Nuclear Magnetic Resonance (NMR)

Presentation Outline

• Introduction – What is NMR Good Gor?
• Brief Theory – Quantum Chemistry, Magnetization
• NMR Concepts –
 – Frequency, Relaxation, Chemical Shift, Coupling, Integration
• 1-Dimension NMR Experiments
• 2-D NMR – COSY, HMQC/HSQC, NOESY
• Biomolecular NMR – 3-D
• NMR Application Examples
 – Dynamic NMR, Solid State NMR, Inorganic, Diffusion
• Spectrometer Description
 – Probes and Gradients
• Structure Determination with NMR
Introduction – NMR, What is it Good for?

- Determine Solution Structure of Small Molecules
- DNA and Protein Structure Determination
- Molecular Dynamics – Quantifying Motional Properties
 - Exchange Rate/Activation Energy/ΔH/ ΔS
- Diffusion Measurements
- Hydrogen Bonding Determination/pKa Measurements
- Drug Screening
- Metabolite Analysis - Metabolomics
- Natural Product Chemistry
- Polymer Chemistry
- Environmental Chemistry
The Nuclear Magnetic Moment

- All atomic nuclei can be characterized by a nuclear spin quantum number, \(I \). \(I \) can be \(\geq 0 \) and any multiple of \(\frac{1}{2} \).
- Nuclei with \(I = 0 \) do not possess nuclear spin and consequently are termed ‘NMR silent’.
- All nuclei with \(I \neq 0 \) possess spin, charge, and angular momentum \(P \), resulting in a nuclear magnetic moment \(\mu \).

\[
\mu = \gamma P
\]

Where \(\gamma \) is the magnetogyric ratio of the nucleus.
NMR- Quantum Chemistry

I = the nuclear spin quantum number

For Nuclei of:

- Odd Mass
- Even Mass/Even Charge
- Even Mass/Odd Charge

<table>
<thead>
<tr>
<th>I =</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Integer</td>
<td>1H, 13C</td>
</tr>
<tr>
<td>Zero</td>
<td>12C, 16O</td>
</tr>
<tr>
<td>Integer</td>
<td>2H, 14N</td>
</tr>
</tbody>
</table>

If $I = 0$, NMR Inactive
If $I \geq 1$, Quadrupolar (non-spherical nuclear charge distribution)
Magnetic Quantum Numbers

- I is quantized producing $(2I + 1)$ discrete values of angular momentum, m_I.
- $m_I = I, I-1, \ldots, -I$
NMR Concepts – Spin States

A nucleus with spin behaves much like a small magnet. It possesses a magnetic moment which has both magnitude and direction. Consider a collection of 1H nuclei with randomly oriented magnetic moments.

No applied magnetic field
Randomly oriented

B_0 is the applied magnetic field.

The α spin state is lower energy. There is an excess of α spin states.

Recall $E = h\nu$. By irradiating with the proper frequency, the α spin state is “flipped” to the β spin state with absorption of energy. The nucleus is in “resonance”

\[\Delta E = \frac{\gamma h}{2\pi} B_0 \]

h Planck’s constant
γ Nuclear constant

NMR Concepts – Energy Levels

Magnetic Properties of Selected Nuclei

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Abundance</th>
<th>Spin, I</th>
<th>γ_N (\text{in mT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>99.98</td>
<td>1/2</td>
<td>26.75</td>
</tr>
<tr>
<td>$^2\text{H}, (\text{D})$</td>
<td>0.02</td>
<td>1</td>
<td>4.10</td>
</tr>
<tr>
<td>^{13}C</td>
<td>1.1</td>
<td>1/2</td>
<td>6.73</td>
</tr>
<tr>
<td>^{14}N</td>
<td>99.64</td>
<td>1</td>
<td>1.93</td>
</tr>
<tr>
<td>^{15}N</td>
<td>0.365</td>
<td>1/2</td>
<td>-2.7116</td>
</tr>
<tr>
<td>^{19}F</td>
<td>100</td>
<td>1/2</td>
<td>25.1665</td>
</tr>
<tr>
<td>^{35}P</td>
<td>100</td>
<td>1/2</td>
<td>10.8289</td>
</tr>
<tr>
<td>^{35}Cl</td>
<td>75.4</td>
<td>3/2</td>
<td>2.6210</td>
</tr>
<tr>
<td>^{37}Cl</td>
<td>24.6</td>
<td>3/2</td>
<td>2.1718</td>
</tr>
</tbody>
</table>

$$\Delta E \sim H_0 \& \gamma$$
The Larmor Frequency

A nuclear magnetic moment will precess about the axis of an externally applied field at a frequency proportional to the strength of the applied field, B_o.

