This paper looks back on the professional consensus about monetary policy at the zero bound prior to the 2008 crisis and proposes a calibrated model that provides one interpretation to explain why it was somewhat off base. The general consensus in the economics profession in the late 1990s, when Japan was experiencing difficulties due to deflation and the zero bound, was that increasing the money supply in one of a variety of ways was a simple and straightforward answer to stimulating aggregate demand.

One example of this point of view is from Kenneth Rogoff (1998), a leading international macroeconomist, in response to Krugman (1998), who launched the modern zero lower bound (ZLB) literature. One of Krugman’s key predictions was that increasing the money supply at the ZLB was irrelevant as long as expectations of future money supply were fixed. Rogoff’s comment on this summarizes well a commonly held view at the time: “No one should seriously believe that the BOJ [Bank of Japan] would face any significant technical problems in inflating if it puts its mind to the matter, liquidity trap or not. For example, one can feel quite confident that if the BOJ were to issue a 25 percent increase in the current supply and use it to buy back 4 percent of government nominal debt, inflationary expectations would rise."

This basic logic was later spelled out more explicitly in a general equilibrium model by Auerbach and Obstfeld (2005). Their argument
was that purchasing government debt with money should plausibly lead people to expect a permanent increase in the money supply, in contrast to Krugman’s assumption and much as suggested by Rogoff, due to the fact that a permanent increase in the money supply creates seignorage revenues, which reduces tax distortions. In this case, increasing the money supply should increase prices and output because people should have no reason to expect the money supply to be contracted to its original level once things normalize and the short-term interest rate is positive, as this would imply higher tax distortions.

Since Rogoff’s prediction, the Bank of Japan has increased the monetary base not by 25 percent, but rather by about 550 percent. Furthermore, it has accumulated more than 30 percent of outstanding government debt, as well as several types of real assets, such as stocks, foreign exchange, and mortgage backed securities. A similar story can be told about many other central banks since 2008. Meanwhile, in Japan, government debt as a fraction of gross domestic product (GDP), at 80 percent in 1998, has almost tripled.

The point here is not to single out Kenneth Rogoff for a prediction that in retrospect seems off base as an empirical matter. Instead, it is to illustrate a broad consensus in the profession at the time, a consensus of which the quote from Rogoff is a particularly cogent summary. So as to not seem to be unfairly singling out any particular author, below we provide examples in which one of the authors of this article made statements that had a similar tenor to Rogoff’s prediction.

Our suspicion is that the broad consensus at the time had its roots in the classic account of the Great Depression by Friedman and Schwartz (1963), in which the deflation from 1929 to 1933 was explained by a collapse in the money supply. The Great Inflation of the 1970s also appeared to support Friedman’s famous dictum that “Inflation is always and everywhere a monetary phenomenon” (Friedman, 1970). It was natural, then, to assume that the same applied to Japan and that simply increasing the money supply would halt the deflation.

Another indication of the consensus of the time was Svensson’s (2000) well-known proposal for a “foolproof way” out of a liquidity trap, which, in contrast to Rogoff’s proposal, involved printing money to buy up foreign exchange, rather than government debt. The fact that this solution was claimed to be foolproof indicated the general sense among academic economists at the time, especially in the United States, that expansionary monetary policy at the ZLB was only a
question of will, rather than posing any technical difficulties for the world’s central banks.

To our mind, however, the most pertinent statement about the academic consensus at the turn of the century came up in a personal conversation with Ben Bernanke, then Chairman not of the U.S. Federal Reserve, but the Princeton economics department, and editor of the *American Economic Review*. When the liquidity trap was proposed as a Ph.D. dissertation topic, Bernanke replied, “I have to warn you. I do not believe in the liquidity trap.” While the current understanding of the liquidity trap is that it reflects some bound on the short-term nominal interest rate (often referred to as zero, although recent experience suggests it may be somewhat negative), Bernanke was instead referring more broadly to the fact that he believed in the power of the central banks to do something to stimulate demand, in the tradition of Friedman and Schwartz, zero bound or not. This position seemed to have been very much in line with the thinking of Rogoff, Svensson, and Auerbach and Obstfeld, already cited.

In a speech given at the American Economics Association, Bernanke (2000) made a statement that would later become very widely known as he assumed the Chairmanship of the Federal Reserve. Some interpreted the speech as a roadmap for the Fed’s subsequent policy actions:

First, that—despite the apparent liquidity trap—monetary policymakers retain the power to increase nominal aggregate demand and the price level. In my view, one can make what amounts to an arbitrage argument—the most convincing type of argument in an economic context—that it must be true. The monetary authorities can issue as much money as they like. Hence, if the price level were truly independent of money issuance, then the monetary authorities could use the money they create to acquire indefinite quantities of goods and assets. This is manifestly impossible in equilibrium. Therefore, money issuance must ultimately raise the price level, even if nominal interest rates are bounded at zero. This is an elementary argument (emphasis added).

In this paper, we revisit this elementary argument on the basis of one particular interpretation of Bernanke’s logic. We use it to illuminate why the pre-2008 consensus about the power of monetary policy may have been a bit too optimistic about the ability of central banks to stimulate demand.¹ In making this case, we are not claiming

¹ Paul Krugman has often quipped that he should take Svensson and Bernanke to Japan with him on an apology tour for having made it seem too easy at the time. See, for example, Krugman (2014).
that the central bank—or the government as a whole—is unable to stimulate demand at all. Rather, the point is that doing so may require considerably larger intervention than suggested by the precrisis consensus—for example, interventions of the size and scope of the radical regime change implemented by Franklin Delano Roosevelt in 1933. This radical regime change, which is discussed in detail in Eggertsson (2008), involved an explicit commitment to inflate the price level by about 30 percent to the pre-depression level, the abolition of the gold standard, and a massive increase in government spending and budget deficits. As an indication of how radical it was at the time, the then-director of the budget, Arthur Lewis, declared “this is the end of Western Civilization” and resigned from his post.2

To frame the approach of the paper, we raise a basic question: what is an arbitrage opportunity? An arbitrage opportunity refers to a situation in which an agent can acquire profit without taking on any risk. Bernanke (2000) suggests that the liquidity trap can be eliminated as a logical possibility because its existence would imply that the government could generate infinite profits. For the argument to make sense—for example, in the context of a closed economy—one must have in mind an environment in which the government would care about profits and losses in the first place. At first blush, this does not seem obvious, as these profits would necessarily be at the expense of the country’s citizens, whose welfare should be a primary concern of the government. Nevertheless, we believe that the proposition that the government cares about profits and losses is entirely reasonable, because the government needs to rely on costly and possibly distortionary taxation to pay for its expenditures. Hence, if there was truly an arbitrage opportunity for the government, any rational government would wish to take it in order to eliminate taxation costs/distortions altogether (not to mention if it could do so at the cost of foreigners via buying up foreign assets).

