
SECTION PROBLEMS FOR GRAPH CONFIGURATION SPACES

ALEXANDER BAUMAN

Abstract. We consider, for a finite graph G, when the surjective map Confn+1(G) →
Confn(G) of configuration spaces admits a section. We study when the answer depends only
on the homotopy type of G, and give a complete answer. We also provide basic techniques
for construction of sections.

1. Introduction

If f : X → Y is a surjective map of topological spaces, a natural question is to consider
whether the map f admits a section, that is, a map s : Y → X such that f ◦ s = idY . Many
questions in topology can be rephrased in terms of finding a section of a particular map.

Example 1.1. Here are two examples that show how topological problems can be restated
in terms of the existence of a section to a particular map.

(a) Let Mn be a smooth manifold, and let TM be its tangent bundle. Let SM be a
Sn−1 bundle over M constructed as follows: Let Y be TM minus the image of the
zero section, and let SM be the quotient of Y by the R∗+ action which scales each
vector in its tangent space. We can see that f : SM →M is indeed an Sn−1-bundle.
Note that a section of f is, by definition, a continuous choice of nonzero vector (up to
scaling) in the tangent space of each vector, which is precisely a nonvanishing vector
field on M (up to multiplication by a positive function).

(b) Now, let E → M be a rank k vector bundle over M . We can associate a GLk(R)-
bundle G(E) over M to E whose fiber over x ∈ M is the set of linear isomorphisms
Ex → Rk, where Ex denotes the fiber of x in E. A section of G(E)→M is precisely
a continuous choice of isomorphism between each tangent space and Rk, so these glue
to a global isomorphism E ∼= M×Rk, so G(E)→M admits a section precisely when
E is a trivial vector bundle.

The main body of this thesis will be concerned with graph configuration spaces. By a
graph, we mean a finite connected 1-dimensional cell complex. If n is a natural number, then
define the n-th ordered configuration space of G to be the set

Confn(G) = {(x1, . . . , xn) ∈ Gn : xi 6= xj for i 6= j}
equipped with the subspace topology in the product space Gn. There is a natural “forgetting
map” φn+1 : Confn+1(G)→ Confn(G) defined by:

(x1, . . . , xn+1) 7→ (x1, . . . , xn).

Later, we will study, in detail, when this map admits a section.
The general theory of section problems, (as well as some other related problems) are

studied in the branch of topology known as obstruction theory. The general technique of
obstruction theory is to attempt to construct maps of CW complexes one cell at a time
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inductively on the skeleta. In Section 2, we will cover the basics of obstruction theory, and
apply it to the case of Example 1.1(a).

The rest of the thesis proceeds as follows: In Section 3, we state our main results for graph
configuration spaces. In Section 4, we introduce notation and terminology. In Section 5, we
present elementary examples of sections. In Section 6, we introduce and develop the idea of
connectable components, a technical tool useful for the proof of Theorem 3.1. Section 7 is
devoted to the proof of Theorem 3.1. In Section 8, we introduce a combinatorial model for
Confn(G) which is useful for proving more advanced existence results. In Section 9, we show
that nothing can be concluded about the case where χ(G) < 0 and n < 2 − χ(G) without
appealing to more than the homotopy type of the graph.

Acknowledgement. The author would like to thank Bena Tshishiku for introducing him
to graph configuration spaces, and for meeting with him regularly to discuss ideas and
review drafts of this paper. Additionally, the author would like to thank Dominick Joo for
collaborating on the exposition in Section 2.

2. Obstruction Theory and the Euler Class

We will assume throughout that all spaces involved are CW complexes. The nicest case
of the theory occurs when the map f : X → Y is an especially nice type of map called a
fibration.

Definition 2.1. Let f : X → Y be a map. We say that f is a (Hurewicz) fibration if for
every space S, and every commutative diagram of topological spaces of the following form:

S × {0} X

S × I Y,

f

there is a map S × I → X such that the diagram:

S × {0} X

S × I Y

f

commutes.

It is a general fact that every fiber bundle over a CW complex is a fibration, so the tools
of obstruction theory apply to Example 1.1. For the remainder of this discussion, we assume
that f is a fiber bundle with path-connected fiber space F . There are two groups which can
act naturally on the homotopy groups πn(F ). First, π1(F ) acts via the change-of-basepoint
isomorphisms. Suppose that, for some fixed n, this action is trivial. In this case, we can
ignore the basepoint of F and identify πn(F ) with the set of (unbased) homotopy classes
of maps Sn → F . Additionally, π1(X) acts on πn(F ) in a slightly more complicated way.
Given α ∈ π1(X) and β ∈ πn(F ), define a map ρ : Sn × I → Y by α ◦ proj2, and a map
η : Sn → X by sending Sn into F via β in the fiber over the basepoint of Y . The definition
of a fibration implies that there is a map θ : Sn × I → X which restricts to η at time 0
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and such that f ◦ θ = ρ. We then define α · β = [θ|S×1]. One can verify that this is also a
well-defined group action. For simplicity, we also assume that this is a trivial group action.

We can now state the main theorem of obstruction theory.

Theorem 2.2. Under the above assumptions, suppose that σ : Y (n) → X is a partially
defined section on the n-skeleton of Y . Then, there exists a cocycle θ(σ) ∈ Cn+1(Y, πn(F ))
such that σ extends to a section defined on Y (n+1) if and only if θ(σ) = 0. Further, the
restriction σ|Y (n−1) extends to a section on Y (n+1) if and only if θ(σ) represents the trivial
cohomology class.

For a detailed proof of this fact, see, for instance, Theorem 7.37 of [Kir]. We first give a
brief explanation of how the cocycle is constructed. Suppose for simplicity that each (n+1)-
cell of Y is embedded. For an (n+ 1)-cell ei with attaching map φi : Sn ↪→ Y (n), then since
ei is contractible, the restriction of f to ei is a trivial bundle. Therefore, f−1(ei) ∼= ei × F .
We define θ(σ)(ei) = σ ◦ φi ∈ πn(ei × F ) ∼= πn(F ). Our simplifying assumptions on F and
Y ensure that this definition is independent of our choice of isomorphism f−1(ei) ∼= ei × F .
Note that θ(σ)(ei) = 0 if and only if the map σ ◦ φi extends to ei which is equivalent to
saying that σ extends to a section defined on ei. Therefore, θ(σ) = 0 if and only if σ extends
to a section on Y (n).

