
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Neuroscience Methods 173 (2008) 235–240

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journa l homepage: www.e lsev ier .com/ locate / jneumeth

Achieving behavioral control with millisecond resolution in a high-level
programming environment

Wael F. Asaad ∗, Emad N. Eskandar
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA

a r t i c l e i n f o

Article history:
Received 9 May 2008
Received in revised form 9 June 2008
Accepted 10 June 2008

Keywords:
Neurophysiology
Psychophysics
Matlab
Behavioral control
Software
Cognition
Human
Monkey

a b s t r a c t

The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level
software running on a limited range of hardware. Despite the availability of software that allows the coding
of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust
the temporal accuracy and resolution of programs running in such environments, especially when they
run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed
by the intricacy of the coding required and their dissemination across labs has been hampered by the
various types of hardware needed. However, we demonstrate here that, when proper measures are taken
to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is
relevant for the alignment of behavioral and neural events.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Carefully designed and precisely executed behavioral tasks
are the bedrock of modern cognitive and systems neuroscience.
Because of the crucial requirement for temporal precision, the
construction of these tasks has generally relied upon low-level
programs written to function on very specific video presenta-
tion and data acquisition hardware (Hays et al., 1982; White et
al., 1989–2008; Ghose et al., 1995; Maunsell, 2008). When this
hardware becomes obsolete or is discontinued, researchers must
invest significant amounts of time re-writing the core, low-level
programs. Meanwhile, many researchers are comfortable with
high-level programs, such as Matlab, for data analysis, and would
appreciate being able to code behavioral tasks in the same, flexi-
ble manner. However, most share reasonable suspicions about the
ability of such a highly abstracted programming environment exe-
cuting on a non-real-time operating system to deliver temporally
precise control over behavior. Fortunately, as we show here, when
the relevant issues are managed appropriately, behavioral control
software written in a high-level programming environment can

∗ Corresponding author at: Department of Neurosurgery, Edwards Building, Room
426, Massachusetts General Hospital, Boston, MA 02114, USA. Tel.: +1 617 905 7691;
fax: +1 617 726 2310.

E-mail address: wfasaad@alum.mit.edu (W.F. Asaad).

achieve the performance necessary for millisecond-scale temporal
accuracy and reproducibility.

Below, we identify several potential obstacles to precise and reli-
able timing in a high-level software environment, and show data to
determine which of these represent true problems; we then present
our solutions to these problems as they arise. Some issues pre-
sented here are well known and have generally accepted solutions.
Others have been appreciated in a qualitative sense, but have not
been quantitatively characterized, if at all. A few issues have not
been previously discussed in the literature, and may affect some
software systems currently in use for behavioral control. Our treat-
ment of these issues is intended to apply in a general manner to
anyone who is considering writing behavioral control software in
a high-level programming environment.

2. Materials and methods

Our test system was composed of a Dell Computer with a Pen-
tium Core 2 Duo processor (model 6300) running at 1.86 GHz and
containing 1 GB of RAM (Dell Inc, Round Rock, TX). The operating
system was Microsoft Windows XP, service pack 2 (Microsoft, Red-
mond, WA). The graphics hardware in this machine consisted of an
nVidia Quadro NVS 285 with 256 MB of video RAM. Output from
this dual-headed graphics card was split to a subject display run-
ning in full-screen mode at a pixel resolution of 800 × 600, and an

0165-0270/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jneumeth.2008.06.003



Author's personal copy

236 W.F. Asaad, E.N. Eskandar / Journal of Neuroscience Methods 173 (2008) 235–240

experimenter’s control display, running in windowed mode at a
resolution of 1024 × 768. The displays were standard cathode-ray
tubes measuring 15 inches in the diagonal, also from Dell. For the
tests reported here, the displays refreshed at 60 Hz.

Data acquisition boards consisted of two PCI-6229 multi-
function devices (a.k.a., DAQ boards), each connected to a
BNC-2090a break-out box (National Instruments, Austin, TX). We
also tested two National Instruments USB-6009 devices, for com-
parison. A Plexon neural data acquisition system (Plexon Inc., Dallas,
TX) was used to compare time-stamps sent digitally by these boards
with a signal from a photoresistor positioned against the subject’s
display.