Framing the question in this way highlights the tight connection between Bernanke’s no-arbitrage argument and Auerbach and Obstfeld (2005). As noted, their case for open market operations was made on the basis that open market operations in a liquidity trap should imply a permanent increase in the money supply that will last even once the zero bound is no longer binding. This was the most reasonable benchmark to them, since contracting the money supply back to its initial level would imply fiscal costs. Hence, a permanent

increase in the money supply made sense from the perspective of both macroeconomic stabilization ex ante and fiscal solvency ex post. They made their point explicit by numerically computing a comparative statics that showed the beneficial effect of permanently increasing the money supply (which they coined open market operations). This argument was made slightly differently in an earlier working paper by one of the authors (Eggertsson, 2003). That paper explicitly cites Bernanke’s no-arbitrage argument as a motivation, using the same quotation as above. Eggertsson (2003) models Bernanke’s argument as a violation of Ricardian equivalence, assuming that the government cannot collect lump-sum taxes but instead needs to pay tax collection costs as in Barro (1979). In this case, the government cares about profits and losses on its balance sheet, as it needs to make up for the losses through costly taxation. By analyzing a Markov perfect equilibrium policy game, which presumes that the government cannot make any credible commitment about future policy apart from paying back the nominal value of debt as in Lucas and Stokey (1983), Eggertsson (2003) formally shows that purchasing “real assets” by printing money (or equivalently bonds, since money and bonds are perfect substitutes at the ZLB) implies a credible permanent increase in the money supply in the long run due to the fact that the government has no incentive to revert the supply completely back to its original level on account of the fiscal consequences (leading to costly taxation). This, in turn, provides direct theoretical foundation for Bernanke’s no-arbitrage argument to “eliminate” the liquidity trap.

The interpretation suggested in Eggertsson (2003) is that open market operations in real assets provides a straightforward commitment mechanism to lower future interest rates and higher inflation that mitigates the problem of the ZLB. Indeed, the simulations reported in the paper suggest that open market purchases in real asset seem to allow the government to replicate quite closely the ideal state of affairs in which the government can fully commit to future policy, and the problem of the ZLB is trivial in terms of its effect on output and inflation. In retrospect, however, this interpretation

3. In this respect, the intervention in Eggertsson (2003) is different from Auerbach and Obstfeld (2005) in that it increases total government liabilities (money plus bonds) and thus the overall inflation incentive of the government. Since money and bonds are perfect substitutes at the zero bound, it is not obvious that open market operations themselves have any effect on future government objectives.

was perhaps a little premature. A careful examination of the numerical results illustrates a disturbing feature. The required intervention in real assets needed to generate this outcome in Eggertsson (2003) corresponds to about four times annual GDP. Moreover, the intervention is conducted under ideal circumstances whereby the assets bought have an unlimited supply, their relative returns are not affected by the intervention (but instead are equal to the market interest rate in equilibrium), and the world is deterministic so there are no risks associated with using real asset purchases as a commitment device.

More generally, however, if the government buys real assets corresponding to something like 400 percent of GDP, it seems exceedingly likely that all of these assumptions will be violated in one way or the other. First, an operation of this kind is likely to have a substantial distortionary effect on pricing, which is not modeled. Second, the government is likely to run into physical constraints such as running out of assets to buy. Third, as the scale of the operations increases and uncertainty is taken into account, the risk to the government’s balance sheet may be deemed unacceptable, thus lessening the power of this commitment device. Finally, with an intervention of this scale, it is very likely that the central bank will hit some political constraints, due to either public concerns or concerns from trading partners if the assets in question are foreign. Indeed, all the considerations mentioned above have proved to be relevant constraints for banks conducting large asset purchases since 2008. Central banks have faced challenges in finding liquid enough markets to conduct the operation; they have faced strong political backlash for the scale of the operations (for example, because they are viewed as favoring the financial sector and the richest few); and in some cases both the government and the central bank have become exceedingly concerned over the central bank’s balance sheet risks. These risks could put central bank independence in question, as they could imply that the treasury must infuse capital into the central bank to prevent unacceptably high levels of inflation, with the associated budgetary implications.5

5. Several recent papers evaluate the extent to which these risks have become material for current central banks post crisis (for example, Hall and Reis, 2015; del Negro and Sims, 2015). Our overall reading of this literature is that these risks are not pertinent for a balance sheet of the size of the U.S. Federal Reserve today, although they would become relevant in some of the numerical examples we provide later in the paper given how extreme some of the numbers in question are.
In this paper, we revisit Bernanke’s no-arbitrage argument in the prototypical New Keynesian dynamic stochastic general equilibrium (DSGE) model, in the tradition of Woodford (2003), using conventional calibration parameters. This is in contrast to Eggertsson (2003), who uses a simpler nonconventional modeling approach, which may raise scepticism of the numerical experiments conducted. Inside this model, we ask how large of an intervention in real assets the government needs to undertake to achieve the optimal allocation under discretion, assuming there is no cost of such interventions. As in Eggertsson (2003), we find that the numbers are very large: in our baseline simulation, the corresponding intervention is more than ten times GDP. This suggests that using the government’s balance sheet as a commitment device may imply asset positions by the central bank that would be difficult to implement in practice. Thus, while we find that Bernanke’s no-arbitrage argument can be correct in theory, it may run into constraints in practice. For this reason, following our baseline experiment, which is conducted in the ideal circumstances of an unlimited supply of the asset and at no cost for the government, we also consider cases in which the assets purchases are costly. In this case, the purchases can lose much of their commitment power.

How does this all relate to recent experience? On 31 October 2014, the Bank of Japan unexpectedly announced an expansion of its comprehensive monetary easing (CME) program from 50 trillion to 80 trillion yen per year. Along with a change in the size of its balance sheet, the announcement included a change in its composition. Beyond long-term government securities, the central bank would purchase additional riskier assets such as exchange traded funds and real estate investment trusts. The expressed goal of the expansion was to meet a 2 percent inflation target within two years. Governor Haruhiko Kuroda described the program as “monetary easing in an entirely new dimension,” and in reference to limits in its size relative to GDP said, “We don’t have any particular ceiling.” As of August 2015, the size of the Bank of Japan’s balance sheet stood at approximately 80 percent of GDP. While this seems like a large number, it is much smaller than what is needed according to our calibrated model. Would the Bank of Japan not hit some ceiling if it had to buy assets that are more than ten times the current size of its balance sheet? In any event, as of this writing, the Bank of Japan is still unable to hit its inflation target, and most projections paint a pessimistic picture of its prospect of hitting it anytime soon.

As another example, the Swiss National Bank bought foreign currency on the order of 90 percent of GDP in order to fight deflation
during the crisis, leading to an 800 percent increase in its money supply. They eventually abandoned this policy since the magnitudes involved had become so high that the central bank faced strong political pressures to halt its purchases. The effect of this policy on the price level was negligible at best, although for a while the Swiss National Bank did manage to prevent an appreciation of the Swiss franc relative to the euro.