When F is (n − 2)-connected, the above discussion implies that we can always define a
section on the (n − 1)-skeleton of Y . In this case, the cohomology class of the obstruction
cocycle constructed above is called the primary obstruction. If Y is also an n dimensional
CW complex, then it follows that the primary obstruction vanishes if and only if a global
section exists. This situation is not as uncommon as it may seem. In fact, it applies to the
situation in Example 1.1(a) (although we need the further assumption that M is oriented to
ensure that π1(M) acts trivially on πn−1(Sn−1)). In this case, we call the primary obstruction
the Euler class of M , and denote it by e(M) ∈ Hn(M,πn−1(Sn−1)) ∼= Z. In fact the Euler
class is very closely related to the Euler characteristic. Indeed, under the identification
Hn(M,πn−1(Sn−1)) ∼= Z, by Theorem VII.14.3 of [Bre93], e(M) = χ(M), so M admits a
nonvanishing vector field if and only if χ(M) = 0. This reduces determining the existence
of a nonvanishing vector field to a simple computation of the Euler characteristic. More
generally, the Euler class is defined for any Sn−1 bundle over an n-manifold.

Example 2.3. We compute the Euler class of two different S1-bundles over S2. Throughout,
we fix the standard cell structure on S2 containing a pair of 2-cells D+, D−, corresponding
to the northern and southern hemisphere respectively, with D+ ∩ D− = D0 is the unique
1-cell.

(a) (Hopf Fibration) There is a tautological map C2\{(0, 0)} → CP 1 ∼= S2 with fiber C∗.
Restricting to the embedded copy of S3 ⊂ C2 gives an S1-bundle f : S3 → S2 known
as the Hopf fibration. We identify S2 ∼= CP 1, so that D+ = {[v : w], |v| ≥ |w|},
D− = {[v : w] : |w| ≥ |v|}, and D0 = D+ ∩ D− = {[v : w] : |v| = |w|}. Then, we
can define a partial section σ : D0 → S3 by σ([v : w]) = (1/

√
2, w/(

√
2z)). Then, σ

extends without issue across D+ by the formula

σ([z : w]) =
(1, w/z)√
1 + |w/z|2

,

so e(D+) = 1.
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Over D−, a homotopy equivalence h−1(D−) ' S1 is given by (z, w) 7→ w/ |w|, so
σ|∂D−([z : w]) = w/z. We can choose z = 1, so that σ∂D−([1 : w]) = w. This map is a
generator of π1(S1), so e(D−) = 1, and e([S2]) = θ(σ)(D+) + θ(σ)(D−) = 0 + 1 = 1,
and the Euler class of h is 1. In particular, the Hopf fibration does not admit a
section.

(b) (Unit Tangent Bundle) We now consider the S1 bundle f : SS2 → S2 constructed in
1.1(a). We will identify SS2 with {(v, w) ∈ S2 × S2 : v · w = 0}, so that the map
f corresponds to projection onto the first factor. On D0, define σ(v) = (v, (0, 0, 1)).
Since every element of D0 has third coordinate zero, this is indeed a section on D0.
We can identify f−1(D+) with D+ × S1 as follows. Given (v, w) ∈ f−1(D+), rotate
S2 so that v moves along the great circle arc connecting v to (0, 0, 1), and so that
the vectors orthogonal to this great circle are fixed. Let x ∈ D0 be the endpoint of w
under this transformation. Then, (v, w) 7→ (v, x) is the desired identification. Under
this identification, we can see that σ(v) 7→ (v,−v), so that θ(σ)(D+) = 1. A similar
computation shows that θ(σ)(D−) = 1, so e([S2]) = 1 + 1 = 2, which agrees with
the Euler characteristic of S2. This proves that there does not exist a nonvanishing
vector field on S2, a fact that is also known as the hairy ball theorem.

3. Statement of Results

The remainder of this thesis will be concerned with the graph configuration space Confn(G)
introduced in Section 1. In particular, we will study whether the map φn+1 admits a section,
which we will denote by sn : Confn(G)→ Confn+1(G) when it exist. Our main result is the
following, stated in terms of the Euler characteristic χ of graphs:

Theorem 3.1. For any graph G with χ(G) < 0 and natural number n with n ≥ 2 − χ(G),
no section sn exists.

Theorem 3.2. For any graph G with χ(G) = 0, a section sn exists for all natural numbers
n.

Theorem 3.3. For any graph G with χ(G) = 1, a section sn exists if and only if n ≥ 2.

We also show that when χ(G) < 0 and n < 2 − χ(G), then a section may or may not
exist by providing examples of both cases, which shows that it isn’t possible to improve our
results without appealing to more than the value of χ(G). We will fix a graph G and a
natural number n throughout.

The tools of obstruction theory are not particularly applicable to this question since the
map φn+1 is not a fibration. This follows since the fibers of a fibration are all homotopy
equivalent, whereas the fibers of φn+1 can differ wildly depending on the point. As a result,
our methods are primarily geometric, and make little use of algebraic topology. The related
problem of finding a section to the forgetting map Confn+1(M)→ Confn(M) where M is a
manifold with dimension greater than 1 has been studied, for instance in [FN62], [GG03],
[CGL20], and [Che19]. This problem is much more amenable to the tools of obstruction
theory since the forgetting map is a fibration in this case.

Another related problem is to determine whether the map φn+1 induces a split surjection on
fundamental groups. Since Confn(G) is aspherical, as proven in Theorem 3.1 of [Ghr01], this
is equivalent to finding a map sn : Confn(G)→ Confn+1(G) such that φn+1 ◦ sn ' idConfn(G).
Proposition 5.6 of [LRM21] shows that such maps always exist.
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4. Notation

We assume that each graph is equipped with its natural cellular structure such that when
G 6∼= S1, every vertex has degree 6= 2, and when G ∼= S1, then G only has one vertex. A
branched vertex is a vertex with degree ≥ 3, and a free vertex is a vertex with degree 1. An
edge e is a loop if it contains a single vertex. If we fix a homeomorphism between each edge
and I = [0, 1] (or S1 in the case that the edge is a loop) we obtain a metric d on G by taking
these homeomorphisms to be local isometries and using the shortest path metric.

A subset of a graph is called a subgraph if it is closed and connected (this is not the
standard definition, but it will prove more useful and flexible for us). A graph is a tree if it
is simply connected. A maximal subtree of a graph is a subgraph which is a tree, and which
contains every vertex. It is a basic fact of graph theory that every graph contains a maximal
subtree.

We call the elements of Confn(G) configurations, and the entries in a configuration tokens.
The integers 1, . . . , n are called indices. If p, q are distinct points in G which lie on a common
edge, then (p, q) (resp. [p, q]) is the open (resp. closed) interval they bound. In the case, for
example, where G ∼= S1 or p, q are vertices which are endpoints of multiple edges, there is
ambiguity in this definition, which we ignore, but the particular choice of edge will be clear
from context in all cases we consider. If x = (x1, . . . , xn) is a configuration, then we abuse
notation, and denote by G \ x the complement G \ {x1, . . . , xn}.

5. Basic Examples of Sections

Here we present three elementary cases where sections always exist. First we discuss
identifying functions:

Note that the data of a section is exactly the data of a function that continuously adds
a token to each configuration of Confn(G). In other words, this is equivalent to asking if
there exists a map f : Confn(G) → G such that for any x = (x1, . . . , xn) ∈ Confn(G) and
any index j, we have that f(x) 6= xj. We call any function of this form an identifying
function. Note that identifying functions are in one-to-one correspondence with sections.
For notational simplicity we will prefer to work with them henceforth.