Matlab software (version r2007b, The Mathworks Inc., Natick,
MA), including the Data Acquisition Toolbox and the Image Pro-
cessing Toolbox, was used to write the behavioral control software
tested here, and to analyze timing data, as described below. Matlab
was run in the default, non-multi-threaded mode. Matlab figures
(those created using the built-in graphics functions) relied upon
OpenGL with hardware acceleration enabled. Low-level routines
for video control (based on DirectX from Microsoft Corp.) were
obtained through the generosity of Jeffrey S. Perry at the Univer-
sity of Texas at Austin. All tests were run within Matlab with the
Java Virtual Machine disabled (launched by typing “matlab–nojvm”
at the windows command prompt).

To optimize performance, a streamlined system profile was
created from which unnecessary devices (i.e., network, secu-
rity, and printer-related devices) were removed. For the timing
tests described here, Matlab was the only application running. In
addition to essential windows system processes and one Matlab
process (matlab.exe), processes running at the time these tests
were carried out included ten from National Instruments (nidev-
mon.exe, nimxs.exe, nidmsrv.exe, nitcidl5.exe, lkads.exe, lktsrv.exe,
lkcitdl.exe, nipalsm.exe and nisvcloc.exe), and two related to the
Intel Application Accelerator (IAAnotif.exe and IAANTmon.exe).

3. Results

In order to have true millisecond-level temporal resolution on
standard PC with off-the-shelf video display and data acquisition
hardware, and running a modern multi-tasking operating system,
several potential obstacles must be overcome or at least managed
appropriately: (1) video displays are updated (refreshed) with a
relatively slow periodicity that is not in any way synchronized to
a subject’s time-varying behavioral output; (2) most data acquisi-
tion hardware have on-board data buffers that temporarily store
acquired analog samples before transferring them to motherboard
memory at relatively infrequent intervals, and so these data are not
available for behavioral monitoring until the transfers have taken
place; (3) high-level programming environments, such as Matlab,
trade ease of coding for high costs in execution speed, and fur-
thermore run atop operating systems which are not are not “hard”
real-time capable. Therefore, they may be interrupted by compet-
ing processes and applications, potentially resulting in unexpected
delays in behavioral monitoring and control. Here we examine each
of these three issues in turn, and describe our solutions in each
case.

3.1. Video timing issues

The first timing issue is a property of standard video display
hardware. Strictly periodic video refreshes result in relatively poor
predictability of video stimulus timing relative to a subject’s time-
varying behavior. In other words, if a visual stimulus is to be turned
on after some specified behavioral event (e.g., the subject fixates),

and that behavioral event occurs 2 ms after the latest refresh, the
stimulus will not appear for another 8 ms (on a monitor running at
100 Hz, and disregarding the vertical blank interval). If, on the other
hand, the subject had fixated slightly later, say 7 ms after the latest
refresh, that stimulus will appear only ∼3 ms later. (This does not
take into account the position of that stimulus on the screen when
using a CRT: an image in the center of the screen will require another
n milliseconds for the raster beam to reach that point, where n is
the refresh period minus the vertical blank duration, multiplied by
the fraction of the total raster travel distance to the object, here
0.5). One way around this limitation (still used by many labs) is
to employ an LED array. However, many experiments designed to
examine higher level sensori-motor or cognitive behaviors require
the ability to display more complex stimuli. In such cases, the timing
of the refresh (i.e., vertical blank) can be time-stamped to give an
accurate indication of when a visual stimulus was presented, even
though this specific instant itself cannot be pre-determined. We
found that such a time-stamp generated from within Matlab had
an accuracy that was within 1 ms of the actual appearance of the
stimulus on the video display, as determined using a photoresistor
(standard deviation = 0.3 ms).

Furthermore, in order to minimize the lag between the software
call to activate a stimulus and its appearance, the relatively slower
steps of creating a video memory buffer and copying image data
into that buffer can be performed in advance (e.g., during the inter-
trial interval). Then, during trial execution, the appropriate buffers
can be “blitted” to the video back-plane (a very fast operation on
modern graphics hardware). Once this back-plane has been fully
populated with those stimuli that are intended to appear simulta-
neously, this back-plane can be “flipped” into the active (visible)
position. While this preemptive strategy may necessitate copy-
ing images into video memory that, depending on the subject’s
behavior, may not actually be used, the large amount of video RAM
available on modern graphics cards allows more than sufficient
memory for hundreds, if not thousands, of images, depending on
the size of each.

