 1
for each delivery of food. These packets also have
a Poisson distribution with a mean of five responses 3.5. Summary of packet theory
and an interresponse time distribution determined by
a Wald density function as described in Ef). The In packet theory, responses are organized in packets.
same parameter values used for the response packet3he probability of initiating a packet depends on three
generated from the decision function and the operant factors, the operant level, whether food was delivered
level were used for the reactive packets. Reactive ornot, and the memory function (via a noisy threshold).
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Once a packet starts, a variable, Poisson-distributed

number of responses is emitted, with consecutive re-

sponses separated by variable, Wald-distributed time Stimuli

intervals.

4. Application of packet theory to a fixed-time
procedure

Next we show the results of a simulation of packet
theory in a fixed-time procedure. Packet theory was
simulated for the fixed-time procedure shown in the
top panel ofFig. 4. A sample of the output of the sim-
ulation is shown as a function of time for 20 blocks
of 20s observed during the last half of the simula-
tion (Fig. 4, second panel). Although in some cases

a response occurred by itself, in most cases responses
were clustered together, suggesting that they occurred

in bouts. The pattern obtained from the simulation re-
sembled the pattern observed in the dkig.(2, second
panel).

The interresponse time distribution observed in the
data (empty circles), in the simulation (filled circles)
and the theoretical Wald density function with the pa-
rametenu setto 0.60 and setto 0.77 are shown in the
third panel ofFig. 4. The most frequent interresponse
times occurred at 0.192 s for the simulated distribution,
0.222 s for the theoretical distribution, and 0.282 s for
the data distribution. The simulated interresponse time
distribution (generated by the model) and the observed
interresponse time distribution (generated by the an-
imal) were both very similar to the theoretical Wald
function.

Response rate (rpm) as a function of time since food
(s) observed in the data (empty circles) and in the simu-
lation (solid line) was high initially, decreased rapidly,
and later increased as the time of the next food ap-
proached, as shown in the bottom panefif. 4. The
proportion of variance accounted for by the moagl)(
was 0.96.

5. Similarity of bouts under different
procedures

The bouts of behavior observed during the fixed-
time procedure were well characterized by the Wald
distribution shown by the solid line in third panel of

195

Fixed Time Procedure (One time marker)
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Fig. 4. Top panel: fixed time 120 s procedure. Second panel: simu-
lated responses as a function of session time. Third panel: interre-
sponse time distribution observed (empty circles), simulated (filled
circles) and theoretical (solid line). The theoretical function was a
Wald distribution with the location parameter)(set to 0.60 and the
scale parametes{ setto 0.77. Bottom panel: response rate observed
(empty circles) and response rate predicted by the model (solid line)
as a function of time since food. The response was a head entry into
a food cup by rats on a fixed-time procedure.
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Fig. 4. The generality of the Wald distribution to de- 025 ‘
scribe the interresponse times within a bout of head ;TTﬁ%
entry responses by rats for many procedures is shown | 2 s Fl45

in Fig. 5. The relative frequency of interresponse times
for classical procedures with fixed and random rein-
forcement distributions (fixed time, FT, and random
time, RT), for procedures with different response con-
tingencies (fixed and randomtime, FT and RT, and fixed
interval, Fl), and for different interval durations (45, 90,
120, and 180 s) was compared to the Wald distribution
(with the same parameters used in the third panel of
Fig. 4). The theoretical line fit to the mean of the six y
data functions accounted for 95% of the variance. The N
fit of the Wald distribution was impressive, because the
same parameters were used for a wide range of proce-
dures. Fig. 5. Interresponse time distribution in classical conditioning pro-
The extent to which packet theory can be gener- cedures for different reinforcement distributions (fixed time, FT, and
alized to simulate response rate curves from different random time, RT), operant conditioning procedures (fixed interval,
procedures, such as the random-time (change in rein-F and for different interval durat_ions (45, 90, 120, 180 and 360 s)._
forcement distribution) and fixed-interval (change in The response was a head entry into the food cup by rats. The solid
. i . line is the theoretical Wald distribution functions with the location
response contingency) procedures, with no changes iNparameter ) set to 0.60 and the scale parametey get to 0.77.
its assumptions and few changes in parameter settings Data from the four fixed-interval functions were provided by Eliza-
is described next. beth Kyonka.