Proposition 5.1. Suppose n = 1. If χ(G) ≤ 0 then G admits an identifying function.

Proof. If χ(G) ≤ 0, then there exists an embedded circle S1 ⊂ G and a retract r : G→ S1.
Define f : G → G by f(x) = −r(x), the point on S1 antipodal to r(x). Then f is an
identifying function. �

Proposition 5.2. If n ≥ 2 and χ(G) = 1, then G admits an identifying function.

Proof. Note that χ(G) = 1 implies that G is a tree. Therefore there exists a unique embedded
line segment between x1, x2 for each configuration x = (x1, . . . , xn). Let

δ(x) = min({d(x1, xk) : k 6= 1} ∪ {1})/2.

Then let f(x) be the point on this embedded line segment with distance δ(x) away from x1.
Then f is an identifying function. �

Proposition 5.2 is one half of Theorem 3.3. We will prove the other direction in Proposition
6.12. We conclude this section by proving Theorem 3.2.
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Proof of Theorem 3.2. The case n = 1 follows from Proposition 5.1, so assume n ≥ 2. Our
approach will be to orient each edge, and then add a point near x1 with respect to this
orientation. There is a unique embedded circle S1 ⊂ G. Orient S1, and orient each edge
in the complement of S1 so they are “pointing towards” S1 (Note the condition χ(G) = 0
implies that G is homeomorphic to a circle with trees attached, where each tree is attached
at a single point). This gives us a unique “forwards direction” at each point on G. Let

δ(x) = min{d(x1, xk) : k 6= 1}/2,
and let f(x) be the point a distance δ(x) away from x1 in the “forward direction.” Then f
is an identifying function. �

6. Connectable Components and Chasing

In this section we develop tools which can be used to prove the nonexistence of sections.
Consider the configurations x, x′ on the graph G, as depicted in Figure 1.

x3

f(x)

x1
x2 x′3

x′1

x′2

Y1 Y2

Y3

Figure 1. The configurations x, x′

As we can see, G = Θ, the graph homeomorphic to a theta, n = 3, x and x′ are the
pictured configurations, and Y1, Y2, Y3 are the connected components of G\x′. Suppose that
f is an identifying function on G, with f(x) as shown on the left. We are interested in
knowing which of Y1, Y2, Y3 contains f(x′). Intuitively, we could imagine that if we move x1

up along the central edge then we “force” f(x) to choose between either Y1 or Y2, and that
it is impossible for f(x′) to lie in Y3.

Now consider the configuration x′′ from Figure 2

x3

f(x)

x1
x2

x′′3

x′′1 x′′2

Z1
Z2

Figure 2. The configuration x′′

Note that x′′ differs from x only by moving tokens within edges, without ever entering
vertices. Therefore, we would intuitively expect that f(x′′) ∈ Z1. These facts are not
difficult to prove individually using basic concepts from point-set topology, but we would
like generalizations of them that hold for every graph and any n. The main idea is that
tokens entering branched vertices “slice up” the complement into more components, and
along paths where no token enters a branched vertex, the components of the complement do
not increase in number.
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6.1. Connectable Components. Suppose α = (α1, . . . , αn) is a path in Confn(G). We
will define a relation between the components of G \ α(0) and the components of G \ α(1).
First, we must define locally consistent systems of components along α.

Definition 6.1. Suppose α = (α1, . . . , αn) is a path in Confn(G), and suppose that for each
t ∈ I we have a connected component Xt of G \ α(t). The assignment t 7→ Xt is called a
system of components along α. Such a system is locally consistent if for each t ∈ I and each
point p ∈ Xt, there exists an ε > 0 such that p ∈ Xs for all s ∈ (t− ε, t+ ε).

We now define the relation on the components of G\α(0) and the components of G\α(1)
where α is a path in Confn(G).

Definition 6.2. Let α be a path in Confn(G). If X is a component of G \ α(0) and Y is a
component of G \ α(1), then we say that X and Y are connectable by α, or write X  α Y
if there exists a locally consistent system Xt of components along α such that X0 = X and
X1 = Y . We say that the system Xt connects X to Y (along α).

We also must consider globally consistent systems of components defined on subsets of
Confn(G).

Definition 6.3. Suppose A ⊂ Confn(G). A (globally) consistent system of components on
A consists of a connected component Xx of G \ x, for each x ∈ A, such that for any path
α : I → A, the assignment t 7→ Xα(t) is a locally consistent system of components along α.

The next proposition assures us of the essential fact that identifying functions give rise to
consistent systems of components.

Proposition 6.4. Suppose f is an identifying function. Let Xx be the component of G \ x
containing f(x). Then x 7→ Xx is a consistent system of components on Confn(G).

Proof. Let α = (α1, . . . , αn) be path in Confn(G), and let Xt = Xα(t). It suffices to show that
the assignment t 7→ Xt is a locally consistent choice of components along α. Select t ∈ I and
p ∈ Xt. Let K be a line segment in Xt connecting p to f(α(t)), and let d(α(t), K) = δ > 0.
Let φ : I → R be the continuous function defined by

φ(s) = d(α(s), K ∪ f(α([s, t])))

(where we instead write [t, s] when t < s). Since φ(t) = δ > 0, φ is positive in some
neighborhood (t − ε, t + ε) of t. For any s ∈ (t − ε, t + ε), we can see that the connected
set K ∪ f(α([s, t])) contains p and f(α(s)), and is disjoint from α(s). Therefore, it lies in a
single component of G \ α(s), which is Xs, as desired. �

Remark. Our main method of disproving the existence of sections is to show that consistent
systems of components do not exist on Confn(G).

In this section, we will prove two important facts that will allow us to compute the
relation  α for two classes of paths. These facts formalize the intuitive ideas discussed in
the opening portion of this section. Given an identifying function f , these facts will allow
us to determine by Proposition 6.4 the component of G \x containing f(x) by moving along
paths in Confn(G).

Definition 6.5. We say that a path α : I → Confn(G) is a Type I path if no token ever
enters a vertex. That is, if αi(t) is not a vertex, then for all s > t, αi(s) is also not a vertex.
We say that a path is a Type II path if each coordinate of α except one is constant, and the
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nonconstant coordinate moves directly at constant speed from the interior of an edge to a
vertex. A path that is either Type I or Type II is called basic.