3.2. Data acquisition issues

The second timing limitation results from the manner in which
analog data is transferred from a data acquisition device (DAQ) to
the PC. If the DAQ is set to acquire and store a continuous stream
of data (e.g., eye- or joystick-position data), this data is stored ini-
tially in a buffer on the device itself and then uploaded to the PC in
chunks at regular intervals. If one simultaneously attempts to sam-
ple this analog input stream for on-line behavioral control, only
the last uploaded data point will be available. Therefore, if these
uploads occur every 50 ms (a value we found to be typical, using
default settings in Matlab), the on-line sampled data will lag the
actual signal by up to that amount of time. Nevertheless, in Matlab,
data is returned to the user at a much faster rate (at least 1500 sam-
ples per second can be retrieved, and often many more, depending
on the system configuration); however, the retrieved data values
will simply be copies of the last transferred data point until the next
upload (Fig. 1). Thus, the raw number of samples retrieved is deceiv-
ing, and may have confounded previously published attempts to
achieve high-level behavioral control with millisecond temporal
resolution (Meyer and Constantinidis, 2005). We found that even if
the buffer size is shrunk so that these transfers are forced to occur
more frequently, there was a ceiling to the benefit provided by this
tactic. Specifically, even after setting a buffer size that should allow
only one data point, gaps between transfers of around 15 ms were
still common (Fig. 1d), corresponding to a sampling rate of under
70 Hz (far less than is ideal for tracking eye movements or other
analog behavioral data).



Author's personal copy

W.F. Asaad, E.N. Eskandar / Journal of Neuroscience Methods 173 (2008) 235–240 237

One way around this problem would be simply to avoid logging
analog input data to memory. In this situation, one can sample data
from many types of data acquisition devices even when they are in a
“free-running” state (i.e., not set to log data to memory or disk), and
the values returned will reflect the most recent state of the analog-
to-digital converters. However, the inability to store acquired data
for post hoc analysis is severely limiting. In such a case, no con-
tinuous, regularly sampled record of the behavioral signals will be
available for post hoc, off-line analysis; this is because the data

points sampled on-line (i.e., under software control) will not be
strictly clocked, but will instead occur at irregular, sub-millisecond
intervals. Therefore, we devised a simple solution to this problem:
we split the analog input signal into two identical data acquisition
boards. One is set to log data to memory whereas the other is left in
a free-running state for on-line sampling. With this configuration,
we found that unique data samples could be retrieved at a rate well
above 1 kHz (Fig. 1c). In contrast, the rate of unique sample retrieval
with only one acquisition board was limited to 20–70 Hz (Fig. 1b).

Fig. 1. Analog input sampling and aliasing. A 60-Hz sinusoid resulting from ambient noise was amplified and fed into the data acquisition system. (a) The original signal
sampled at 1 kHz as logged to memory. (b) The same signal simultaneously sampled by Matlab as fast as software allowed (∼1.8 kHz). (c) The same signal split and fed into
a second data acquisition board, sampled while that board was left in a non-logging (“free-running”) state. These figures demonstrate that when an acquisition board is
set to log data to memory or disk, that data becomes available to Matlab only after it has been uploaded in chunks to motherboard memory. Attempting to simultaneously
sample this data, as in (b), results in the retrieval of the last uploaded data point, even that sample is tens of milliseconds old. This produces an aliased image of the signal
which is not adequate for real-time behavioral control. Instead, data sampled from a second acquisition board, set not to log data, provides an accurate, immediate record
of the signal. In this way, data can both be logged for post-hoc analysis and used for on-line behavioral control. (d) With the DAQ set to acquire data at 1 kHz, the number of
samples uploaded to memory is plotted against time for two settings: the result using the default buffer size set by Matlab is depicted by the dotted line, and result using the
minimum allowable buffer size is depicted by the solid line. Shrinking the DAQ’s buffer size provided a significant but limited benefit (gaps between uploads still occurred,
lasting about 15 ms). Thus, the two-DAQ solution offered the best performance.