The bottom line, then, may be that the irrelevance result of Wallace (1981), which was later extended by Eggertsson and Woodford (2003) to a model with sticky prices and an explicit zero lower bound, may be stronger than the precrisis consensus suggested. Eggertsson and Woodford’s (2003) irrelevance result, in turn, is closely related to Krugman’s (1998) finding that increasing the money supply has no effect at the ZLB if people expect it to be contracted again to its original level once interest rates turn positive. Those irrelevance results suggested that absent some restrictions in asset trade that prevent arbitrage, equilibrium quantities and assets prices are not affected by a change in the relative supplies of various assets owned by the private sector if the central bank’s policy rule is taken as given. One way the irrelevance results have been broken in the literature is via changes in expectations about future monetary policy. The results here suggest that at least in a simple calibrated New Keynesian model that imposes a Markov perfect equilibrium as an equilibrium selection device, the asset position of the government needed to achieve the desired commitment, and thus break these irrelevance results, may be extremely high. To be clear—and this is worth reiterating—we do not contend that this implies that nothing can be done at the ZLB, nor even that nothing more could have been done in response to the current crisis. This is clearly illustrated by the impact of Roosevelt’s radical reflation program, which coordinated monetary, fiscal, industrial, and exchange rate policy, during the Great Depression. However, it does imply that central bank actions to increase demand may be a bit harder than the precrisis consensus suggested, and the foolproof ways out of the liquidity trap are hard to come by. One policy that we do

6. The difference between Eggertsson and Woodford (2003) and Krugman (1998) is that while Krugman (1998) assumes that the central bank follows a monetary targeting rule, Eggertsson and Woodford (2003) assume a more conventional Taylor-type interest rate reaction function. Moreover, while Krugman (1998) assumes that the money supply is increased via purchases of short-term nominal bonds, Eggertsson and Woodford (2003) assume that the money supply can be increased via purchases of any type of security that is priced in the economy, as in Wallace (1981).
not consider here is to shorten the maturity structure of outstanding government debt. Bhattarai, Eggertsson, and Gafarov (2015) suggest that a policy of that kind may be more potent than the purchases of real assets studied here. Alternatively, if there is a freeze in secondary asset markets, for example, due to a drop in the liquidity of assets, there may also be an important role for asset purchases, as shown by del Negro and others (2016) in the context of the 2008 crisis. Our model abstracts from different degrees of asset liquidity, so this mechanism does not play a role here.

We outline the model in section 1 and summarize the conditions for a Markov perfect equilibrium (MPE) for a coordinated government in section 2. We present and discuss the calibrated model in section 3. With costly taxation and coordinated monetary and fiscal policy, deficit spending and real asset purchases both serve as an additional commitment device for solving the credibility problem created by a liquidity trap. They are effective because they act as an additional device through which a discretionary government can commit future governments to a higher money supply, and thus higher inflation and lower real interest rates. Section 4 presents a brief sensitivity analysis, and section 5 concludes.

1. The Model

We start by outlining a standard general equilibrium sticky-price closed-economy model with output cost of taxation, along the lines of Eggertsson (2006). We assume that monetary and fiscal policy are coordinated to maximize social welfare under discretion. The difference in the model from the literature is the introduction of a real asset in the government budget constraint.

1.1 Private Sector

A representative household maximizes expected discounted utility over the infinite horizon:

$$E_r \sum_{t=0}^{\infty} \beta^t \left[u(C_t) + g(G_t) - v(h_t) \right] \xi_t$$

where β is the discount factor; C_t is a Dixit-Stiglitz aggregate of consumption of each of a continuum of differentiated goods,
$C_t = \left[\int_0^1 c_t(i)^{\frac{\varepsilon}{\varepsilon - 1}} di \right]^{\frac{\varepsilon - 1}{\varepsilon}},$

with elasticity of substitution equal to $\varepsilon > 1$; G_t is a Dixit-Stiglitz aggregate of government consumption defined analogously; h_t is labor supplied; ξ_t is an exogenous shock; and P_t is the Dixit-Stiglitz price index,

$P_t = \left[\int_0^1 p_t(i)^{(1-\varepsilon)} di \right]^{\frac{1}{1-\varepsilon}},$

where $p_t(i)$ is the price of variety i. E_t denotes the mathematical expectation conditional on information available in period t, $u(.)$ is concave and strictly increasing in C_t, $g(.)$ is concave and strictly increasing in G_t, and $v(.)$ is increasing and convex in h_t.

The household is subject to the following sequence of flow budget constraints:

$$P_tC_t + B_t + E_t\{Q_{t,t+1}D_{t+1}\} \leq n_t h_t + (1 + i_{t-1})B_{t-1} + D_t - PT_t + \int_0^1 Z_t(i)di, \quad (2)$$

where B_t is a one-period risk-free nominal government bond with nominal interest rate i_t, n_t is the nominal wage, $Z_t(i)$ is nominal profit of firm i, T_t is government taxes, D_{t+1} is the value of the complete set of state-contingent securities at the beginning of period $t + 1$, and $Q_{t,t+1}$ is the stochastic discount factor.

On the firm side, there is a continuum of monopolistically competitive firms indexed by the variety, i, that they produce. Each firm has a production function that is linear in labor $y_t(i) = h_t(i)$ and, as in Rotemberg (1982), faces a cost of changing prices given by $d[p_t(i) / p_{t-1}(i)]$. The demand function for variety i is given by

$$\frac{y_t(i)}{Y_t} = \left(\frac{p_t(i)}{P_t} \right)^{-\varepsilon}, \quad (3)$$

7. We abstract from money by considering the cashless limit of Woodford (1998).
8. Our results are not sensitive to assuming instead the Calvo model of price setting so long as we do not assume large resource costs of price changes. See Eggertsson and Singh (2015) for a discussion.
where Y_t is total demand for goods. The firm maximizes expected discounted profits,

$$E_t \sum_{i=0}^{\infty} Q_{t,i} Z_{t+i}(i),$$

where the period profits are given by

$$Z_t(i) = \left[(1+s)Y_t p_t(i)^{1-c} P_t^e - n_t(i)Y_t p_t(i)^{-c} P_t^e - d\left(\frac{p_t(i)}{p_{t-1}(i)}\right)P_t\right].$$