Remark. If α is any path in Confn(G) such that at least two tokens never enter a branched
vertex simultaneously, then α is homotopic to a concatenation of basic paths via a homotopy
ht such that the topology of G \ ht(s) depends only on s, up to reparameterization. If two
tokens simultaneously enter branched vertices, then we can slightly perturb α such that the
tokens enter the branched vertices at different times, which does not change the relation
 α. If α, β are paths such that the concatenation α ∗ β is defined, and X is a component of
G \α(0) and Z is a component of β(1), then it is clear that X  α∗β Z if and only if there is
some component Y of G \ α(1) such that X  α Y and Y  β Z. Therefore, if we compute
the relation  α for basic paths α, we can determine it for all paths.

Our current goal is to determine exactly which components are connectable by basic paths.

6.2. Type I Paths.

Proposition 6.6. If α is a Type I path, and X is a component of G \ α(0), then there is at
most one component Y of G \ α(1) such that X  α Y .

Proof. Suppose Y, Z are distinct components of G \ α(1), and that X  α Y and X  α Z.
Suppose that Yt, Zt are locally consistent systems of components along α connecting X to
Y, Z respectively. Let

s = inf{t ∈ I : Yt 6= Zt}.
If Ys = Zs, then for any p ∈ Yt, we can take arbitrarily small ε > 0 such that Ys+ε 6= Zs+ε

and p ∈ Ys+ε. However, this implies that p /∈ Zs+ε for arbitrarily small ε, which contradicts
the fact that Zt is a locally consistent system of components. Therefore, Ys 6= Zs.

Now, select p ∈ Ys, q ∈ Zs. There exists an ε > 0 such that for all r ∈ [s− ε, s), we have
p, q ∈ Yr. Let K be an embedded line segment in Ys−ε connecting p to q. Since Ys 6= Zs,
there is some r ∈ (s−ε, s] such that for some i = 1, . . . , n we have αi(r) ∈ K. We can in fact
assume that αi(r) ∈ ∂K (where ∂ refers to the topological boundary as a subspace of G) by
possibly taking a smaller value of r. However, by our choice of ε, αi(r) 6= p, q, so αi(r) = v
for some branched vertex contained in K, since these are the only other boundary points of
K. This contradicts the fact that α is a Type I path, and we are done. �

We now describe explicitly, for any type I path α and any component X of G \ α(0), the
unique component Y of G \ α(1) such that X  α Y .

Proposition 6.7. Suppose α = (α1, . . . , αn) is a Type I path, and that X is a component of
G \ α(0). Define a component Y of G \ α(1) as follows:

(i) If X contains a vertex v, then Y is the component containing v.
(ii) If X is an open interval (αi(0), αj(0)) in an edge e and αi(t), αj(t) ∈ e for all t, then

Y = (αi(1), αj(1)) ⊂ e.
(iii) If X is an open interval (αi(0), αj(0)) in an edge e and αi(0) = v is an endpoint of

e, and αi(t) /∈ e for some t, then Y is the component containing v.
(iv) If X is a loop e without its branched vertex v = αi(0), then if αi is constant, Y = X,

and otherwise, Y is the component containing v.

Then, X  α Y .
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X

Figure 3. The case (i)

xi X xj

Figure 4. The case (ii)

xj
X xi

Figure 5. The case (iii)

xi

X

Figure 6. The case (iv)

Proof. For any t ∈ I, consider the restricted path α|[0,t]. Since any restriction of a Type I
path remains Type I, the statement of the proposition gives us a component Yt of G \ α(t).
We claim this is a locally consistent system of components along α. We proceed by proving
each of the cases separately.

(i) Select t ∈ I and p ∈ Yt. Since α is Type I, v ∈ Yt, so there exists a compact
connected K ⊂ Yt containing p and v. Let ζ = d(K,α(t)), and select ε such that for
all s ∈ (t− ε, t+ ε) and all i = 1, 2, . . . , n, we have d(αi(t), αi(s)) < ζ. Since v ∈ K,
we have K ⊂ Ys for all s ∈ (t− ε, t+ ε), so p ∈ Ys, as desired.

(ii) Select t ∈ I and p ∈ Yt. Let

ζ = min{d(αi(t), p), d(αj(t), p)},

and select ε such that d(αη(t), αη(s)) < ζ for η = i, j and s ∈ (t − ε, t + ε). Then
p ∈ (αi(s), αj(s)) = Ys for all s ∈ (t− ε, t+ ε), as desired.
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(iii) Select t ∈ I. If αi(t + ε) = v for some ε > 0, then apply (ii) to the restricted path
α|[0,t+ε]. If αi(t− ε) /∈ e for some ε > 0, then apply (i) to the restricted path α|[t−ε,1].
It suffices to consider the remaining case, where αi(t) = v but αi(t + ε) /∈ e for all
ε > 0. Select p ∈ Yt. As before, we can set

ζ = min{d(αi(t), p), d(αj(t), p)},
and select ε such that for all s ∈ (t− ε, t+ ε) we have d(αη(s), αη(t)) < ζ for η = i, j.
If s ≤ t, then Ys = (αi(s), αj(s)), which contains p. If s > t, then Ys contains v.
Since αi(s) /∈ e, [v, p] is disjoint from α(s), so p ∈ Ys.

(iv) We can modify the cellular structure of G such that G has no loops, perhaps by
adding a vertex to each loop. Since none of our techniques depend on the vertices of
G being branched, we can reduce to part (i).

�

6.3. Type II Paths. We now turn to Type II paths. We begin with a lemma.

Lemma 6.8. Suppose α is a path in Confn(G), and Xt is a system of components along
α. If Xt ⊂ Xs whenever t < s, then Xt is the only locally consistent system of components
along α starting at X0.

Proof. We can easily observe that Xt is locally consistent, so it suffices to show that this is
the unique locally consistent system of components along α starting at X0. Suppose Yt is
another such system, and let

s = inf{t ∈ I : Xt 6= Yt}.
By the argument from the proof of Proposition 6.6, we can see that in fact Xs 6= Ys. Select
p ∈ Ys, and ε such that p ∈ Yr for all r ∈ [s − ε, s]. Since Yr = Xr by assumption, and
Xr ⊂ Xs, we have p ∈ Xs, a contradiction. �

We can now compute the relation  α when α is a Type II path.

Proposition 6.9. Let α = (α1, . . . , αn) be a Type II path where αi is the unique nonconstant
coordinate, and therefore has constant speed, and αi(1) = v for some vertex v. Suppose that
the components of G \ α(0), G \ α(1) near v are labelled as in the picture below (note that
X1, X2 and Y1, . . . , Yk are not necessarily distinct). If X = X1, and X1, X2 are distinct, then
Y = Y1, and if X = X2 then Y = Yj for some j ≥ 2 . If X = Z for some other component
Z, then Y = Z.

Proof. First, suppose that X = X1 and that X1, X2 are distinct. Then, we can define a
system of components Zt, such that Zt is the component of G \ α(t) containing X1. By
Lemma 6.8, this is the unique locally consistent system of components starting at X1, so
Y = Y1.