.015}

oo} P&

Relative frequency

.005 ';‘

IRT (s)
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Fig. 6. Top panel: random time 120 s procedure. Bottom panel: perception, memory, decision, and response modules of packet theory appliec
to the random-time procedure.
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6. Application of packet theory to a
random-time procedure

The random-time procedure, shown in the top panel
of Fig. 6, is identical to the fixed-time procedure, ex-
cept that the times of food deliveries are distributed
randomly (a random sample from an exponential dis-
tribution with a single parametew,). Packet theory for
the random-time procedure is identical to the one for
the fixed-time procedure. The differences in the output
of the model follow from the difference in the pro-
cedure (reinforcement distribution). This is illustrated
in Fig. 6. The perceptions may be greater or less than

Processes 69 (2005) 189-205 197
cycle (see decision panelleig. 6). As in the fixed case,
when a packet is initiated, it consists of a mean of five
responses with interresponse times approximated by a
Wald function (Eq(5)).

Six rats were trained for 30 sessions on a random-
time procedure with food delivered at times that
were exponentially distributed with a mean of 120s
(Fig. 7, top panel). Head entries into the food cup were
recorded. The bout structure of responding by the rats
(interresponse time distribution) on the random-time
procedure with a mean of 120 s is showririg. Swith
open squares for the data (RT 120) and the solid line for
the Wald distribution used for all the proceduresy. 7

120s. When these are combined in memory, using the shows the response gradients from data of the last half

same equations as in the fixed case (B}, the asymp-
totic memory function approaches a flat line near 120 s.
In this example, as in the fixed-time procedure, the pro-
portion of the memory below the threshd@ds 1/3 (see
Egs.(3) and(4)). On a particular cycle, the packet rate
varies from the operant level tomore than once per

Random Time Procedure (One time marker)

Stimuli A A
Food Food
Os ~120s
60
=
o
x
o
©
©
(2]
c
[}
ot
»
o}
x

Time since food (s)

of training for the rats (open circles) and for the sim-
ulation (solid line). The behavior is characterized by
a reaction to food, followed by a low and relatively
constant response rate until the next food delivery. The
simulated and observed response gradients were very
similar. The proportion of variance accounted for by
the model ¢?) was 0.71, a value that is satisfactory
considering that the mean is a reasonable estimate of
the gradient.

7. Application of packet theory to a
fixed-interval procedure

The fixed-interval procedure is identical to the
fixed-time procedure, except that the food deliveries
are dependent upon a response after termination of the
interval Fig. 8). Packet theory for the fixed-interval
procedure is identical to the one for the fixed-time
procedure; the differences in the output of the model
follow from the difference in the procedure (response
dependency). The addition of a response dependency
produces a short but consistent delay between the
reinforcer availability (prime) and reinforcer delivery.
The interval perceived from a time-marker to food is
based on the actual delivery of food and not on food
availability. Therefore, the distribution in memory will
be slightly longer and more variable for a fixed-interval
than for a fixed-time procedure. As in the fixed-time
and random-time procedures, if a packet is initiated, it

Fig. 7. Top panel: random-time procedure (one time-marker). Bot- +qnsjsts of a mean of five responses with interresponse

tom panel: response rate observed (empty circles) and response rat
predicted by the model (solid line) as a function of time since food
(s). The response was a head entry into a food cup by rats on a
random-time procedure.

Gimes approximated by a Wald function (€§)).
Six rats were trained for 30 sessions on a fixed-
interval procedure with food primed 120 s following
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Fixed Interval Procedure (One time marker) der these procedures. In most procedures there is more
than one time-marker. The problem is how these multi-
Responses J . . . \ .
ple sources of information affect the animals’ behavior
Simuli A FAood (Church et al., 2003; Meck and Church, 1984 the
AN next section, additional data will be described for cases
Prime inwhich multiple time-markers are present. Three ways
0s 120 s in which different time-markers can be combined to
120 : generate packets of responses will be described. These

alternative combination rules will be compared with the
results of procedures with two and three time-markers.
The procedure shown Iig. 9(top panel) is a fixed-

time 120 s procedure with the addition of a brief noise
stimulus 90 s after food delivery. As in the case of a
fixed-time procedure with no additional stimulus, the
previous food is a time-marker for the next food deliv-
ery. Thisinterval is called the food-food interval, which
in this example, is 120 s. In this procedure, the noise is
a second source of information about the time at which
the next food will be available. This interval between
the noise and food is referred to as noise—food interval,
whichin this example, is 30 s. The two intervals may be
Time since food (s) treated independently in the sense that each generates