We assume that the production subsidy, s, satisfies

$$\frac{\varepsilon - 1}{\varepsilon}(1+s) = 1$$

in order to eliminate steady-state production inefficiencies from monopolistic competition. The household’s optimality conditions are given by

$$\frac{v_h(h_t)}{u_c(C_t)} = \frac{n_t}{P_t}$$

and

$$\frac{1}{1+i_t} = E_t \left[\beta\frac{u_c(C_{t+1})\xi_{t+1}}{u_c(C_t)\xi_t} \Pi_{t+1}^{-1}\right],$$

where $\Pi_t = (P_t/P_{t-1})$ is gross inflation. The firm’s optimality condition from price setting is given by

$$\varepsilon Y_t \left[\frac{\varepsilon - 1}{\varepsilon}(1+s)u_c(C_t, \xi_t) - v_y(Y_t, \xi_t)\right] + u_c(C_t, \xi_t)d'(\Pi_t)\Pi_t,$$

$$= E_t \left[\beta u_c(C_{t+1}, \xi_{t+1})d'(\Pi_{t+1})\Pi_{t+1}\right]$$

where we have replaced v_h with v_y since we focus on a symmetric equilibrium where all firms charge the same price and produce the same amount.
1.2 Government

We assume that there is an output cost of taxation \(s(T_t) \) as in Barro (1979).\(^9\) Real government spending is then given by

\[F_t = G_t + s(T_t). \]

The government can issue one-period nominal bonds \(B_t \) and purchase a real asset \(A_t \) with rate of return \(q_t \), which we assume satisfies the Fisher no-arbitrage condition in equilibrium. Furthermore, we assume that the government does not internalize the rate of return when optimizing social welfare. That is, the government takes the rate of return on the asset as given when making its policy decision. The consolidated flow budget constraint can be written as

\[B_t + P_t A_t = (1 + i_{t-1}) B_{t-1} + (1 + q_{t-1}) P_t A_{t-1} + \psi(A_t) + P_t (F_t - T_t), \]

where \(\psi(A_t) \) is a quadratic cost of asset management. We introduce this quadratic cost as a reduced-form way to capture two phenomena. First, it captures the fact that managing large amounts of assets will involve some administration cost. Second, it is a way to model the relationship that as the scale of the asset purchases increases, the real return of the asset decreases, as this function reflects a loss of real resources. As noted in the introduction, a key conclusion from the numerical experiment we report shortly is that the central bank’s intervention is “unreasonably” large. One interesting thought experiment we consider below is to set this cost high enough so as to rationalize the scale of the balance sheet expansion in some central banks observed post crisis. We can then ask if the intervention has a substantial effect in this case.

Next, we define the real value of government debt, inclusive of interest payments to be paid next period, as \(b_t = (1 + i_t) (B_t / P_t) \) and the value of the real asset inclusive of returns as \(a_t = (1 + q_t) A_t \). We can then write the budget constraint in real terms as

\[\frac{b_t}{1 + i_t} + \frac{a_t}{1 + q_t} = b_{t-1} \Pi_t^{-1} + a_{t-1} + \psi \left(\frac{a_t}{1 + q_t} \right) + (F_t - T_t). \]

\(^9\) The function \(s(T) \) is assumed to be twice differentiable with derivatives \(s'(T) > 0 \) and \(s''(T) > 0 \).
We define fiscal policy as the choice of $T_t, F_t, b_t,$ and a_t. For simplicity, we abstract from variations in real government spending, so $F_t = F$ in all that follows. Conventional monetary policy is the choice of the nominal interest rate, i_t, which is subject to the zero-bound constraint \[i_t \geq 0. \] (9)

1.3 Private Sector Equilibrium

The goods market clearing condition implies the overall resource constraint

\[Y_t = C_t + F_t + d(\Pi_t) + \psi \left(\frac{a_t}{1 + q_t} \right). \] (10)

We define the private sector equilibrium as a collection of stochastic process,

\[\{Y_{t+s}, C_{t+s}, b_{t+s}, a_{t+s}, \Pi_{t+s}, i_{t+s}, T_{t+s}\}, \]

for $s \geq 0$ that satisfy equations (5) through (10) for each $s \geq 0$, given $a_{t-1}, b_{t-1},$ and an exogenous stochastic process for $\{\xi_{t+s}\}$. Policy must now be specified to determine the set of possible equilibria in the model.

2. Markov-Perfect Equilibrium

We assume that the government policy is implemented under discretion so that the government cannot commit to future policy. To do so, we solve for a Markov perfect equilibrium. However, we also assume that the government is able to commit to paying back the nominal value of its debt as in Lucas and Stokey (1983). The only way the government can influence future governments, then, is through the endogenous state variables that enter the private sector equilibrium conditions.

Define the expectation variables f_t^E and g_t^E. The necessary and sufficient condition for a private sector equilibrium is now as twofold. First, the variables $\{Y_t, C_t, b_t, a_t, \Pi_t, i_t, T_t\}$ satisfy the following conditions:

\[
\frac{b_t}{1 + i_t} + \frac{a_t}{1 + q_t} = b_{t-1}\Pi_t^{-1} + a_{t-1} + \psi \left(\frac{a_t}{1 + q_t} \right) + (F - T_t), \tag{11}
\]

\[
1 + i_t = \frac{\mu_c(C_t, \xi_t)}{\beta f_t^E}, \quad i_t \geq 0, \tag{12}
\]

\[
\beta g_t^E = \varepsilon Y_t \left[\frac{\varepsilon - 1}{\varepsilon} (1 + s) u_c(C_t, \xi_t) - v_\gamma(Y_t, \xi_t) \right] + u_c(C_t, \xi_t) d^\prime (\Pi_t) \Pi_t, \tag{13}
\]

and

\[
Y_t = C_t + F_t + d(\Pi_t) + \psi \left(\frac{a_t}{1 + q_t} \right), \tag{14}
\]

given \(b_{t-1}, a_{t-1}\) and \(f_t^E\), and \(g_t^E\). Second, expectations are rational, so that

\[
f_t^E = E_t \left[u_c(C_{t+1}, \xi_{t+1}) \Pi_t^{-1} \right] \tag{15}
\]

and

\[
g_t^E = E_t \left[u_c(C_{t+1}, \xi_{t+1}) d^\prime (\Pi_{t+1}) \Pi_{t+1} \right]. \tag{16}
\]

Since the government cannot commit to future policy apart from its choice of the endogenous state variables \(a_{t-1}\) and \(b_{t-1}\), the expectations \(f_t^E\) and \(g_t^E\) are only a function of \(a_t, b_t,\) and \(\xi_t\). That is, the expectation functions are defined as

\[
f_t^E = \overline{f}^E(a_t, b_t, \xi_t) \tag{17}
\]

and

\[
g_t^E = \overline{g}^E(a_t, b_t, \xi_t), \tag{18}
\]

and we assume that these functions are continuous and differentiable. The discretionary government’s dynamic programming problem is

\[
V(a_{t-1}, b_{t-1}, \xi_t) = \max \left[U(.) + \beta E_t V(a_t, b_t, \xi_{t+1}) \right], \tag{19}
\]

subject to the private sector equilibrium conditions (equations 11–14) and the expectation functions (equations 17–18), which in equilibrium satisfy the rational expectations restrictions (equations 15–16). The period Lagrangian and first-order conditions for this maximization
problem are outlined in the appendix, along with their linear approximations. A Markov perfect equilibrium can now be defined as a private sector equilibrium that is a solution to the government problem defined by equation (19).