Now suppose that X = X2, and that Zt is a locally consistent system of components
starting at X2. It suffices to show that

Z1 ⊂ Y2 ∪ · · · ∪ Yk.
Select p ∈ Z1, and ε such that p ∈ Zs whenever s ∈ [1 − ε, 1]. For any s < 1, we note that
the restriction α|[0,s] is a Type I path, which implies that Zs is the component of G \ α(s)
containing v by Proposition 6.7(i). When Y1 = Yj for some j ≥ 2, this implies that

Zs = (Y2 ∪ · · · ∪ Yk) \ {αi(s)},
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X2

X1

Y1

Y2

Y3

Y4
Y5

and since p ∈ Z1−ε, this implies that p is in Yj for some j ≥ 2, as desired. When Y1 6= Yj
for all j ≥ 2, then

Zs = Y2 ∪ · · · ∪ Yk ∪ [αi(s), v].

If we can show p /∈ [αi(1 − ε), v], then we are done. However, this is impossible, since
otherwise there would be some s ∈ (1 − ε, 1) such that αi(s) = p, which contradicts our
choice of ε. This completes the proof. �

Propositions 6.7 and 6.9 are generally used in conjunction with Proposition 6.4. If we
have a basic path α, and an identifying function f with f(α(0)) ∈ X for some component
X of G \ α(0), then we obtain by Proposition 6.4 a locally consistent choice of components
along α. We can then use either Proposition 6.7 or Proposition 6.9 to determine the possible
components of G \ α(1) which can contain f(α(1)).

6.4. Applications. Our first important application of Propositions 6.7 and 6.9 is the “chas-
ing” lemma:

Lemma 6.10 (Chasing). Suppose f is an identifying function, and x = (x1, . . . , xn) is a
configuration. Let X denote the connected component of G \ x containing f(x), and suppose
that X ∪ {x1} is simply connected. Then there exists some point p ∈ X and an integer
2 ≤ j ≤ n such that if x′ = (p, x2, . . . , xn), then f(x′) ∈ (xj, p).

Proof. We induct on the number of vertices k in X. If k = 0, then X is an interval, so we
can merely take p = x1.

Suppose we know the result for all ` < k. Since X ∪ {x1} remains connected when x1

is removed, x1 must have degree 1 in the closure of X, since any point which is not a free
vertex disconnects a simply connected 1-complex when removed. Consider the Type II path
α in Confn(G) such that α1(0) = x1 and α1 moves along the unique edge in the closure of X
which is connected to x1. Let v = α1(1), and let X ′ be the connected component of G \α(1)
containing f(α(1)). By Proposition 6.9, X ′ borders v and x1 /∈ X ′. Therefore, X ′ ∪ {v} is
simply connected, since it is a connected subset of a tree. Since v /∈ X ′ and X ′ ⊂ X, X ′
contains fewer than k vertices, so we are done by the inductive hypothesis. �

Of course, the chasing lemma applies equally well when x1 is replaced by any other token.
The chasing lemma, while simple, is an important aspect of the proof of the main theorem.
When we apply it (with xi taking the role of x1) we say that we are “chasing with xi.”
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The following corollary is worth noting separately:

Corollary 6.11. If f is an identifying function on G, and T ⊂ G is a subtree of G which
is connected to the rest of G by a single point p, then for any configuration of the form
x = (p, x2, . . . , xn) with x2, . . . , xn /∈ T , we have f(x) /∈ T .
Proof. Suppose that x = (p, x2, . . . , xn) is such that x2, . . . , xn /∈ T , and f(x) ∈ T . Then,
applying Lemma 6.10, there is some i = 2, . . . , n and p′ ∈ T such that if x′ = (p′, x2, . . . , xn),
then f(x′) ∈ (p′, xi). If p′ 6= p, then this is a contradiction since xi /∈ T , and if there is
any interval where exactly one endpoint is in T , then that endpoint must be in ∂T , and
therefore be equal to p. However, if p′ = p, then x′ = x, and we have f(x) /∈ T , which is a
contradiction, so we are done. �

We can now prove the second half of Theorem 3.3.

Proposition 6.12. Suppose χ(G) = 1 and n = 1. Then G does not admit a section.

Proof. Suppose f : G→ G is an identifying function. Given any point p ∈ G, p separates G
into subtrees T1, . . . , Tk. However, by Corollary 6.11, f(p) can be contained in none of them,
which is a contradiction. �

Note that Proposition 6.12 is a generalization of the 1-dimensional Brouwer fixed-point
theorem, as it says that for any tree T (not just the interval I), any continuous map T → T
has a fixed point.

Remark. This discussion gives an algebraic necessity for the existence of a section. Let
PBn(G) = π1(Confn(G)) denote the n’th pure braid group of G. Suppose that Xx is a
consistent system of components on Confn(G). Let H < PBn+1(G) be the set of homotopy
classes of paths which can be represented by a path α = (α1, . . . , αn+1) such that αn+1(t) ∈
X(α1(t),...,αn(t))) for all t ∈ I. One can verify that H is a subgroup of PBn+1(G). Then, if
s : Confn(G)→ Confn+1(G) is a section whose corresponding system of components (in the
sense of Proposition 6.4) isXx, then the image of the induced map s∗ : PBn(G)→ PBn+1(G)
must lie in H, since for any based loop β in Confn(G), the composition s ◦ β represents an
element of H. Therefore, if a section exists then there exists some consistent choice of
components Xx such that the restricted map:

H ↪→ PBn+1(G)→ PBn(G)

admits a section.

7. Proof of Theorem 3.1

In this section, we prove Theorem 3.1 and some necessary lemmas.

7.1. Distinguished Pairs. First we define and discuss the basic properties of distinguished
pairs, which occur when, for a configuration x and identifying function f , f(x) lies between
two tokens of x. We will show that the existence of such pairs allow us to draw broad
conclusions about the existence of sections, culminating in the proof of Theorem 3.1. Recall
the open interval (p, q) notation introduced at the start of Section 5.

Definition 7.1. Suppose G 6∼= S1, and e is an oriented edge such that G remains connected
when a single interior point of e is removed, and suppose that f is an identifying function
on G. If i, j are a pair of distinct indices, we say that (i, j) forms a distinguished pair (of f)
on e if there exists a configuration x = (x1, . . . , xn) such that:
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(a) xi, xj ∈ e,
(b) xi lies before xj on e with respect to the orientation on e,
(c) xk /∈ (xi, xj) for all k,
(d) f(x) ∈ (xi, xj).

We then say that the configuration x is a witness to the distinguished pair (i, j).

xi
f(x) xj

Figure 7. A witness to a distinguished pair (i, j)

Note that if f is an identifying function and x = (x1, . . . , xn) is a configuration which
satisfies the hypotheses of Lemma 6.10 with respect to f , and additionally G \ {x`} is
connected for each ` ≥ 2, then the conclusion of Lemma 6.10 in fact produces a distinguished
pair containing 1.

Next we state and prove the most important fact about distinguished pairs.