_ o . an expectation function in memory.
Fig. 8. Top panel: fixed-interval procedure (one time-marker). Bot- The decision function (rate of initiating packets of
tom panel: response rate observed (empty circles) and response rate

predicted by the model (solid line) as a function of time since food requnses) des_cribed in the fixed-time case is a step
(s). The response was a head entry into the food cup by rats on a function determined by the threshdil For the two-
fixed-interval procedure. event procedure described above, the food—food and
noise—food functions occur together; they start at dif-
the previous food delivenyHig. 8, top panel) and deliv-  ferent times but overlap in time. (In this example, the
ered at the first head entry response after prime. Headfunctions overlap from 90 s until the time of food de-
entries into the food cup were recorded. The bottom livery, 1205s.) The functions are shown in the middle
panel ofFig. 8shows the response gradients from data panels ofFig. 9 and are labeled food—food (FF) and
of the last half of training for the rats (open circles) and noise—food (NF). A combination rule specifies the rate
for the simulation (solid line). As in the fixed-time pro-  of packet generation at times when the functions over-
cedure, the behavior was characterized by a reaction tolap. Three ways that two decision functions can be
food, followed by a low rate thatincreased as the time of combined (most recent, weighted mean, and sum) are
the next food approached. The simulated and observedshown in the bottom panels Bfg. 9. In all three cases,
response gradients were very similar. The proportion the generation of packets by the model can be defined
of variance accounted for by the modef} was 0.99. by the summation of the packets generated by the two
decision functions, each weighted by a constat (
With different values ofw, the changes inv deter-
8. Combination rules for multiple mine whether the combination rule is “most recent,”
time-markers “weighted mean,” or “sum”.
Most recentbottom ofFig. 9, left panel). The de-
The fixed-time, random-time, and fixed-interval cision function that represents the most recent time-
procedures have one time-marker that indicates whenmarker is used exclusively to generate packets (i.e., the
the nextfood will be delivered. Packettheory accounted weight of the function generated by the most recent
for the pattern, rate, and bout structures in the data un- time-marker NF is set to equal 1 and the weight of the

Response rate (RPM)
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function determined by the previous time-marker FF Weighted mea¢bottom ofFig. 9, center panel). The

set to 0 following the presentation of the noise event). weighted mean is a linear average of the two decision
This is the simplest combination rule with no free pa- functions. The weights range between 0 and 1, and the
rameters. sum of the two weights is equal to 1 (one free param-

Fixed Time with Event Procedure (Two time markers)

Stimuli A | A
Food Noise Food
0s 90 s 120s
Decision
Food-Food (FF) Noise-Food (NF)
2R 2R

&

o

°

S

& R R

o

5R 5R
(] 90 120 0 90 120
Time since food (s)
Combination rule
Most recent Weighted mean Sum
2R 2R 2R
o 1*FF 0*FF 1*FF 5*FF 1*FF
© 1*NF .5"NF
2
g R R R
a
1"FF
5R 5R 5R 1*NF
0 90 120 0 90 120 0 80 120

Time since food (s)

Fig. 9. Top panel: fixed interval with event procedure (two time-markers). Middle panels: decision module of packet theory for two time-markers:
the preceding food (left panel) and brief presentation of noise (right panel). Bottom panels: three possible combination rules based on the decision
functions of the two time-markers: most recent (left panel), weighted mean (center panel), and sum (right panel). See text for details.
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eter). The center panel Fig. 9 shows an example in  the number of free parameters) of the combination rule.

which the weight of the FF was set to 0.5; thus, the The simulations of the procedures with two and three

weight of the NF was 0.5. time-markers are described in the next two sections.
Sum(bottom ofFig. 9, right panel). The combina-

tion rule is a sum of the two decision functions each

weighted independently. The two parameters are not 9. Application of packet theory to two

constrained (i.e., there were two free parameters). Thetime-markers

right panel inFig. 9 shows an example in which the

weight of the FF is set to 1 and the weight of the NF is Ten rats were trained for 30 sessions on a fixed-

also setto 1. interval-with-event procedure (two time-markers) as
The combination rules described above were used shown in the left panels dfig. 10 In this procedure,

to simulate packet theory for procedures with two food was delivered dependent upon a head entry into

and three time-markers. In the case of three time- the food cup after 120 s (standard fixed-interval proce-

markers, there are two additional free parameters for dure, top left panel). On some occasiops(.63), a

the weighted mean and the sum combination rules. The 1 s presentation of white noise occurred 90 s after the

comparison between the data and model simulation wasprevious food delivery, and provided an additional sig-

conducted and the choice among combination ruleswasnal for the time of the next food availability (bottom

based on an informal criteria that maximized the good- left panel). During these occasions, the procedure was

ness of fit, and minimized the complexity (defined by afixed interval with the addition of a signal at 90 s. Note