Figure 1. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under Discretion when the Government’s only Policy Instrument is Open Market Operations

11. We assume that the government and private sector move simultaneously.
3. Results

Following Eggertsson (2006), we model a benchmark deflation scenario as a credibility problem. In particular, we assume that the following three conditions are satisfied: the government’s only policy instrument is the short-term nominal interest rate; the economy is subject to a large negative demand shock given by the preference shock ξ_t; and the government cannot commit to future policy. We calibrate this benchmark with parameter values from Eggertsson and Singh (2015) that match a 10 percent drop in output and 2 percent drop in inflation.

3.1 Optimal Monetary Policy under Commitment

As shown in Eggertsson and Woodford (2003), to increase inflation expectations in a liquidity trap, the central bank commits to keeping the nominal interest rate at zero after the natural interest rate becomes positive again. The consequence of the anticipation of this policy is that the benchmark deflation and large output gap scenario are largely avoided. For the particular calibration that we work with here, deflation and the output gap in the first period of the trap are -0.65 percent and -5.42 percent, respectively. Figure 3 makes this comparison clear.

With the benchmark deflation scenario and optimal monetary commitment in hand, we are now set to conduct numerical experiments to measure how discretionary fiscal policy with real asset purchases and/or deficit spending compare to the worst and best case scenarios, that is, limited discretion and full commitment.

3.2 Deficit Spending as an Additional Policy Instrument

To discuss optimal discretion under fiscal policy, we must first calibrate the cost of taxation. We do so by choosing the second derivative of the cost function, s_1, so that 5 percent of government spending goes to tax collection costs. With deficit spending as an additional policy instrument, the government can commit to future inflation and a low nominal interest rate by cutting taxes and issuing nominal debt.

12. They parameterize the model using Bayesian methods as in Denes and Eggertsson (2009) and Denes, Eggertsson, and Gilbukh (2013).
Figure 2. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under Commitment when the Government can Only Use Conventional Monetary Policy

Inflation

Output gap

Interest rate
Figure 3. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under the Benchmark and Commitment when the Aggregate Demand Shock Lasts for 10 Periods

Inflation

Output gap

Interest rate

Figure 4. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under Discretion when the Government can use both Monetary and Fiscal Policies

Inflation

-1 0 1
0 5 10 15 20 25

Output gap

-8 -6 -4 -2 0 2 4
0 5 10 15 20 25

Interest rate

0 0.5 1 1.5 2
0 5 10 15 20 25
Nominal debt commits the government to inflation even if it is discretionary because it creates an incentive for the government to reduce the real value of its debt and future interest payments. Since both inflation and taxes are costly, the government will choose a combination of the two in order to achieve this goal. Figures 4 and 5 summarize this result of Eggertsson (2006) for our parameterization.

The intuition is straightforward. Even with the inability to commit, the government can stimulate aggregate demand in a liquidity trap by increasing inflation expectations. To increase inflation expectations, the government can coordinate monetary and fiscal policies in order to run budget deficits. Budget deficits increase nominal debt, which in turn make a higher inflation target credible. Finally, increased inflation expectations lower the real interest rate and thus stimulate aggregate demand.
Figure 6. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under the Benchmark Discretion, Monetary Commitment, and Fiscal Discretion when the Aggregate Demand Shock Lasts for 10 Periods

Inflation

Output gap

Interest rate

Discretion

Commitment

Fiscal discretion
Figure 6 makes the comparison between the benchmark scenario, optimal monetary commitment, and discretionary fiscal policy. In the first period following the shock, the inflation rate and the output gap are −0.93 percent and −6.79 percent under fiscal discretion, quite close to their levels under optimal monetary commitment. Lastly, figure 7 shows taxes and the evolution of debt to output when the shocks lasts for ten periods. Taxes deviate by 60 percent from steady state, while debt peaks at approximately 35 percent of output.

3.3 Real Asset Purchases and Deficit Spending

We now turn to how the optimal policy under discretion changes when real asset purchases are used as an additional policy instrument. Figures 8 and 9 show that when asset management is costless and the output cost of taxation is calibrated to 5 percent of government spending, the optimal amount of real asset purchases exceeds 2,000 percent of
gross domestic product in all contingencies. Although there is a strong inflation incentive and corresponding output boom due to the large increase in nominal debt, the required amount of asset purchases to obtain this response would clearly be infeasible in practice.

Perhaps a more interesting question, therefore, is what the model predicts for inflation and the output gap if we calibrate the asset management cost so that the optimal amount of real asset purchases is 80 percent of gross domestic product in the first period of the recession. We pick this number as a reference point, as it corresponds approximately to the scale of the Swiss National Bank’s foreign exchange intervention before it abandoned its peg. Figures 10 and 11 show that when we perform this thought experiment, the effectiveness of real asset purchases is much more limited. In fact, inflation and the output gap are only reduced to –1.36 percent and –8.23 percent, respectively, which is worse than the case with deficit spending as the only policy instrument. Moreover, as the cost of asset management gets very large, asset purchases approach zero, and we converge to the solution under fiscal discretion.

There are two main takeaways from our results: first, although costless real asset purchases perform the best at reducing inflation and the output gap, the required balance sheet size under this scenario is far too large to be feasible in practice; second, for realistic levels of asset purchases, a combination of deficit spending and asset purchases does not perform much better than the worst-case scenario in the numerical example above. These two points taken together suggest that a combination of fiscal stimulus and central bank balance sheet policies with more weight on the fiscal stimulus may be the most practical. We have abstracted from the ability of the government to increase real government spending in the example above, but the existing literature suggests that this is another way in which the discretionary outcome can be improved.

13. Technically, there still is a negligibly small cost of asset management in this exercise, with $\psi = 1 \times 10^{-7}$. This is the smallest level of ψ that induces stationarity in the equilibrium dynamics. See Schmitt-Grohé and Uribe (2003) for an example of this in closing small open economy models.