$$\omega = \gamma B_o \text{ (rad/s)}$$

$$\nu = \frac{\gamma B_o}{2\pi} \quad \text{Larmor Frequency}$$

The direction of motion can be clockwise or counterclockwise and is determined by the sign of γ. By convention, the field is applied along the z axis of a Cartesian co-ordinate frame.
The RF Pulse

- An rf pulse applies a torque to the bulk magnetization vector, M_0, which drives it to the x-y plane from equilibrium.

$$\theta = 360\gamma B_1 t_p \text{ degrees}$$

- 90° pulse - moves net magnetization from the z-axis to the x-y plane
- 180° pulse - changes the net magnetization in the z-axis from the alpha to beta state.
Visualizing Magnetization Vectors

Static Field

RF Pulse

The spin vectors are said to possess spin coherence following a 90° pulse.
NMR Signal Detection

- **Signal Detection:**
 - The rotating magnetization vector produces a weak oscillating voltage in the coil surrounding the sample giving rise to the NMR signal.

- **Return to equilibrium via relaxation mechanisms:**
NMR Concepts – Frequency/Time & FID

The relationships between time and frequency domains. The period P of the FID gives the position of the line. The rate of decay T_2^* gives the line-width and the initial amplitude A gives the line its area and therefore its intensity proportional to $A\pi T_2^*$.

Time scales of high-resolution NMR

<table>
<thead>
<tr>
<th>Time</th>
<th>1ps</th>
<th>1ns</th>
<th>1μs</th>
<th>1ms</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1GHz</td>
<td>1MHz</td>
<td>1kHz</td>
<td>1000Hz</td>
<td>1Hz</td>
</tr>
</tbody>
</table>

- molecular tumbling
- internal motion
- diffusion
- chemical reactions / exchange
- chemical shifts
- J-coupl.
- T_1, T_2, NOE
- relaxation: τ_e, internal motions
NMR Concepts – Relaxation

- Once excited to the higher energy state by an rf pulse, the spins will return to their initial equilibrium condition by means of two relaxation mechanisms, T_1 and T_2.

 - T_1 relaxation (longitudinal): Spin-lattice relaxation occurs by transfer of energy to the surroundings (heat); dipolar coupling to other spins. Results in recovery of M_z to 63% of original value.

 - T_2 relaxation (transverse): Spin-spin relaxation occurs by redistribution of energy among various spins of the system. Results in recovery of M_z to 37% of original value.

 $T_2 \leq T_1$

- T_1 and T_2 are routinely equivalent for most NMR experiments.
- NMR Linewidths $\sim 1/ T_2$ for spin ½ nuclei
- Inorganic/Organometallic Linewidths -

\[
W_{1/2} \sim \frac{(2I + 3)Q^2 q_{zz}^2 \tau_c}{I^2 (2I - 1)}
\]

$W_{1/2}$ = quadrupole moment q_{zz} = electric field gradient τ_c = correlation time I = spin quantum number
Longitudinal Relaxation Mechanisms

- **Dipole-Dipole interaction "through space"**-
 - Most significant for high natural abundance nuclei with a large magnetogyric ratio (1H)
 - Depends highly on the gyromagnetic ratio and the distance between the two nuclei

\[R_1 = k \cdot \gamma_1^2 \cdot \gamma_S^2 \cdot (r_{IS})^{-6} \cdot \tau_c \]

- **Electric Quadrupolar Relaxation** – nuclei of spin $>1/2$ possess a non-spherical distribution of electrical charge and consequently, an electric magnetic moment. The quadrupolar coupling constant is large – MHz range and dominates over the other types of relaxation and depends on:
 - Quadrupole moment of the nucleus (eQ) – eg. 2H - eQ = 0.003; 55Mn – eQ = 0.55
 - Electric Field gradient (eq) – dependent on the symmetry of the molecule

 - The Quadrupole coupling vanish, in a symmetrical environment.
 e.g. for symmetrical [NH4]$^+$: eq * eQ = 0 and therefore has very long T1 = 50 sec.
 whereas CH3CN : eq * eQ about 4 MHz and T1=22 msec.
Longitudinal Relaxation Mechanisms

• Paramagnetic Relaxation –
 – Molecular motion, electron spin relaxation, and chemical exchange randomly modulate the interaction between the nucleus and unpaired electrons in solution.
 – There is dipole relaxation by the electron magnetic moment (magnetic moment is 600X that of a 1H so it is very efficient – oxygen in the nmr solvent can cause enhanced relaxation).
 – There is also a transfer of unpaired electron density to the relaxing nucleus.