Fixed Interval with Event Procedure (Two time markers)
100

One time marker One time marker
Responses 1
Stimuli A A
Food Food
Prime
0s 120 s —_
=
[« %
e
o 120
o
o
‘é’ 100
Two time markers 8 Two time markers

O

Responses l K

Stimuli A | A

Food Noise Food
A
Prime
0s 90s 120 s

120

Time since food (s)

Fig. 10. Left panels: fixed interval with event procedure with no signal (top) and with signal (bottom). Right panels: response rate observed
(empty circles) and response rate predicted by the model (solid line) as a function of time since food for the occasions with no signal (top) and

occasions with signal (bottom).
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that this procedure is the same as that describE)ir® no signal (one time-marker), response rate initially de-
with the introduction of a response dependency and is creased and then increased as the time of the next food
also referred to as a tandem FT—FI schedMarf and approached (empty circles, top right panel). On the oc-
Zeiler, 1973. casions in which there was a signal at 90 s, response
The results of the last 10 sessions of training are rate also decreased initially and then increased as the
shown in the right panels dfig. 10 When there was  time of the next food approached. In addition, there

Three Time Markers Fixed Interval Procedure

One time marker 120
Responses J One time marker
1 A A
Stimuli Food Food
A
Prime
0s 120's

Two time markers

Responses J Two time markers
Stimuli A | A
Food Food
A
Prime
Os 90's 1205 s
a
x
2
o
. o
Three time markers (events) g
Qo
Responses A 8
4
Stimuli A | | A
Food Food
A
Prime
Os 90s  110s 1205

Three time markers (state)

Responses J
Tk e
Stimuli Food Food

A
Prime
Os 90s 110s 120s

Time since food (s)

Fig. 11. Left panels: trace procedure with cycles with no signal (top panel), cycles with one brief event (second panel), cycles with two brief
events (third panel), and cycles with the presentation of a stimulus state (bottom panel). Right panels: response rate observed (empty circles)
and response rate predicted by the model (solid line) as a function of time since food(s) for the cycles with no signal (top panel), cycles with
one brief event (second panel), cycles with two brief events (third panel), and cycles with a stimulus state (bottom panel).
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was a dip at the time at which the brief signal occurred.
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ended at 110s after the previous food, providing two

That s, at the time of the signal, there was a sudden de-additional signals (stimulus onset and termination) for
crease in response rate, followed by an increase in thethe time of the next reinforcement (fourth left panel).
slope of the function (bottom right panel). The decrease Note that on some occasions there was only one time-

in response rate following the signal is consistent with
results previously describelélleher, 1966; Marr and
Zeiler, 1973.

The solid lines are the simulation of packet theory
to the data. On the occasions in which no signal oc-
curred, packet theory is identical to that for the fixed-
time, random-time, and fixed-interval procedures. The

marker (top panels), on other occasions there were two
time-markers (second panels), and still on others, three
time-markers (third and bottom panels).

The results for the last five sessions of training are
shown in the right panels dfig. 11 When there was
no signal (one time-marker), response rate initially de-
creased and then increased as the time of the next food

variance accounted fonf) by the model was 0.98. On  approached (empty circles, top right panel). On the oc-
the occasions in which a signal occurred, packet the- casions in which there was a signal at 90 s response
ory is also identical to that for the fixed-time, random- rate also decreased initially and then increased as the
time, and fixed-interval procedures with the addition of time of the next food approached. In addition, at the
a perception, a memory, and a decision module for the time of the signal, there was a sudden decrease in re-
additional time-marker, and the addition of a combina- sponse rate followed by an increase in rate with an
tion rule. On the occasions in which the two decision increase in the slope of the function (empty circles,
functions were generating packets, the weights were second right panel). On the occasions in which there
0.6 for the food-to-food function and 0.4 for the noise- were two time-markers (either the noise and clicker,
to-food function. The weighted average combination or onset and termination of the noise), response rate
rule predicted the data well with one free parameter initially decreased and then increased as the time of
(seeTable J). Note that the parameters for the common the next food approached. In addition, at the times of
function (food—food) for the two time-marker case and the two signals, there was a sudden decrease in re-
the one time-marker case were the same. Moreover, sponse rate followed by an increase in response rate
the combination rule parameteis)(were the same for ~ with an increase in the slope of the function after
the two time-marker procedurdsigs. 10 and 11 The each time-marker (empty circles, third and bottom pan-
variance accounted for by the modefj was 0.98. els).