14. This numerical result indicates a nonlinearity that is somewhat interesting, in that a discretionary government with intermediate costs of administrating the real assets is better off without the ability to intervene in real assets than with it, as it limits its ability to commit to future inflation. One possible way of getting around this issue, which we do not pursue here, is to impose the constraint that the government cannot have negative asset holdings, in which case the government may still be able to commit to inflation in the intermediate asset management cost range. The key point, however, is that in this case commitment arises due to fiscal commitment as opposed to asset purchases.
Figure 8. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under Discretion when the Government can Costlessly Conduct Deficit Spending and Open Market Operations in Real Assets

Inflation

Output gap

Interest rate
Figure 9. Taxes, Debt to Output, and Asset Purchases under Discretion when the Government can Costlessly Conduct Deficit Spending and Open Market Operations in Real Assets

Taxes

- **Debt to output**

- **Assets to output**
Figure 10. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under Discretion when the Government can Conduct Deficit Spending and open Market Operations in Real Assets, with the Cost of Asset Purchases Calibrated to Match Real Asset Purchases of 80% of GDP
Figure 11. Taxes, Debt to Output, and Asset Purchases under Discretion when the Government can Conduct Deficit Spending and Open Market Operations in Real Assets, with the Cost of Asset Purchases Calibrated to Match Real Asset Purchases of 80% of GDP
Figure 12. Inflation, the Output Gap, and the Short-term Nominal Interest Rate under the Benchmark Discretion, Monetary Commitment, Fiscal Discretion, and Real Asset Purchases when the Aggregate Demand Shock Lasts for 10 Periods

Inflation

Output gap

Interest rate

- Discretion
- Commitment
- Fiscal discretion
- Real asset purchases
- Real asset purchases - calibrated
Finally, figures 12 and 13 makes a more precise comparison between all of the policy scenarios that we have considered above (that is, benchmark discretion, commitment, fiscal discretion, costless real asset purchases, and real asset purchases calibrated to match 80 percent of gross domestic product). This confirms that as the cost of asset management gets sufficiently high, the solution converges to the case in which the government only uses deficit spending.

4. **Sensitivity Analysis**

Table 1 shows the sensitivity of our results to the size of taxation costs. The main takeaway is that for any reasonable value of the
taxation cost, very large increases in real purchases are needed under full discretion, suggesting a limitation to this policy once more realistic constraints are added.

Table 1. Varying the Cost of Taxation as a Percentage of Government Spending

<table>
<thead>
<tr>
<th>Taxation cost (%)</th>
<th>Fiscal discretion</th>
<th>Discretion with real assets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>π (%)</td>
<td>y (%)</td>
</tr>
<tr>
<td>0.25</td>
<td>-1.61</td>
<td>-9</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.47</td>
<td>-8.58</td>
</tr>
<tr>
<td>1</td>
<td>-1.31</td>
<td>-8.1</td>
</tr>
<tr>
<td>2.5</td>
<td>-1.09</td>
<td>-7.37</td>
</tr>
<tr>
<td>5</td>
<td>-0.94</td>
<td>-6.79</td>
</tr>
<tr>
<td>7.5</td>
<td>-0.87</td>
<td>-6.52</td>
</tr>
<tr>
<td>10</td>
<td>-0.83</td>
<td>-6.35</td>
</tr>
<tr>
<td>15</td>
<td>-0.78</td>
<td>-6.13</td>
</tr>
<tr>
<td>20</td>
<td>-0.75</td>
<td>-6.01</td>
</tr>
</tbody>
</table>
5. Conclusion

This paper takes Bernanke’s no-arbitrage argument to its logical limit and finds that it implies implausibly large asset purchases in a Markov perfect equilibrium. One interpretation of this finding is that open market operations in real assets alone is not sufficient in a liquidity trap, so instead, fiscal policy may be used in one form or another to support a reflation at the zero bound. A key abstraction is that the monetary and fiscal policy objective here corresponds to the utility of the representative household. It may seem more reasonable that the central bank has objectives that are different from social welfare— for example, that it cares greatly about its own balance sheet losses, independently of tax distortions. If one takes that perspective, however, there is no guarantee that real asset purchases provide the magic bullet to escape a liquidity trap, for reasons first articulated by Paul Samuleson in the context of the Great Depression. He argues that during the Great Depression the Fed was a “prisoner of its own independence” and paralyzed from taking any action for fear that they may imply balance sheet losses.15

An alternative explanation for the relative ineffectiveness of monetary policy post-2008 in guaranteeing inflation at or above target is that central banks never explicitly committed to an inflationary policy. While one reason central banks refrained from doing so was the high perceived cost of inflation, another was that many of them thought a reflationary program by a central bank would not be credible. The precrisis consensus was that this objection was not relevant because the central bank had the ability to print an unlimited amount of money and buy whatever assets it wanted. The numerical experiments here suggest that governments may face some constraints in practice, due to the scale needed to generate that commitment.

We do not wish to interpret this as suggesting that monetary policy is impotent at the zero bound, however. Rather, central banks need to more explicitly inflate, and they may need some fiscal backing to achieve their objective. This could come from direct government spending, fiscal transfers, and debt accumulation, together with, or perhaps in addition to, some additional institutional reforms that coordinate monetary and fiscal policy. Exploring how this coordination may take place in practice is likely to be a fertile ground for future research (see for example, Turner 2015).

APPENDIX

A.1 Functional forms

We make the following functional form assumptions:

\[u(C, \xi) = \xi^{\frac{1}{\sigma}} \frac{C^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}}, \]

\[v(h(i), \xi) = \xi \lambda \frac{h(i)^{1 + \phi}}{1 + \phi}, \]

\[g(G, \xi) = \xi G^{\frac{1}{\sigma}} \frac{G^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}}, \]

\[y(i) = h(i); \]

\[d(\Pi) = d(\Pi - 1)^2; \]

\[\psi(\alpha) = \frac{\psi_1}{2} \alpha^2. \]

The discount factor shock, \(\xi \), equals one in steady state, and we scale hours such that \(Y = 1 \) in steady-state, too. This implies that

\[\tilde{v}(Y, \xi) = \frac{1}{1 + \phi} \lambda \xi Y^{1 + \phi}. \]
A.2 Calibration

Table A1. Model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.7871</td>
</tr>
<tr>
<td>β</td>
<td>0.9970</td>
</tr>
<tr>
<td>σ</td>
<td>1 / 1.29</td>
</tr>
<tr>
<td>ε</td>
<td>13.6012</td>
</tr>
<tr>
<td>ϕ</td>
<td>1.7415</td>
</tr>
<tr>
<td>d''</td>
<td>5776.7</td>
</tr>
<tr>
<td>κ</td>
<td>0.0072</td>
</tr>
<tr>
<td>F</td>
<td>0.30</td>
</tr>
<tr>
<td>T</td>
<td>0.30</td>
</tr>
<tr>
<td>G</td>
<td>0.25</td>
</tr>
<tr>
<td>s_1</td>
<td>0.3333</td>
</tr>
<tr>
<td>ψ_1</td>
<td>0.0000362</td>
</tr>
</tbody>
</table>

Table A2. ZLB Experiment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{tL}^e</td>
<td>-0.0136</td>
</tr>
<tr>
<td>γ</td>
<td>0.1393</td>
</tr>
</tbody>
</table>

A.3 Non-Linear Markov-Perfect Equilibrium

Formulate the Lagrangian:

$L_t = u(C_t, \xi_t) + g(F - s(T_t)) - \bar{v}(Y_t) + \beta E_t V(a_t, b_t, \xi_{t+1})$

$$+ \phi_{1t} \left[\frac{b_t}{1 + i_t} + \frac{a_t}{1 + q_t} - b_{t-1} \pi_{t-1} - \alpha_{t-1} - \psi \left(\frac{a_t}{1 + q_t} \right) - (F - T_t) \right]$$

$$+ \phi_{2t} \left(\beta f_t^e - \frac{u_c(C_t, \xi_t)}{1 + i_t} \right)$$

$$+ \phi_{3t} \left(\beta g_t^e - \varepsilon Y_t \left[\frac{\varepsilon - 1}{\varepsilon} (1 + s) u_c(C_t, \xi_t) - \bar{v}_y(Y_t, \xi_t) \right] - u_c(C_t, \xi_t) d'(\pi_t) \pi_t \right)$$
First-order conditions:

\[\pi_t: \phi_{31} [b_{t-1} \pi_t^{-2}] - \phi_{31} [u_c d' \pi_t + u_c d'] - \phi_{41} d'; \]

\[Y_t: -\bar{v}_y - \phi_{31} \left[\varepsilon \left(\frac{e-1}{\varepsilon} (1+s)u_c \right) - \varepsilon Y_t \bar{v}_y - \varepsilon \bar{v}_y \right] - \phi_{41}; \]

\[i_t: -\phi_{31} b_t (1 + i_t)^2 + \phi_{21} u_c (1 + i_t)^2 + \gamma_{11}; \]

\[C_t: u_c - \phi_{21} u_c (1 + i_t)^2 - \phi_{31} \left[\varepsilon Y_t \frac{e-1}{\varepsilon} (1+s)u_c + u_c d' \pi_t \right]; \]

\[T_t: g_{c1} (-s'(T_t)) + \phi_{11}; \]

\[\alpha_t: \beta E_t V_a (\alpha_t, b_t, \xi_{t+1}) + \phi_{11} \left[(1 + q_t)^{-1} - \psi' \left(\frac{\alpha_t}{1 + q_t} \right) \right]; \]

\[\quad - \phi_{41} \psi' \left(\frac{\alpha_t}{1 + q_t} \right) - \eta_{ll} \bar{f}_a^E - \eta_{21} \bar{g}_a^E; \]

\[b_t: \beta E_t V_b (\alpha_t, b_t, \xi_{t+1}) + \phi_{11} \left[(1 + i_t)^{-1} - \eta_{ll} \bar{f}_b^E - \eta_{21} \bar{g}_b^E \right]; \]

\[f_t^E: \beta \phi_{21} + \eta_{11}; \]

\[g_t^E: \beta \phi_{31} + \eta_{21}. \]

Complementary slackness condition:

\[\gamma_{11} \leq 0, \quad i_t \geq 0, \quad \gamma_{11} i_t = 0. \]
Benveniste-Scheinkman conditions:
\[V_s(a_{t-1}, b_{t-1}, \xi_t) = -\phi_{i_t}; \]
\[V_s(a_{t-1}, b_{t-1}, \xi_t) = -\phi_{i_t} \pi_t^{-1}. \]

A.4 Steady State

We linearize around an inefficient steady state with positive output cost of taxation, so that
\[\phi_i = g_\theta \left(s'(\bar{T}) \right). \]

Although we linearize around an inefficient steady-state, to simplify we still assume an appropriate production subsidy, as well as no resource loss from price adjustments, which requires
\[d(\Pi) = 0 \]
so that
\[Y = C + F. \]

This requires that we linearize around a zero-inflation steady state,
\[\Pi = 1, \]
which implies
\[d'(\Pi) = 0. \]
Furthermore, we assume that \(\bar{a} = \bar{b} = 0 \) in steady-state, so that from the first-order condition with respect to \(\pi_t \)
\[\bar{\phi}_a = 0. \]

We assume that the production subsidy satisfies
\[\frac{\varepsilon - 1}{\varepsilon} (1 + s) = 1, \]
so that
\[u_\varepsilon = \tilde{v}_\varepsilon. \]
Also, we linearize around a steady state with positive interest rates, so

\[1 + i = \frac{1}{\beta}, \]

which implies

\[\overline{g}_1 = 0, \]

and from the first-order condition for \(i, \)

\[\overline{\phi}_2 = 0. \]

Using \(d'(\Pi) = 0 \) and the first-order condition for \(\pi_t, \)

\[\overline{\phi}_4 = 0, \]

which implies from the first-order conditions for \(Y_t \) and \(C_t \)

\[\overline{\phi}_5 = \overline{\mu}_y = \mu_c. \]

The first-order conditions with respect to the expectation variables imply

\[\overline{\eta}_1 = \overline{\eta}_2 = 0, \]

so that we do not need to know the derivatives of the unknown functions.

A.5 Linear Approximation

A.5.1 Private Sector Equilibrium Conditions

We approximate the equilibrium conditions around an inefficient non-stochastic steady state with zero inflation, \(1 + i = 1 + q = \beta^{-1}, \) and \(\overline{a} = \overline{b} = 0. \) We also normalize steady-state output to \(\overline{Y} = 1. \)

Linearizing the resource constraint \(Y_t = C_t + F + d(\Pi_t) + \psi \left(\frac{a_t}{1 + q_t} \right) \) gives

\[\hat{Y}_t = \hat{C}\hat{C}_t, \]

(20)

where \(\hat{C}_t = \frac{C_t - \overline{C}}{\overline{C}}. \)
Bernanke’s No-Arbitrage Argument Revisited

Linearizing the price-setting optimality condition gives

$$\bar{u}_c d'' \pi_t + \varepsilon \bar{u}_c \bar{C}_i - \varepsilon \bar{u}_c \bar{Y}_t - \varepsilon \bar{u}_c \hat{\xi}_t + \varepsilon \bar{u}_c \hat{\xi}_t = \beta \bar{u}_c d'' E_t \pi_{t+1},$$

which can be simplified by making use of the linearized resource constraint

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \hat{Y}_p$$

where

$$\kappa = \frac{e(\phi + \sigma^{-1})}{d''}.$$

Linearizing the Euler equation gives

$$\bar{u}_c \bar{C}_i + \bar{u}_c \bar{\xi}_t = \bar{u}_c \hat{\xi}_t + \bar{u}_c \bar{C} E_t \hat{\xi}_t + \bar{u}_c \bar{C} E_t \hat{\xi}_t - \bar{u}_c E_t \pi_{t+1},$$

which can be simplified by making use of the linearized resource constraint,

$$\hat{Y}_t = E_t \hat{\xi}_t - \sigma \left(\hat{i}_t - E_t \pi_{t+1} - \hat{i}_t^e \right),$$

where

$$\hat{i}_t^e = -\frac{\bar{u}_c}{\bar{u}_c} \left[E_t \hat{\xi}_t - \hat{\xi}_t \right]$$

