
Introduction to Scientific Computing
For students in any discipline that may involve numerical computations. Includes instruction for programming in MATLAB. Applications discussed include solution of linear equations (with vectors and matrices) and nonlinear equations (by bisection, iteration, and Newton's method), interpolation, and curvefitting, difference equations, iterated maps, numerical differentiation and integration, and differential equations. Prerequisite: MATH 0100 or its equivalent.

Applied Ordinary Differential Equations
This course gives a comprehensive introduction to the qualitative and quantitative theory of ordinary differential equations and their applications. Specific topics covered in the course are applications of differential equations in biology, chemistry, economics, and physics; integrating factors and separable equations; techniques for solving linear systems of differential equations; numerical approaches to solving differential equations; phaseplane analysis of planar nonlinear systems; rigorous theoretical foundations of differential equations.
Format: Six hours of lectures, and two hours of recitation.
Prerequisites: MATH 0100, MATH 0170, MATH 0180, MATH 0190, MATH 0200, MATH 0350 or advanced placement. MATH 0520 (can be taken concurrently).

Applied Partial Differential Equations I
Covers the same material as APMA 0340, albeit of greater depth. Intended primarily for students who desire a rigorous development of the mathematical foundations of the methods used, for those students considering one of the applied mathematics concentrations, and for all students in the sciences who will be taking advanced courses in applied mathematics, mathematics, physics, engineering, etc. Three hours lecture and one hour recitation. Prerequisite: MATH 0100, 0170, 0180, 0190, 0200, or 0350, or advanced placement.
 Primary Instructor
 Mallory

Statistical Inference I
APMA 1650 is an integrated first course in mathematical statistics. The first half of APMA 1650 covers probability and the last half is statistics, integrated with its probabilistic foundation. Specific topics include probability spaces, discrete and continuous random variables, methods for parameter estimation, confidence intervals, and hypothesis testing.
Prerequisite: One year of universitylevel calculus. At Brown, this corresponds to MATH 0100, MATH 0170, MATH 0180, MATH 0190, MATH 0200, or MATH 0350. A score of 4 or 5 on the AP Calculus BC exam is also sufficient.