• Chemical Shift Anisotropy – (anisotropic = unsymmetrical) –
 – Due to the inherently unsymmetrical distribution of electrons in chemical bonds, the magnetic field experienced by a nucleus will depend on the orientation of its bonds with respect to the magnetic field.
 – This effect – chemical shift anisotropy- is averaged out by rapid molecular tumbling in solution but the fluctuating field can still enhance relaxation depending its magnitude. This effect is more pronounced for nuclei exhibiting a large chemical shift range (most metals, 19F, 31P).

Slide adopted from http://www.chem.queensu.ca/FACILITIES/NMR/nmr/webcourse/t1.htm
NMR Concepts – Chemical Shift

• When placed in a magnetic field, the electrons surrounding the nucleus begin to precess in the direction of the applied magnetic field, thereby creating an opposing magnetic field which shields the nucleus. The effective field B_{eff} experienced by the nucleus is therefore lessened by a factor σ.

$$B_{\text{eff}} = B_0 (1 - \sigma)$$

• Variations in electron density surrounding each non-equivalent nucleus in a molecule will therefore cause each nucleus to experience a different B_{eff}. The differences in B_{eff} for non-equivalent nuclei define the chemical shift phenomenon.

• Chemical shift, δ is measured in frequency versus a reference, usually TMS (tetramethyl silane). It is presented in units of parts per million or PPM.

$$\delta = (\nu - \nu_{\text{ref}})/\nu_{\text{ref}} \times 10^6$$

Slide adopted from http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm
The Chemical Shift

- Other factors affecting chemical shift:
 - **Paramagnetic** contribution arises from non-spherical electron distribution (nuclei with non-s orbitals). It is the dominating factor of chemical shift for all nuclei other than protons.
 - **Magnetic anisotropy of neighboring bonds and ring currents** – π electrons of triple bonds and aromatic rings are forced to rotate about the bond axis creating a magnetic field which counteracts the static field.
 - **Electric field gradients** are the result of strongly polar substituents. The distortion of the electron density alters the chemical shift.
 - **Hydrogen bonding** can lead to a decrease in electron density at the proton site resulting in a chemical shift to higher frequency. Hydrogen bonded protons exhibit shifts that are highly dependent on temperature, solvent, and concentration.
 - **Solvent effects** are often exploited to separate overlapping signals of interest in a spectrum. Large changes in chemical shift can be observed for solvents that can selectively interact with one portion of a molecule (acetone for its carbonyl group, and benzene for its ring currents)
NMR Concepts – Chemical Shift

In molecules, the nuclei are screened by the electrons. So the effective field at the nucleus is:

$$B_{\text{eff}} = B_0 (1-\sigma)$$

Where σ is the shielding constant.

The shielding constant has 2 terms: σ_d (diamagnetic) and σ_p (paramagnetic)

σ_d - depends on electron distribution in the ground state
σ_p - depends on excited state as well. It is zero for electrons in s-orbital.

This is why the proton shift is dominated by the diamagnetic term.
But heavier nuclei are dominated by the paramagnetic term.
Spin-Spin Coupling

- Spin-spin or scalar coupling is the result of Fermi contact interaction between electrons in the s orbital of one nucleus and the nuclear spin of a bonded nucleus.
- The magnitude of coupling depends on the degree of electron orbital overlap. The s-character of the orbitals relies heavily on the hybridization of the nuclei involved.

γ_{sp^3}: 140 Hz
γ_{sp^2}: 160 Hz
γ_{sp}: 250 Hz

Reference: http://bouman.chem.georgetown.edu/nmr/scalar/scalar.htm
NMR Concepts – Spin-Spin Coupling

- Nuclei in a molecule are affected by the spins systems of neighboring nuclei. This effect is observed for non-equivalent nuclei up to 3 bond lengths away and is termed spin-spin coupling or J coupling.