Author's personal copy

238 W.F. Asaad, E.N. Eskandar / Journal of Neuroscience Methods 173 (2008) 235–240

Under our conditions, and qualitatively agreeing with a previ-
ous report (Meyer and Constantinidis, 2005), we found no temporal
cost associated with sampling one vs. eight analog channels. Thus,
with two data acquisition boards, it is possible to sample and simul-
taneously to store multiple behavioral signals with millisecond
precision.

Importantly, we found that accessing data samples from USB
DAQ devices took significantly longer than from PCI devices. Specif-
ically, using two USB-6008 devices from National Instruments,
the maximum number of unique samples retrievable per sec-
ond was only 200–400 (compared with at least 1–2 kHz for PCI
devices, above), despite the 10 kHz maximum sampling rate of
these devices. So, although these devices tend to be several hun-
dred dollars cheaper than the PCI devices, their slower performance
may make them less suitable for real-time behavioral control.

As an aside, we found that for sending digital event markers
to separate neural data acquisition systems, parallel ports were
generally faster than the digital lines on the DAQ device. On our
test system, this difference was large: The per-operation time was
0.4 ms for the parallel port versus 4 ms for the DAQ digital sub-
system. However, newer machines can achieve significantly better
performance: ∼0.1 ms for the parallel port versus ∼0.2 ms for the
DAQ (David Freedman, personal communication). Thus, because it
takes two operations to send each number (one to set the value bits,
another to trigger the strobe bit), it is preferable on older systems
to use a parallel port for these operations.

3.3. Software issues

Many behavioral researchers have significant concerns regard-
ing the use of a high-level programming environment running
on a non-real-time operating system (e.g., Matlab on Microsoft
Windows) to control behavior with reliable millisecond tempo-
ral resolution. These concerns may be classified broadly into three
categories: (1) concerns about the adequacy of the average cycle-
rate performance of such a system (that is, its ability to perform
the basic steps required for behavioral monitoring and control
sufficiently rapidly to be able to repeat these steps about every
millisecond); (2) concern that there is simply too much temporal
jitter in a high-level application such as Matlab to provide accu-
rate time-stamps; and (3) concerns about the possibility of rare,
unpredictable high-latencies introduced by software events exter-
nal to the experimental environment (e.g., the stealing of CPU time
by background applications). These are serious issues that must be
resolved in order to have confidence that behavior is being sam-
pled with sufficient speed and without unexpected delays so that
critical measures such as movement and reaction times – in which
milliseconds matter – are not distorted.

The first concern, regarding the average speed of execution
within a high-level programming environment is easily allayed.
Matlab running in an empty-loop (whose only function is to time-
stamp each successive cycle) can execute several hundred thousand
cycles per second on a modern PC running Windows (and over
one million cycles per second have been measured on the newest
machines). Even when code is added to check analog inputs, trans-
form these into calibrated x and y coordinates, and check these
coordinates against multiple possible targets, the average cycle
rate still approaches or surpasses one kilohertz on modern, multi-
core PCs (Fig. 2). Thus, despite the use of a high-level, interpreted
programming environment such as Matlab, more than adequate
average performance can be achieved using standard computer
hardware.

The second issue, concerning the degree of temporal jitter
observed in time-stamps generated by a high-level application such
as Matlab, also turns out not to be significant. Using a separate

Fig. 2. Cycle rates achieved on different machines. The ranges of observed fre-
quencies at which computers with different levels of processing power were able
to execute the behavioral monitoring loop are shown. This loop involves signal
sampling, signal calibration, and target-checking. Included here, also, are periodic
updates to the control screen (to redraw the position of the eye-trace, visible only
to the experimenter), occurring every 50–100 ms. (A) Intel Pentium 4 running at
2.4 GHz with an 800 MHz FSB. (B) Intel Core 2 Duo running at 1.86 GHz with an
800 MHz FSB. (C) Intel Core 2 Duo running at 3.4 GHz with an 800 MHz FSB. (D)
Intel Core 2 Duo running at 3 GHz with a 1333 MHz FSB. Note that the bars around
each point represent the approximate observed ranges, not standard deviations. The
exact value that would be observed within this range depends on the particular task
being run.

data acquisition system running at 40 kHz, we tested the jitter in
the arrival times of 1000 event markers sent one-at-a-time every
100 ms. We found that 99.7% of time-stamps arrived within 0.1 ms
of their intended times (Fig. 3). The largest error observed was only
1.2 ms.