Proposition 7.2. If (i, j) is a distinguished pair on e, and y = (y1, . . . , yn) is a configuration
which satisfies the properties (a)-(c) in Definition 7.1 with respect to (i, j) for f , then y also
satisfies property (d), that is, it is a witness to (i, j).

Proof. Let x = (x1, . . . , xn) to (i, j) be a witness to (i, j), and let y = (y1, . . . , y2) be as in
the proposition statement. Our goal is to construct a path α = (α1, . . . , αn) in Confn(G)
connecting x, y such that αi, αj never leave e, which is a concatenation of basic paths. This
will imply by Propositions 6.7 and 6.9 that f(y) ∈ (yi, yj).

First consider the case where none of the x` with ` 6= i, j lie in e, and yi, yj lie in the
interior of e. Then, we can take α to first move the i’th and j’th tokens to yi, yj respectively,
and then move each of the remaining n − 2 tokens of x to the corresponding tokens of y.
Since Confn−2(G \ [xi, xj]) is connected by Theorem 2.7 of [Abr00], this is possible.

If (say) yi is at an endpoint of e, then let y′i be a point in e which is very close to yi. We
can modify the path α above by initially moving xi to y′i, and then moving y′i to yi once the
remaining n− 2 tokens agree with y.

If some of the x` lie in e for ` 6= i, j, then we can first apply a path which moves each of
these x` outside of e, and then reduce to the previous case.

All these paths can be taken to be concatenations of basic paths, so we are done. �

Proposition 7.2 gives rise to the very useful observation:

Corollary 7.3. If (i, j) is a distinguished pair on e and (k, `) is a distinguished pair on e′,
then {i, j} ∩ {k, `} 6= ∅

Proof. Suppose (i, j), (k, `), are distinguished pairs such that {i, j} ∩ {k, `} = ∅. Then, we
can find a configuration x = (x1, . . . , xn) satisfying the hypotheses for Proposition (7.2) with
respect to both distinguished pairs. This necessitates f(x) ∈ (xi, xj) and f(x) ∈ (xk, x`),
which is a contradiction. �
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7.2. The Case n > 3. We now present the proof of the main theorem in the case n > 3:
Suppose f is an identifying function, and consider the statements below:
(A) Every index belongs to some distinguished pair of f .
(B) No index belongs to every distinguished pair of f .

Lemma 7.4. If n > 3 and f : Confn(G)→ G is an identifying function, then the statements
(A), (B) are not simultaneously true of f .

Proof. Suppose that statements (A), (B) are both true, and suppose without loss of gen-
erality that (1, 2) is a distinguished pair. Then 3 is contained in some distinguished pair,
(i, 3). If i 6= 1, 2, then this contradicts Corollary 7.3, so suppose i = 1. Then, (1, 4) must
be a distinguished pair, since if 4 is in any other distinguished pair, we can produce a coun-
terexample to Corollary 7.3. By (B), there is some distinguished pair (i, j) with i, j 6= 1.
This contradicts Corollary 7.3 applied to either the pairs (i, j) and (1, 2), the pairs (i, j) and
(1, 3), or the pairs (i, j) and (1, 4), depending on i, j. �

It therefore suffices to establish that (A) and (B) hold when n ≥ 2− χ(G) and χ(G) < 0.

Proof of (A) when n ≥ 2− χ(G). Let T be a maximal subtree of G, let k = 1−χ(G), and let
e1, e2, . . . , ek be the edges in the complement of T . Let A1, A2 be closed intervals contained
in the interiors of e1, e2 respectively, and let

γ : I → T ∪ e1 ∪ e2

be an embedded path connecting an endpoint of A1 to an endpoint of A2, such that the
intersection of the image of γ with A1∪A2 is exactly these two endpoints. We can assume that
T is not contained in the image of γ (if not, enlarge T slightly so that it is not homeomorphic
to an interval). The situation is summarized in Figure 8.

e1

e2

e3
e4

e5

e6

γ

A1

A2

T

Figure 8. A graph G with labelled edges, with labelled A1, A2 and γ.

We will prove that 1 is contained in some distinguished pair. Let x1 ∈ G be a point in
T not contained in the image of γ. Let x2, . . . , xk−1 be points in the interiors of e3, . . . , ek
respectively. Let xk, . . . , xn−1 be points spaced out equally in A1 in order such that xn−1 is
on the endpoint contained in the image of γ, and let xn be the endpoint of A2 not contained
in the image of γ. Let x = (x1, . . . , xn). The configuration x is pictured in Figure 9.
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x1

x2
x3

x4

x5

x6
x7

xn−1

xn

Figure 9. The configuration x

The connected components of (G \ x)∪ {x1} are the intervals (xk, xk+1), . . . , (xn−2, xn−1),
and a large simply connected component X which contains x1. If f(x) ∈ X, then let X̃ be
the component of X \ {x1} containing f(x). Note that X̃ ∪ {x1} is simply connected, so we
can apply Lemma 6.10 to produce a distinguished pair containing 1, as desired.

Otherwise, suppose that f(x) ∈ (xn−2, xn−1) (the cases when f(x) lies in a different of
these intervals is similar, by renumbering the indices and using Proposition 7.2). Let α be
the path in Confn(G) which moves xn−1 along γ, and fixes each of the other tokens. Call
the ending configuration

x′ = (x1, . . . , xn−2, γ(1), xn),

and let X ′ be the big simply connected component in (G\x′)∪{x1}. For each t, let Xt be the
component of G \ β(t) which contains (xn−2, xn−1). Note that Xt is a system of components
which satisfies the hypotheses of Lemma 6.8, which implies that f(x′) ∈ X1 = X ′. As before,
we can apply Lemma 6.10 to x′ to produce a distinguished pair containing 1. �

Proof of (B) when n ≥ 2− χ(G). Suppose for sake of contradiction that 1 is in every dis-
tinguished pair, and that (1, 2) is a distinguished pair in e1 (a distinguished pair exists by
(A)). Recall that this equips e1 with an specified orientation. Let T be a maximal subtree
not containing e1, and let e2 be some other edge in G \ T . Suppose further that T “peeks
in” to each edge, such that each point in ∂T is contained in the closure of exactly one edge
in G \ T . Figure 10 shows an example of one of these constructions.

