Organic Synthesis Shared Resource Director: Xiaobing Tian, Ph.D.

Overview

The SR offers:

- Assist investigators with experimental plans for drug synthesis for lead optimization.
- Facilitate organic synthesis efforts through interactions with the Department of Chemistry, Industry or other collaborations. Provide support for grant submissions.

Key Services

- Develop plan for organic synthesis around lead compounds
- Assist with plans for lead optimization
- Interface with Department of Chemistry (work-in-progress)

Value Added

- Support drug discovery and development
- Support interdisciplinary collaboration

Major Equipment /Technologies

- Agilent HPLC
- Chemical Hood

Key Personnel

• Xiaobing Tian, Ph.D. Email: xiaobing_tian@brown.edu

Medicinal Chemistry: Structure Activity Relationships

Medicinal Chemistry: Series III Analogs

We Studied The Effect of Series III Analogs on the P53 Pathway in SW480 Cells

Examples of Scientific Impact

Synthesis of prodigiosin analogues

Synthetic routes for the analogs of series III

Prodigiosin Analogs (Series III)

	R	
NH OCH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3		
NH OCH3 CH3 CH3 O CH3 O CH3 CH3 O CH3 CH3 O CH3 CH3 O CH3 CH3 O CH3 CH3 O CH3 CH3 O CH3 CH3 O CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	-OH	
	-OCH₂CH₃	
	$\sim \sim$	
	$\sim\sim\sim\sim$	
OCH3 HN-		

Medicinal Chemistry: Series I Analogs

Issued composition of matter patent on PG3-Oc and PG3; compounds in process of translation through industry collaboration

Synthesis of Acridine analogues

CP-31398

Check for updates

Original Study

First-in-Human Phase 1b Trial of Quinacrine Plus Capecitabine in Patients With Refractory Metastatic Colorectal Cancer

Clinical Colorectal Cancer, Vol. 20, No. 1, e43-52 © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Impact on Users

- Support the generation of new IP at Brown's Legorreta Cancer Center
- Synthetic chemistry to generate analogues of lead compounds

Key Publications

• Tian, X. et al., *Neoplasia*, **2021**, 304-325 • Wang, W. et al, *Cancer Biology & Therapy*, 2005, 893-898

Future Plans

- Increase user base
- Work on consultation
- Work toward self-sufficient Shared Resource