The solid lines are the simulation of packet theory to
the data. On the occasions in which no signal occurred,
packet theory was identical to that for the fixed-time,
random-time, and fixed-interval procedures. The vari-
ance accounted fow) by the model was 0.98. On the

10. Application of packet theory to three
time-markers

Twenty-four rats were trained for 20 sessions on
a trace conditioning procedure (3 time-markers fixed-
interval procedure) as shown in the left panels of
Fig. 11 In this procedure, food was delivered depen-

occasions in which two time-markers occurred, packet
theory is identical to that described in the previous sec-
tion for the two time-marker case. The weighted aver-
age combination rule predicted the data well with one

dentupon a head entry response into the food cup 120 sfree parameter (sekable 1. The variance accounted

after the previous food (standard fixed-interval proce-
dure, top left panel). On some occasiops=0.2), a

for by the model ¢2) was 0.97.
On the occasions in which three time-markers

0.5 s presentation of white noise occurred 90 s after the occurred, packet theory is identical to the two time-

previous food delivery and provided an additional sig-
nal for the time of next food (second left panel). On
other occasionsp(=0.2), in addition to the noise, an-

marker theory with the addition of a perception,
a memory, and a decision module for the third
time-marker, and the addition of one parameter to the

other 0.5 s presentation of a clicker occurred at 110 s af- weighted average combination rule (Sexble ). The

ter the previous food and provided an additional signal
for the time of the next food (third left panel). On other
occasions [{=0.2), a white noise started at 90s and

weight parametersu() were the same as in the two
time-marker cases, whenever there were two decision
functions generating packets of responses. When there
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was an additional decision function (either determined efficient of variation of the threshold, and the rate of

by the termination of the noise, or a click sound) the packet generation. A single parameter, rate of packet

parameters were 0.36 for the food-to-food, 0.24 for generation (), was sufficient to account for the dif-

the onset-to-food, and 0.4 for the termination-to-food. ferences between the fixed- and random-time proce-

The weighted average combination rule predicted dures. The three interval procedures were simulated

the data well with one free parameter. The variance with variations in the rate of packet generation and the

accounted for¢?) by the model was 0.96. mean and variability of the threshold. These three pa-
rameters were also varied to account for the data in the
procedures with multiple time-markers. Ideally all the

11. Discussion parameters would be the same across all conditions, or
there would be a simple rule to account for the effects

Packet theory provides a quantitative account of of the procedures on the parameters that were different

the times of responses of rats in procedures that dif- under different conditions.

fered on four dimensions—the distribution of times

between successive reinforcers (fixed or random), the 11.2. Combination rules

interval between reinforcers (45, 90, 120, 180, 3605s),

the contingency between response and reinforcer (clas-  In procedures involving two or three time-markers,

sical or operant), and the number of time-markers the observed behavior was a result of a combination

(1, 2 or 3). of the effects of the individual time-markers, including
the possibility of interactions between time-markers.
11.1. Comparison of behavior in different For the procedures involving multiple time-markers,
procedures a weighted average combination rule was sufficient to
account for the data. This consisted of a weight for each
11.1.1. Similarities of the time-markers that had occurred at a given time

In all these procedures, the characteristics of the during the cycle, with the sum of the weights equal to
bouts, the operant rate, and the learning rate were 1.0. The weights were consistent across procedures.
similar. The distribution of head entries within a bout
could be characterized by a Wald distribution with the 11.3. Evaluation of packet theory
location parameter equal to 0.60 s and the scale param-
eter equal to 0.77 s. The same low operant rate (0.00411.3.1. Fit of the data by the model
responses per minute) was used for all procedures. The data was reasonably fit by the model. The per-
The same learning rate (0.05) was also used for all centage of variance accounted for was high and ap-
procedures, although the actual learning ratesould proximately the same in 9 of the 10 functions shown
not be identified by the analyses that were conducted in Figs. 4, 5, 8, 10 and 110.95, 0.96, 0.96, 0.97,
on asymptotic data. The 0.05 learning rate was close 0.97, 0.98, 0.98, 0.98, and 0.99). In the case of the
to the learning rate previously used to describe initial random procedure~g. 7), the percentage of variance
acquisition of fixed intervals and transitions from one accounted for was only 0.71, but the theory had seg-
fixed interval to anotherGuilhardi and Church, in  ments appropriate to the reaction to food and the con-
pres$. It could also be set close to 1 to account for stant expected time to food. The measure of percentage
the dependency of the post-reinforcement pause onof variance accounted for is not particularly useful for
the just-preceding interfood interval, especially when flatfunctions sinceitis acomparison of the unexplained
the interfood interval is shortWynne and Staddon, variance of the data relative to the unexplained variance
1992. of the mean of the data. In this case, the mean of the