Let e3, . . . , ek be the other edges not contained in T , where k = 1−χ(G), as before. Let H
be the subgraph formed from T ∪e1∪e2 by removing free edges until every vertex has degree
at least 3. Since H is a deformation retract of T ∪ e1 ∪ e2, we can see that χ(H) = −1, and
H has no free edges. Therefore H is homeomorphic to either the figure eight graph (∞), the
theta graph (Θ), or the dumbbell graph D. The three possibilities are pictured in Figure 11.
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e1
e2

T

Figure 10

e1 e2 e1 e2

e1 e2

Figure 11. Neighborhoods of the possible subgraphs H

Define a configuration x = (x1, . . . , xn) as follows: Let x3, x4, x5, . . . , xk+1 be points in
the interior of e2, e3, . . . , ek, respectively. In the interior of e1, place x2, xk+2, . . . , xn equally
spaced apart in e1, such that x2 is farthest back on e1 with respect to the orientation on e1,
and let A = [x2, xn]. Finally, place x1 on a branched vertex in T ∩H as follows:

(i) When H =∞, then x1 is the unique branched vertex of H.
(ii) When H = Θ, then x1 is the branched vertex of H closer to the back end of e1, such

that when x1 slides into e1, we obtain a witness to (1, 2).
(iii) When H = D, then x1 is the branched vertex of H lying closer to e2

Further, let B = G \ (x∪A), and label the components of G \B by X, Y, Z (and X ′ when
H =∞) as indicated in Figure 12.

When we slide x1 into the back of e1, we obtain a witness to (1, 2) by Proposition 7.2, and
the reverse path gives a locally system of components by Lemma 6.8, which implies exactly
that f(x) ∈ X.
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A

x2

xn

x1

X

X ′

x3

Y

Z

A

x2

xn

x1 x3

X Y

Z

A

x2

xn

x1

x3

X Y

Z

Figure 12. The components X, Y, Z, (and X ′) of G \B.

Let x′ = (x3, x2, x1, x4, . . . , xn) be the configuration which is x except with x1 and x3

swapped. We will argue that f(x′) cannot lie in any component of B. If f(x′) ∈ X (or X ′),
then applying Lemma 6.10 with x3 produces a distinguished pair which does not contain 1.
Therefore we must have f(x′) ∈ Y or f(x′) ∈ Z.

We will define two paths β = (β1, . . . , βn) and γ = (γ1, . . . , γn) in Confn(G) from x to
x′ which will allow us to see that neither case is possible. Take each of these paths to be
concatenations of basic paths which fix each token except for the first and third, and such
that β moves x1, x3 around the right loop in H a half-turn clockwise, and γ moves x1, x3

around the right loop in H a half-turn counter-clockwise1.
Note that for each t, there are exactly two components of G\β(t) which border both β1(t)

and β3(t). Since β1, β3 both move clockwise, β1, β3 are each moving “towards” a specific
well-defined component at each t, and they likewise are each moving “away” from a specific
well-defined component at each time. Further, for t such that β1(t) 6= x1, the path β1 is
moving “away” from the component that β3 is moving “towards.” Our immediate goal is to
show that f(x′) = f(β(1)) must lie in the component of G \ β(1) which β1 is moving away
from. We show this inductively on the basic pieces of β.

Consider a Type I piece of β. We can see that f must remain in the component β1 is
moving away from by Propositions 6.6 and 6.7.

Consider a Type II piece of β where only β1 moves to a vertex v. Since the component
that β1 is moving away from is distinct from the components bordering v, we can deduce by

1Here “clockwise” and “counter-clockwise” are with respect to the orientations implied by the figure
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Proposition 6.9 that f must remain in the component which f is moving away from at the
end of this basic piece.

Finally, consider a Type II piece of β where β3 moves, and suppose that f takes values
in a component of G \ β which borders β3. Since we inductively assume that f lies in the
component of G \ β which β1 is moving away from, f must lie on the component of G \ β
that β3 is moving towards. Therefore, once β3 reaches the end of this Type II piece at some
time t, f must lie in some component W of G \ β(t) which borders β3(t) but is not behind
β3 at t by Proposition 6.9. If W does not border β1(t), then by our construction of the
configuration x, W ∪ {β3(t)} is simply connected, so we can apply Lemma 6.10 to produce
a distinguished pair which does not contain 1. Therefore, W must border β1(t), so it must
in fact be the component which β3 is moving towards, and therefore the component which
β1 is moving away from.

We have shown that f(x′) is in the component which β1 is moving away from. Since β
moves clockwise, we must have f(x′) ∈ Y . However, if we apply the exact same argument
with γ, we get f(x′) ∈ Z, which is a contradiction. �

7.3. The Case n = 3. When n = 3 and χ(G) = −1, the statements (A) and (B) do not
contradict Corollary 7.3, so we must rely on a different technique. We first introduce a
proposition which simplifies the proof.

Proposition 7.5. Suppose H ⊂ G is a deformation retract of G, and suppose there exists
an identifying function on G. Then there exists an identifying function on H.

Proof. Since H is a deformation retract of G, G can be obtained from H by attaching trees
to H at single points. Therefore, there exists a retract r : G → H which collapses each of
these trees to a single point. We define g : Confn(H) → H by g(x) = r(f(x)). We can see
that g is continuous, and we can show that it is also an identifying function. Suppose that
x = (x1, . . . , xi) is a configuration, and suppose xi = r(f(x)). Then f(x) ∈ T for some tree
T attached to G. Corollary 6.11 produces a contradiction. �

Finally, we present another consequence of Proposition 7.2 which will be useful to us.

Proposition 7.6. If (i, j) and (k, i) are distinguished pairs on e, then j = k.

Proof. Suppose otherwise, then we can construct a configuration x = (x1, . . . , xn) which is a
simultaneous witness to (i, j) and (k, i), by picking xi, xj, xk all lying on e with xk < xi < xj
with respect to the orientation on e, and no other tokens contained in the interval [xk, xj]. By
Proposition 7.2, such a configuration is a witness to both distinguished pairs, necessitating
f(x) ∈ (xi, xj) and f(x) ∈ (xk, xi), which is a contradiction. �

We can now present the final portion of the proof of Theorem 3.1.

Proof when n = 3 and χ(G) = −1. It suffices to consider this in the case where G has no
free vertices by Prop 7.5. The only such graphs with χ(G) = −1 are the graphs ∞, Θ, and
D as before. Suppose for sake of contradiction that f is an identifying function on G.

We will define two functions
Hor : Σ3 → {±1},
Ver : Σ3 → {±1}.