The third concern, regarding the possibility of rare, unpre-
dictable delays resulting from non-experiment-related software
events competing for CPU time, can also be shown to be inconse-

Fig. 3. Event timing. The temporal jitter obtained by time-stamping 1000 events,
each 100 ms apart. The three dots mark the three occurrences of jitter beyond 0.1 ms,
the greatest of which was 1.2 ms late.



Author's personal copy

W.F. Asaad, E.N. Eskandar / Journal of Neuroscience Methods 173 (2008) 235–240 239

Fig. 4. Process priority and OS delays. Latencies encountered within Matlab at three
different process priorities on our test system (see Section 2 for specifications), each
tested over one continuous hour. Latency is plotted against the number of events on
a logarithmic scale. Note that as the process priority was increased (the second and
third graphs), the distribution of latencies shifted to the left. Concomitant with this
decrease in latencies, the number of cycles completed per second increased from
∼566,000 to ∼574,000 to ∼587,000 as the Matlab priority was increased from “Nor-
mal” to “High” to “Real Time.” In no case were there any latencies greater than 1.3 ms.
At the highest priority setting, latencies greater than 0.2 ms would be encountered
only once every 8.2 s, on average. Because of the large number of samples collected
over the course of each hour (yielding too many data points to hold all at once in
memory), the following procedure was used to generate these graphs: a time-stamp
was retrieved at the beginning of each cycle of a loop. The preceding time-stamp
was then subtracted from the current one and the difference was rounded to the
nearest 0.1 ms. Then, the corresponding bin of a histogram vector encompassing all
time differences up to 100 ms (in 0.1 ms steps) was incremented (1000 bins total).
Importantly, any delays greater than 100 ms were put into the highest bin so as not
to be missed. This vector could then be used to generate directly these bar graphs.
These measured latencies, therefore, include these processing steps.

quential in practical application. Specifically, we allowed Matlab to
run an empty loop continuously for one hour, time-stamping each
cycle. We performed this test three times at each of three process
priorities allowed by Windows: “Normal,” “High,” or “Real Time”
(Fig. 4). Setting the priority for matlab.exe as “High” or “Real Time”
resulted in zero latencies above 1 ms. Even at the lowest priority
setting tested, no latencies were measured to be above 1.3 ms over
the entire hour this test was run. At the highest priority setting,
the longest observed latency was only half of this value, 0.6 ms.
These longer latencies would occur relatively rarely: For example,
at the highest priority setting, latencies greater than 0.2 ms would
be encountered only once every 8.2 s, on average. In practice, we
use software to increase the priority setting during the execution
of a trial and decrease it during the inter-trial-interval. This is to
allow background processes to use CPU time preferentially dur-
ing the inter-trial-interval, thereby hopefully lessening competing
demands on processor time during the trials themselves (this is

borne out by a slight increase in the number of cycles executed per
second when a 2-s, low-priority “pause” is inserted between 10 s
epochs running at the highest priority).

While these three concerns are the ones most commonly raised
regarding software timing issues, there are at least a couple of other
software-related timing matters that are must be appreciated: (1)
a slightly slower speed is consistently measured for the first versus
all subsequent trials; (2) there is a temporal cost of accessing the
experimenter’s display to update the behavior trace (e.g., a moving
dot corresponding to eye or joystick position).

First, an added temporal cost is associated with the initial execu-
tion of a software function in an environment such as Matlab. This
cost comes as a result of the time it takes to load the function into
memory, parse the commands in its script, and compile these com-
mands into a machine-executable format. Subsequent executions
of the same function can rely in some part on these pre-compiled
sections of code. The practical result of these events is that the exe-
cution speed of events within the first trial is somewhat slower than
in subsequent trials. The exact cost will vary greatly from task to
task, depending on the type and number of sub-functions called.
To minimize this effect, one can load the function into memory and
initialize its sub-functions by running a “dummy” trial (executing
a trial with null stimuli and subsequently discarding any behav-
ioral signals acquired). For example, in a task in which we were
able to initialize all top-level sub-functions, we found that the first
trial was 3.6 ± 2.5 (mean ± standard deviation) percent slower than
the subsequent ones, whereas the same task showed a 7.3 ± 1.6
percent first-trial cost when those functions were not initialized
(t-test comparing the means of the percent differences across the
two cases: p < 0.01).