data is a good approximation of the data.
11.1.2. Differences

The effects of the procedures on behavior were pri- 11.3.2. Simplicity of the model
marily due to their effects on the pattern and rate of  One of the strengths of this model was that it was
responding. The procedures affected the mean and co-{possible to use the same values for many of the pa-
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rameters across all the procedures. The three paramedata may be averaged across a session, multiple ses-
ters that were used to simulate the data accounted forsions, and across rats. The averaging across multi-
1080 data points in the gradients (120 data points in ple observations can produce changes in the function
each of 9 figures). The 3000 data points in the 6 rela- shape, as well as reductions in variability. The change
tive distributions of the interresponse intervals shown in function shape produced by averaging is particularly
in Fig. 5(500 data points for each of 6 conditions) did apparent when the primary data is averaged across a
not require any parameter adjustment across differentsession of individual rats. For example, the primary
procedures. Because of the high ratio of data points to data of fixed-interval responding is a step function
adjusted parameters, the model is reasonably simple. which, when averaged across interfood intervals, pro-
duces an ogival functionSchneider, 1969 The pri-

11.3.3. Generality of the model mary simulated data of packet theory consists of step

The generality of the model refers both to the gen- functions similar to those produced by individual ani-
erality of the input that the model can accept, and the mals on individual interfood intervals.
generality of the output that the model can deliver. The  The simulation of packet theory produced the pri-
generality of the input to the model refers to the range mary data for approximately the same amount of train-
of procedures that are fit by the model. Packet theory ing received by an individual rat on any procedure.
was applied to procedures involving one, two, and three Thus, it would be possible to compare the theory to
time-markers in classical and instrumental procedures the primary data or averaging across multiple obser-
with different time intervals and reinforcement distri- vations on a single session, across sessions, or across
butions. Thus, the model is reasonably general in terms individuals. The original data and the simulated data are
of the input it can accept. available ahttp://www.brown.edu/Research/Timelab

The generality of the output of the model refers to
the range of measures of behavior that it fits. The po- 11.4. Comparison of this version with the previous
tential generality of the model is considerable. Because version of packet theory
the model predicts times of responses, the simulation
can be used to estimate any dependent measure that can The version of packet theory used in this article is
be calculated from the original data (e.qg., interresponse a slightly modified version of the one described by
time distributions, response gradients, and discrimina- Kirkpatrick (2002)andKirkpatrick and Church (2003)
tion ratios). The original data containing times of onset It will be called “Version 2" to distinguish it from the
and termination of stimuli and responses generated by original version that will be called “Version 1”.
the rats, as well as the times of onset and termination of  The major change to Version 2 is that a threshold
stimuli and responses generated by the model are avail-with a mean and coefficient of variation was introduced.
able. In the present paper, fits from the simulation are In Version 1 the probability of packet initiation was
presented only for the interresponse time distribution linearly related to the memory of the time since food;
and the response gradients, but a model that can pass ghe threshold in Version 2 provides the flexibility for
Turing test Church, 2001 must fit all other dependent  other relationships (such as a step function) between
measures as weluilhardi and Church, in press the memory of the time since food and the probability

Although the variance accounted for by the model of packet initiation. The simulated mean response rate
was high in most of the procedures described, a more over many cycles is ogival in shape. A second change
sensitive evaluation of the model will show the neces- in Version 2 was in the use of a Wald distribution for
sity of improvementsChurch and Guilhardi (in press) the description of the bouts of behavior. This had only
showed that although the fit of the model on a fixed- a small effect on the predicted times of responses, but
interval procedure was excellent, the model is still dis- it was more consistent with the data.
tinguishable from the real data using a Turing test.

11.5. Further developments of the model

11.3.4. Fits to individual animals

The primary data consists of the times of responses  The generality of the model must be examined
between individual interfood intervals. The primary further. This involves comparing the predictions of the
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