Graphics from: http://www-keeler.ch.cam.ac.uk/lectures/
Spin-Spin Coupling

1,1-dichloroethane contains two types of hydrogen atoms, so we see two sets of peaks, a doublet at 2.1 ppm and a quartet at 5.9 ppm.
NMR Concepts – Spin-Spin Coupling

N + 1 Rule: a hydrogen nucleus with N adjacent equivalent hydrogen nuclei will be split into N + 1 lines.

Consider the 1H NMR spectrum of ethyl bromide.

\[\text{CH}_3\text{CH}_2\text{Br} \]

The CH$_2$ hydrogens are split into 3 + 1 = 4 lines.
The CH$_3$ hydrogens are split into 2 + 1 = 3 lines.

Coupling with 0 protons & 1
Coupling with 1 proton & 1 1
Coupling with 2 protons & 1 2 1
Coupling with 3 protons & 1 3 3 1
Coupling with 4 protons & 1 4 6 4 1

Graphics from: ttp://www.uaf.edu/chem/green/Chapter13McMurry.pdf
NMR Concepts – Spin-Spin Coupling

Karplus Equation:

\[J_{HH}(\phi) = A + B \cdot \cos(\phi) + C \cdot \cos(2 \cdot \phi) \]
NMR Concepts - Integration

<table>
<thead>
<tr>
<th>Chemical shift (δ)</th>
<th>Multiplicity</th>
<th>Integration (No of lines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Triplet</td>
<td>3</td>
</tr>
<tr>
<td>2.6</td>
<td>Quartet</td>
<td>2</td>
</tr>
<tr>
<td>7.2</td>
<td>Singlet</td>
<td>5</td>
</tr>
</tbody>
</table>

Graphic from: http://www.chemsoc.org/pdf/LearnNet/rsc/NMR_txt.pdf
13C NMR

- 13C has $I = \frac{1}{2}$; its natural abundance is 1.1%;
- 13C sensitivity is only $1/5700$ that of 1H;
- 13C experiments require higher concentrations and more scans/time.
- S/N increases with square root of # of scans

THE HOMONUCLEAR DECOUPLING EXPERIMENT

- Expanded 1H spectrum for ethyl crotonate. (a) Control spectrum. (b) Spectrum with 4-Me group irradiated. (c) Spectrum with H-2 irradiated.

NMR Concepts – Multiple Dimensions

• 2-D NMR – Signal is recorded as a function of two time variables, t_1 and t_2.

![Pulse Sequence]

• Rf pulses are generally applied during the preparation and mixing periods.
a) Signal evolves at 20Hz during t_1 and is transferred to a different signal evolving at 80Hz during t_2.

b) Signal evolving at 20Hz during t_1 was unaffected by mixing period and therefore continued evolving at 20Hz during t_2.

c) Signal evolving at 20Hz during t_1 imparted some of its magnetization onto a different signal evolving at 80Hz during the mixing period. Both signals are detected during t_2.

Graphics from: http://www-keeler.ch.cam.ac.uk/lectures/understanding/chapter_7.pdf
NMR Concepts – Multiple Dimensions

• Routine 2-D NMR Experiments:

 – **Correlation Spectroscopy (COSY)** – Scalar Coupling
 » Identifies all coupled spins systems.

 – **Nuclear Overhauser Effect Spectroscopy (NOESY)** – Dipolar Coupling
 » Identifies neighboring spin systems (≤ 5 Å)
 » Identifies chemical exchange.

 – **Heteronuclear Multiple/Single Quantum Correlation (HMQC/HSQC)** –
 Scalar Coupling
 » Identifies coupling between heteronuclei (C-H, N-H).
NMR Concepts – COSY Experiment

COSY spectrum of 3-heptanone
NMR Concepts – HMQC Experiment

HMQC Spectrum of heptanone
NMR Concepts – NOESY Experiment

Graphics from: http://science.widener.edu/svb/nmr/pamoic_acid/noesy.html
Where to Begin?