Second, because most users will want some sort of graphical
feedback about the subject’s behavior in near-real-time, there could
be a temporal cost associated with these video activities, even if this
feedback takes the form of something as simple as a moving dot
corresponding to instantaneous eye- or joystick position. To assess
the cost of this added functionality, we tested the time required for
periodic updates of the position of a dot in a Matlab figure window
(updated by issuing a “drawnow” command every 50 or 100 ms),
reflecting a varying analog signal. We found that there is a fixed,
one-time cost associated with accessing this window (Fig. 5). Sub-
sequent updates do not result in similar time gaps. While the time
lost is relatively large (23 ms, on our test machine), it occurred at a
pre-determined latency: that of the first update. Therefore, to min-
imize the impact of this phenomenon, it is possible to perform the
first graphical update upon the first cycle of the behavioral moni-
toring loop, and thereby be confident that subsequent updates are
not interfering with the millisecond-by-millisecond sampling of
behavior. Importantly, recognize that the “lost” time here results
simply in the lack of behavioral data sampling during that inter-
val, not in the slippage of temporal measurements or in erroneous
time-stamps.

Note that drawing to the experimenter’s display window was
accomplished by calls to Matlab’s built-in graphics routines rather
than through calls to the low-level graphics functions that con-
trolled the subject’s display in full-screen mode. Thus, a screen
update resulting from the “drawnow” command would appear at
some later time, as allowed by OpenGL (the graphics library used
by Matlab) and the screen refresh rate. This delay was accept-
able because updating the experimenter’s (not subject’s) display
had a relatively low-priority; all that was required was the sub-
jective impression that the eye- or joystick-position trace was
moving smoothly. The advantages of using Matlab’s high-level
graphics functions included the ability to construct, very simply, an
information-rich display to aide the experimenter’s interpretation
of behavioral events in real-time, during task performance.



Author's personal copy

240 W.F. Asaad, E.N. Eskandar / Journal of Neuroscience Methods 173 (2008) 235–240

Fig. 5. Actual within-task behavioral monitoring performance. Plotted here is cycle
number versus time, in milliseconds, on our test system (see Section 2 for spec-
ifications). There is a linear relationship between these variables, demonstrating
roughly equal time intervals between samples. The one exception to this linear-
ity occurs at the time of the first call for a control-screen update (the issuing of a
“drawnow” command at 50 ms for the blue line and 100 ms for the red line); at that
time, a gap of approximately 23 ms was measured, meaning the software was blind
to changes in the behavioral signal during this time. Importantly, no further such
gaps are seen afterward, despite continued calls for updating the control screen at
regular 50 or 100 ms intervals. Note that the actual screen update is not expected to
occur at these times because of the slower refresh rate (60 Hz) and potential delays
within OpenGL (the graphics library used by Matlab). Unlike the subject’s display,
the experimenter’s display is low-priority (all that is required is a subjective sense
of smooth motion), so these delays were not considered problematic. In contrast to
what is depicted here, within our software, this first update is called in the first cycle,
thereby fixing the expected “blind” interval to the very beginning of the behavioral
tracking period. Note also that there is a slight difference in slope between the 50 and
100 ms conditions, reflecting fewer cycles executed in the former case. This likely
reflects added background cost when there is an increased frequency of control
screen updates (here, this cost is only on the order of 2–3%).

4. Discussion

The potential timing limitations that must be overcome in order
to monitor and control behavior in a temporally precise manner can
be handled effectively with a few simple strategies. In these ways,
one can achieve millisecond-level temporal precision and reliability
for behavioral experiments even when working in a high-level pro-
gramming environment such as Matlab running on a non-real-time
operating system, using a relatively modest computer with off-the-
shelf graphics capability and commonly available data acquisition
hardware.