and

$$\sigma = -\frac{\bar{u}_c}{\bar{u}_c} = \tilde{\sigma}.$$

Imposing the Fisher arbitrage relation as an equilibrium condition and linearizing gives

$$\hat{q}_t = \hat{i}_t - E_t \pi_{t+1}.$$

Linearizing the government budget constraint,

$$b_t + a_t = \beta^{-1} b_{t-1} + \beta^{-1} a_{t-1} - \beta^{-1} \bar{T} \bar{T}_t$$

where

$$\hat{T}_t = \frac{T_t - \bar{T}}{\bar{T}}.$$

Lastly, linearizing the expectation functions gives

$$\hat{f}_t^e = -\sigma^{-1} E_t \hat{\xi}_t + E_t \hat{\xi}_t - E_t \pi_{t+1};$$

$$\hat{g}_t^e = d'' E_t \pi_{t+1},$$
A.5.2 Markov-Perfect FOCs

In steady state, all Lagrange multipliers besides $\bar{\phi}_t = g_s s'$ and $\bar{\phi}_3 = \bar{v}_x = u_x$ are equal to zero. Linearizing each FOC in the order given above and using appropriate functional form assumptions,

$$\pi_t : g_s s' b_{t-1} - d' \hat{\phi}_{3t} - d'' \pi_t,$$

$$Y_t : \phi \hat{Y}_t - \varepsilon \phi_{3t} - \hat{\phi}_4,$$

$$i_t : -\beta g_s s' b_t + \beta^2 \hat{\phi}_{2t} + \hat{\gamma}_t,$$

$$C_t : \hat{Y}_t - \sigma \hat{\xi}_t - \beta \phi_{2t} - \varepsilon \phi_{3t} + \sigma \phi_{4t},$$

$$T_t : -\left(\frac{s'TC}{G\sigma} + \frac{s''T}{s} \right) \hat{T}_t + \hat{\phi}_{1t};$$

$$a_t : -E_t \hat{\phi}_{1t+1} + \hat{\phi}_t - \hat{q}_t - \psi \beta \frac{g_s s' + 1}{g_s s'} a_t + \frac{\bar{f}^E_a}{g_s s'} \hat{\phi}_{2t} + \frac{\bar{g}^E_a}{g_s s'} \hat{\phi}_{3t};$$

$$b_t : -E_t \hat{\phi}_{1t+1} + \hat{\phi}_t - \hat{i}_t + E_t \pi_{t+1} + \frac{\bar{f}^E_b}{g_s s'} \hat{\phi}_{2t} + \frac{\bar{g}^E_b}{g_s s'} \hat{\phi}_{3t}.$$

Guess solutions for all variables at positive interest rates as a linear function of $a_{t-1}, b_{t-1},$ and $\hat{r}_t^e.$ Expectations will take the form

$$\hat{r}_t^E = -\sigma^{-1} E_t \hat{Y}_t + E_t \hat{\xi}_t - E_t \pi_{t+1} = \bar{f}^E_a a_t + \bar{f}^E_b b_t + \bar{f}^E r_t^e;$$

$$\hat{g}_t^E = d' E_t \pi_{t+1} = \bar{g}^E_a a_t + \bar{g}^E_b b_t + \bar{g}^E r_t^e.$$

Under the assumptions about the shock process, $\hat{\xi}_t,$ we have

$$E_t \hat{\xi}_{t+1} = (1 - \gamma) \hat{\xi}_t$$

and

$$\hat{r}_t^e = \gamma \hat{\xi}_t,$$

where γ is the probability of remaining at the ZLB. Note that when the ZLB no longer binds, $\hat{r}_t^e = 0.$
A6. Optimal Policy Commitment

Formulate the Lagrangian:

\[L_t = E_t \sum_{t=0}^{\infty} \beta^t \left\{ u(C_t, \xi_t) + g(F - s(T)) - \bar{v}(Y_t) \right\} \]

\[+ \phi_{1t} \left(\beta u_c(C_{t-1}, \xi_{t-1}) \pi_{t-1} - \frac{u_c(C_t, \xi_t)}{1 + i_t} \right) \]

\[+ \phi_{2t} \left(\beta u_c(C_{t-1}, \xi_{t-1}) d' (\pi_{t-1}) \pi_{t-1} - \varepsilon Y_t \left[\frac{\varepsilon - 1}{\varepsilon} (1 + s) u_c(C_t, \xi_t) - \bar{v}_y(Y_t, \xi_t) \right] \right) \]

\[- u_c(C_t, \xi_t) d' (\pi_t) \pi_t \]

\[+ \phi_{3t} (Y_t - C_t - F - d(\pi_t)) \]

\[+ \gamma_{1t} (i_t - 0). \]

First-order conditions:

\[\pi_t : -\phi_{1t-1} [u_c \pi_t^2] - \phi_{2t} [u_c d'' \pi_t + u_c d'] - \phi_{3t-1} [u_c d'' \pi_t + u_c d'] - \phi_{3t} d', \]

\[Y_t : -\bar{v}_y - \phi_{2t} \left[\varepsilon \left(\frac{\varepsilon - 1}{\varepsilon} (1 + s) u_c \right) - \varepsilon Y_t \bar{v}_{yy} - \varepsilon \bar{v}_y \right] + \phi_{3t}; \]

\[i_t : \phi_{1t} \left[\frac{u_c (1 + i_t)^{-2}}{1 + i_t} \right] + \gamma_{1t}; \]

\[C_t : u_c - \phi_{1t} \left[u_c \left(1 + i_t \right)^{-1} \right] + \phi_{1t-1} [u_c \pi_t] \]

\[- \phi_{2t} \left[\varepsilon Y_t \frac{\varepsilon - 1}{\varepsilon} (1 + s) u_c + u_c d'' \pi_t \right] + \phi_{2t-1} [u_c d'' \pi_t] - \phi_{3t}. \]

Complementary slackness condition:

\[\gamma_{1t} \leq 0, \quad i_t \geq 0, \quad \gamma_{t} i_t = 0. \]

A7. Linear Approximation

In steady state, all Lagrange multipliers besides \(\bar{\phi}_3 = \bar{v}_y = u_c \) are equal to zero. Linearizing each FOC in the order given above and using appropriate functional form assumptions,

\[\pi_t : -\phi_{1t-1} - d' \phi_{2t} - d' \phi_{2t-1} - d'' \pi_t; \]
\[\begin{align*}
Y_t & : \phi Y_t - \varepsilon \phi_{2t} - \phi_{3t}, \\
i_t & : \beta^2 \hat{\phi}_{1t} + \hat{\gamma}_{1t}, \\
C_t & : \hat{\hat{Y}}_t - \sigma \hat{\hat{\varepsilon}}_t - \beta \hat{\phi}_{1t} + \hat{\phi}_{1t-1} - \varepsilon \hat{\phi}_{2t} + \sigma \hat{\phi}_{3t}.
\end{align*} \]
REFERENCES

