The Graduate Program in Chemistry at Brown reflects the profound importance and diversity of the disciple by offering excellent research opportunities in areas including organic and inorganic chemistry, chemical biology, analytical chemistry, nanochemistry, and theoretical and experimental physical chemistry. In addition, students have the opportunity to participate in interdisciplinary research in molecular biology, chemical engineering, or in the newly founded Institute for Molecular and Nanoscale Innovation.

With a program of ~100 graduate students our student: faculty ratio is approximately 3:1 with most research groups having not more than 6 graduate students.
WHY CHOOSE THE BROWN UNIVERSITY GRADUATE PROGRAM IN CHEMISTRY?

- Competitive stipend
- Tuition costs paid
- Health insurance benefits
- Average time to completion of PhD is 5 years
- Dual master’s/PhD programs
- Reduced teaching responsibilities in first year
- Annual conference travel funding
- For more information and application visit: http://brown.edu/academics/chemistry

FACULTY RESEARCH INTERESTS

AMIT BASU
Organic, Biological Chemistry
Glycobiology, polymers, green chemistry, synthetic organic chemistry, interfacial recognition, nanomaterials

WESLEY BERNSKOETTER
Organometallic, Inorganic Chemistry
Catalyst development, coordination chemistry relevant to energy concerns, metal-promoted synthetic organic chemistry, small molecule activation

SARAH DELANEY
Biological Chemistry
Nucleic acids chemistry and biology, DNA repair, enzyme kinetics, triplet repeat expansion

GERALD J. DIEBOLD
Physical Chemistry
Photoacoustic effect, thermal diffusion, medical imaging, vibration potential imaging, x-ray phase contrast, radiation force spectrometry

EUNSU KIM
Inorganic Chemistry
Bioinorganic chemistry, coordination chemistry, redox signaling, nitric oxide signaling, energy, carbon dioxide conversion

KRISTIE J. KOSKI
Nano Chemistry, Materials Chemistry
Two-dimensional nanocrystals, energy & technology, thermodynamics in reduced dimension, single particle optical spectroscopy

CHRISTOPH ROSE-PETRUCK
Physical Chemistry
Ultrafast x-ray science, ultrafast spectroscopy of chemical reactions, medical x-ray and ultrasound imaging, x-ray microscopy

JASON K. SELLO
Organic, Biological Chemistry
Chemical biology, synthetic organic chemistry, microbiology, antibiotic mechanism and resistance, drug discovery, biofuels, analytical chemistry

CHRISTOPHER T. SETO
Organic, Biological Chemistry
Drug discovery, phosphatases, activity based probes, organic synthesis, asymmetric catalysis

RICHARD M. STRATT
Physical Chemistry
Theoretical chemistry, molecular dynamics in liquids, ultrafast spectroscopy

SHOUHENG SUN
Inorganic, Nano Chemistry
Nanomaterials synthesis, self-assembly, nanomedicine, catalysis and energy storage

LAJ-SHENG WANG
Physical Chemistry, Nano Chemistry
Nanoclusters, chemical structures and bonding, catalysis, cluster-assembled nanomaterials, multiply charged anions, electrospray ionization and solution chemistry in the gas phase, photodetachment, photoelectron spectroscopy and imaging

PETER M. WEBER
Physical Chemistry
Chemical reaction dynamics, ultrafast laser spectroscopy, molecular beam spectroscopy, multi-photon processes, photoionization, photoelectron spectroscopy

PAUL G. WILLIARD
Organic Chemistry
X-ray diffraction analysis, organolithium compounds, NMR, organometallics, organic synthesis

MATTHEW B. ZIMMT
Organic, Inorganic, Nano Chemistry
Nanoscience, self-assembly, scanning microscopies, organic synthesis