Because a millisecond is a relatively course unit of measure by
electronic standards, temporal precision within this scale can be
achieved on most occasions when the proper precautions are taken.
Nevertheless, on a non-“hard”-real-time system, such as Matlab
on Windows, no guarantees can be made about timing, even at
the 1 ms scale, because the predictability of software events is
limited by the design of the Windows operating system. Specif-
ically, even those processes designated as having a “real-time”
priority can be pre-empted by both kernel-level events and by
interrupt requests, as well as by other processes with equally high-
priority (Ramamritham et al., 1998). While using systems with
multiple processors may provide some benefit, they do not alter
the fundamental problem. Therefore, several steps can be taken to
minimize these temporal intrusions. First, because they are a source
of interrupt requests, unnecessary device drivers should be avoided
(for example, by creating a hardware profile that excludes them).
Importantly, this includes network-related devices. Second, appli-
cations other than Matlab should be closed (not simply minimized).
Inspecting the list of running applications and processes in the Win-
dows Task Manager for unneeded activities is one way to make
certain the operating environment is streamlined. Lastly, because

different behavioral tasks can potentially place heavy demands on
different aspects of the operating system and hardware (e.g., vary-
ing graphics, disk and memory use), end-users should not take
observed timing accuracy in one task as direct evidence of satis-
factory accuracy in another; thorough testing must be performed
to assess the performance of new behavioral paradigms and new
hardware configurations.

The occurrence of temporal “slips” (unexpectedly increased
latencies) often can be detected using time-stamps placed after
critical behavioral events. These mark an event with reference to
the deterministic system clock. A delay in the appearance of an
expected time-stamp can then be used to reject trials in which
timing constraints were not met. Of course, a delayed time-stamp
could also represent a “false-alarm” when the delay occurred in
the processing of that time-stamp itself and not in the preced-
ing event. Fortunately, as we found above, such temporal slips can
be made very infrequent, and are rarely longer than a millisec-
ond.

Once appropriate care has been taken to ensure accuracy in the
three domains that are most likely introduce temporal jitter and
error (video output, data sampling, and software), the reliance on a
high-level language for behavioral control offers numerous bene-
fits aside from simply the ease of task coding and portability across
a wider range of hardware platforms. In particular, the simplicity
with which new features can be coded encourages the development
of new functions that improve usability and record keeping. While
in principle such benefits could be realized in a low-level language,
in practice, the difficulty and time-consuming nature of program-
ming in such a language hinders their development by those who
would like to spend their time designing and carrying out experi-
ments rather than tweaking software. We hope the ability to code
at a higher level of abstraction will permit more careful attention to
task design and execution, thereby increasing the quality and range
of behavioral paradigms in-use.

Acknowledgements

The authors thank David Freedman, Andrew Mitz, Ming Cheng,
Tim Buschman, John Gale, Earl Miller and Camillo Padoa-Schioppa
for helpful discussions regarding the design and testing of our
behavioral control software. We also thank Jeffrey Perry for mak-
ing the low-level graphics drivers publicly available and for his
advice regarding their implementation. Funding was provided by a
Tosteson Fellowship from the Massachusetts Biomedical Research
Council (WFA), NEI 1R01DA026297 (ENE), NSF IOB 0645886 (ENE)
and the HHMI (ENE).

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.jneumeth.2008.06.003.

References

Ghose GM, Ohzawa I, Freeman RD. A flexible PC-based physiological monitor for
animal experiments. J Neurosci Methods 1995;62:7–13.

Hays AV, Richmond BJ, Optican LM. A UNIX-based multiple-process system for real-
time data acquisition and control. In: WESCON conference proceedings; 1982.
p. 1–10.

Maunsell JHR. LabLib; 2008. http://www.maunsell.med.harvard.edu/software.html.
Meyer T, Constantinidis C. A software solution for the control of visual behavioral

experimentation. J Neurosci Methods 2005;142:27–34.
Ramamritham K, Shen C, Sen S, Shirgurkar S. Using windows NT for real-time appli-

cations: experimental observations and recommendations. In: IEEE real time
technology and applications symposium; 1998.

White TM, Norden-Krichmar TM, Benson J, Boulden E, Macknik S, Mitz
A, et al. Computerized real-time experiments (CORTEX); 1989–2008.
http://www.cortex.salk.edu/.