Graphic from http://www.acornnmr.com/codeine/hmqc.htm
COSY Spectrum of Codeine

<table>
<thead>
<tr>
<th>1H</th>
<th>13C</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>113</td>
<td>8</td>
</tr>
<tr>
<td>6.5</td>
<td>120</td>
<td>7</td>
</tr>
<tr>
<td>5.7</td>
<td>133</td>
<td>5</td>
</tr>
<tr>
<td>5.3</td>
<td>128</td>
<td>3</td>
</tr>
<tr>
<td>4.8</td>
<td>91</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>66</td>
<td>10</td>
</tr>
<tr>
<td>3.8</td>
<td>56</td>
<td>12</td>
</tr>
<tr>
<td>3.3</td>
<td>59</td>
<td>11</td>
</tr>
<tr>
<td>3.0 & 2.3</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>2.6 & 2.4</td>
<td>46</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>43</td>
<td>14</td>
</tr>
<tr>
<td>2.0 & 1.8</td>
<td>36</td>
<td>17</td>
</tr>
</tbody>
</table>

Graphic from http://www.acornnmr.com/codeine/hmqc.htm
HMQC of Codeine

Graphic from http://www.acornnmr.com/codeine/hmqc.htm
Break
Proteins

Residue i-1 Residue i Residue i+1

Graphic obtained by permission from Wolfgang Peti
20 Amino Acids

From Protein Structure and Function by Gregory A Petsko and Dagmar Ringe

Graphic obtained by permission from Wolfgang Peti
Sequence ➔ Structure?

Sequence:
- GHMELFPVELEKDEDGL
- GISIIGMGVGADAGLEKL
- GIFVKTVEGGAAAQRDG
- RIQVNDQIVEVDGISLVG
- VTQNFAATVLRNTKGNV
- RFVIGREKP

Steps:
1. Chemical shift assignment
2. Distance measurements (NOE)
3. Structure calculation
4. Structure refinement

(Graphic obtained by permission from Wolfgang Peti)
NMR – W. Peti

Graphic obtained by permission from Wolfgang Peti
AMIDE

AROMATIC

Graphic obtained by permission from Wolfgang Peti
AMIDE

AROMATIC

TRYPTOPHAN

Graphic obtained by permission from Wolfgang Peti
NMR – W. Peti

Graphic obtained by permission from Wolfgang Peti
AMIDE

AROMATIC

TRYPTOPHAN

NMR – W. Peti

Graphic obtained by permission from Wolfgang Peti
2D NMR solves overlap

[Diagram showing 2D NMR analysis with overlapping signals resolved, and dimensionality indicated.]
2D Protein Spectrum

Graphic obtained by permission from Wolfgang Peti
2D $[^1H,^{15}N]$ HSQC

See one peak at intersection of H and N chemical shifts for each amino acid residue (except proline).

Also see side chain NH2 groups

Graphic obtained by permission from Wolfgang Peti
Graphic obtained by permission from Wolfgang Peti
2D $[^1\text{H},^{15}\text{N}]$ HSQC

Alanines

Glycines

Histidines

Glutamic Acids

Leucines

Serines

Graphic obtained by permission from Wolfgang Peti
From 2D to 3D – Improving Resolution

Vuister GW; Triple-resonance multi-dimensional high-resolution NMR Spectroscopy Practical

Graphic obtained by permission from Wolfgang Peti
Dynamic NMR

Figure 1. Effect of exchange of chemically equivalent nuclei on NMR line shapes.

\[k = \frac{t_m}{2 \log\left(\frac{1+r}{1-r} \right)} \]
Dynamic NMR

methanol:

-65° + 10°

-10° + 37°
Solid State NMR

(Shape reflects probability of particular orientation)

Typical Solid State NMR Powder Spectrum Appearance

Chemical Shift Depends on Orientation of Molecule with Respect to External Field.

Graphic obtained from Fundamentals of Solid-State NMR by Paul Hodgkinson
Magic Angle Spinning

For “fast” spinning, anisotropic interactions are scaled by

\[
\frac{3\cos^2 b - 1}{2}
\]

which is zero for \(\beta = 54.7^\circ \) (magic angle)

“Spinning sidebands” appear at slower speeds
Solid State NMR – Effect of Magic Angle Spinning and 1H Decoupling

Graphic obtained from Fundamentals of Solid-State NMR by Paul Hodgkinson
Inorganic NMR

P-31 Spectrum of PF$_2$H(NH$_2$)$_2$ labeled with 15N

Fig 2.9 31P NMR spectrum of PF$_2$H(15NH$_2$)$_2$. It is a double: (J_{PH}) of triplets (J_{PP}) of triplets (J_{PN}) of quintets (J_{PH}) = 90 lines in all.

coupling with H (largest coupling : Doublet)
then we see triplet with large coupling with fluorine

With further **Coupling to 2 N produce triplets, further coupled to 4protons => quintets**

Graphics from http://web.chem.queensu.ca/FACILITIES/NMR/nmr/web/other2d.htm
DOSY Diffusion-Ordered Spectroscopy

Mixture of **Caffeine**, **Glycol** and **D2O**
Relative H-bond acidity probed by diffusion

Alcohol mixture + DMSO

- initial mixture, the two alcohols have identical diffusion coefficients
- DOSY plot shows immediately that the two compounds experience different interactions with the H-bond acceptor DMSO since they no longer have the same diffusion coefficient. **Compound 1 becomes slower than 4** as a result of a stronger association with DMSO,
The NMR Spectrometer
Common NMR Probes

- **BBI – Broad Band Inverse Detection**
 1H on inner coil – most sensitive for 1H, HSQC, HMBC type experiments. This probe can be found on the 300MHz in GC410.

- **BBO– Broad Band Observe**
 Broad Band on inner coil – most sensitive for direct observe heteronuclear. This type of probe is found on the 400MHz in GC410 and the 300MHz in MM311.

- **TXI - Triple Resonance**
 Required for some 3-D experiments including protein/nucleic acid studies. Requires extra amplifier/transmitters setup in console.

- **Microcoil –**
 Low volume probe proven beneficial for mass limited samples and high throughput screening in automation settings.

- **Cryoprobes**
 3-4 X increase in sensitivity over room temperature probes but significantly more expensive to obtain and maintain.

- **CPMAS – Cross Polarization Magic Angle Spinning**
 Recommended for solid state NMR.
Gradient Spectroscopy

NMR sample

B_0 field

B_1 coil

r.f.

dc

z gradient coil

B_0

B_z

z

z gradient

\sum

M_x

no net magnetization
Gradient Spectroscopy

- Significantly reduces experiment time by removing the requirement of multiple scans for phase cycling in 2D experiments.
- Selectively removes unwanted signals by coherence selection or through purge gradients yielding excellent solvent suppression, reduced artifacts, and cleaner spectra.
- Improves dynamic range as the receiver gain can be optimized on the desired magnetization.
- Allows for diffusion measurements.
- Easy to use.
Structure Determination Exercise-1
1H NMR Spectrum of Unknown

Integration Values

A = 3H
B = 1H
C = 3H
D = 1H
E = 3H
F = 1H
G = 1H
H = 1H
I = 1H
J = 1H
Structure Determination Exercise-1

13C Spectrum
Exercise-1

- 10 Carbons/16 Protons → index of H deficiency = IHD = 0.5 * \([2c+2-h-x+n]\) = 3
- From \(^1\)H NMR
 - 3 methyl groups; one split into a doublet (typical alkane chemical shift), two deshielded methyls (typical of attachment to double bond).
- From \(^{13}\)C NMR
 - 1 carbon at ~ 204ppm typical chemical shift of carbonyl carbons
 - 2 carbons at ~ 141 & 131ppm typical chemical shift of sp2 carbons (with no evidence of olefinic \(^1\)H attached from the proton spectrum).
- From the \(^1\)H and \(^{13}\)C alone, we suspect 1 alkene double bond, 1 carbonyl double bond, and 1 ring.
- Run COSY and HMQC.
Structure Determination Exercise
COSY Spectrum
Structure Determination Exercise
HMOC Spectrum
Structure Determination Exercise

• From HMQC –
 – Assign methylene protons –
 • j & h = carbon 4
 • d & b = carbon 6
 • i & g = carbon 7
 – Assign remaining protons
 • a = carbon 1
 • c = carbon 2
 • e = carbon 3
 • f = carbon 5

• From COSY –
 – Map out scalar couplings
 • j/h coupled only to d/b
 • i/g coupled only to f
 • f coupled to a (weak coupling to b)
 • c and e show no coupling
Exercise-2 Inorganic NMR Problem

• 19F NMR of NH$_4$BF$_4$

10B: $Q=8.5 \times 10^{-2}$ $a=19.6\%$ $I=3$

11B: $Q=4.1 \times 10^{-2}$ $a=80.4\%$ $I=3/2$

Explain the observed splitting pattern.
Exercise -3

C₄H₈O₃

1 H 1 H 6 H
Exercise - 4

C7H5OCl

Doublet 7.83 ppm

Doublet 7.52 ppm

1H 2H 2H TMS