For a permutation σ ∈ Σ3, consider the configuration xσ depicted in Figure 13.
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xσ,1 xσ,2
xσ,3 xσ,1 xσ,2 xσ,3 xσ,1

xσ,2
xσ,3

Figure 13. The configurations xσ

Denote by xσ,i the i’th token of xσ. We consider the components of G \ xσ to be either on
the “top” or “bottom,” (resp. “left,” “right”) corresponding to their depictions in the figure.
When G = ∞,Θ, then we say Ver(σ) = +1 if f(xσ) lies in one of the top components of
G \ xσ, and Ver(σ) = −1 otherwise. Similarly, when G = ∞, D we say Hor(σ) = +1 if
f(xσ) lies in one of the right components of G \xσ and Hor(σ) = −1 otherwise. To compute
Ver for G = D, define x′σ to be the configuration obtained by moving along a Type II path
which moves xσ,2 towards f(xσ). By Proposition 6.9, f(x′σ) lies in either the top or bottom
component of G \ x′σ contained in the loop containing xσ,2. We say that Ver(σ) = +1 if
f(x′σ) is in the top component of G \ x′σ in this loop, and Ver(σ) = −1 if f(x′σ) is in the
bottom component of G. Similarly, for G = Θ, define x′σ to be the configuration obtained by
moving along a Type II path which moves xσ,2 towards f(xσ). As before, we can conclude
by Proposition 6.9 that f(x′σ) lies on one of the components of G \ x′σ in the direction that
xσ,2 moved. We can therefore define Hor(σ) = +1 if f(x′σ) ∈ (x′σ,2, x

′
σ,3), and Hor(σ) = −1

otherwise. Figure 14 shows a particular example of this construction.

x′σ,1

x′σ,2 f(x′σ)
x′σ,3 x′σ,1

x′σ,2

f(x′σ)

x′σ,3

Figure 14

Label the edges containing xσ,1 and xσ,3 by e1, e3 respectively. Note that Ver and Hor
associate a distinguished pair to each σ which contains σ(2). Explicitly, this association is
given by:

σ 7→ (σ(2), σ(2 + Hor(σ))) on Ver(σ) · e2+Hor(σ),

where e1, e3 are equipped with appropriate orientation, and where {±1} acts on the ori-
ented edges of G by changing orientation. Our next task is to determine how Ver and Hor
interact with the multiplication in Σ3. By possibly applying a symmetry to G, assume that
Hor(id) = Ver(id) = +1. We make the following claims for all σ ∈ Σ3:

Hor(σ) = +1,

Ver((12)σ) = Ver(σ),

Ver((23)σ) = −Ver(σ).

If we can prove these claims, then the remainder of the proof is simple, since we can write:

Ver(id) = Ver((123)(123)(123)) = Ver((12)(23)(12)(23)(12)(23)) = −Ver(id),
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a contradiction.
All that remains is to prove the claim. We will prove this only in the case G = ∞, but

the other cases are not so different.
We will show that Hor((12)) = Hor((23)) = Ver((12)) = +1, and Ver((23)) = −1. This

will imply the rest of the claim by replacing f with the identifying function fσ, defined by

(x1, x2, x3) 7→ f(xσ(1), xσ(2), xσ(3)).

Suppose the components of G \ xid are labelled as in Figure 15

X1

X3

X2

X4

Figure 15. The components of G \ xid

By assumption, we have f(xid) ∈ X2. Consider the path α between xid and x(23) which
rotates xid,2 and xid,3 a half turn clockwise around the loop on the right. By representing α
as a concatenation of a Type I and Type II path, we can see using Propositions 6.7 and 6.9
that f(x(23)) ∈ X4, so Ver((23)) = −1 and Hor((23)) = +1.

Now, consider the path β1 from xid and x(12) which rotates xid,1 and xid,2 clockwise a
half-turn around the right circle, and the path β2 which rotates them counter-clockwise a
half-turn. By representing these as concatenations of a Type I and a Type II path, we can
use Propositions 6.7 and 6.9 to show that X2 6 β1 X1, and X2 6 β2 X3. Finally, Proposition
7.6 shows that f(x(12)) /∈ X3, otherwise (2, 3), (3, 1) would both be distinguished pairs in e3.
Therefore, f(x(12)) ∈ X2, so Ver((12)) = Hor((12)) = +1, thereby establishing the claim,
and concluding the proof. �

8. A Combinatorial Model

In this section, we discuss Kn(G), a combinatorial approximation to the spaces Confn(G)
which was introduced in [Lü14]. These spaces are very useful for constructing sections in the
cases when they exist, as we will show that partially defined identifying functions on Kn(G)
often extend to Confn(G).

The outline of this section is as follows: we will first define a poset Pn(G), which is defined
slightly differently from the definition given in [Lü14], but the two are easily seen to be
equivalent. We will define Kn(G) as the cube complex whose face poset is Pn(G), and state
without proof the fact that Kn(G) embeds as a deformation retract of Confn(G). We will
conclude by discussing which identifying functions on Kn(G) extend to Confn(G).

Let E be the set of oriented edges of G, and let Ē ⊂ E be the set of positively oriented
edges, where we fix some positive orientation on each edge. Let B be the set of branched
vertices of G. For each e ∈ E , let ve be the endpoint of e in the direction that e is pointing,
and let ē be the element of Ē corresponding to e. Recall that an index denotes an integer
1, . . . , n. First we define the k-dimensional faces of Pn(G).

Definition 8.1. A k-face F of Pn(G) associates indices to the elements of Ē t B t E as
follows:
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(i) To each positively oriented edge ē ∈ Ē , there is an ordered tuple of associated indices:
F (ē) = (iē,1, . . . , iē,`).

(ii) To each branched vertex v ∈ B, there is at most one associated index F (v) = iv.
(iii) To exactly k oriented edges e ∈ E such that ve ∈ B, there is an associated index

F (e) = ie.
(iv) Each index occurs exactly once as an index associated to an element of Ē t B t E .
(v) For each vertex v ∈ B, there is at most one index of the form F (v) or F (e), where

e ∈ E is an oriented edge with ve = v.

This gives a definition of Pn(G) as a graded set. We now can define the partial ordering.

Definition 8.2. If F is a k-face, and e ∈ E is an oriented edge such that F (e) is defined,
then we will define two (k − 1)-faces, F+

e and F−e , which we will use to define the order on
Pn(G). First, we define F+

e as follows:
(i) F+

e (ē′) = F (ē′) for all ē′ ∈ Ē .
(ii) F+

e (ve) = F (e). For v ∈ B with v 6= ve, F+
e (v) exists if and only if F (v) does, and if

they are defined, the two are equal.
(iii) F+

e (e) is undefined, and for e′ ∈ E with e′ 6= e, F+
e (e′) is defined if and only if F (e)

is, and if they are defined, the two are equal.
Now we define F−e as follows:

(i) F−e (ē) is equal to F (ē) with F (e) attached to the back when e = ē (that is, when
e has positive orientation), and F (ē) with F (e) attached to the front when −e = ē.
For ē′ ∈ Ē with ē′ 6= ē, define F−e (ē′) = F (ē′).

(ii) For v ∈ B, F−e (v) exists if and only if F (v) does, and when they both exist the two
are equal.

(iii) F−e (e) is undefined, and for e′ ∈ E with e′ 6= e, F−e (e′) exists if and only if F (e′) does,
and when they both exist the two are equal.

One can verify that F+
e and F−e are indeed (k − 1)-faces of Pn(G). We define the ordering

� on Pn(G) to be generated by the relations F � F+
e and F � F−e for each face F and each

oriented edge e such that F (e) exists.

The important facts about Pn(G) are summarized in the following theorem, whose state-
ments are proven in [Lü14].

Theorem 8.3. The graded poset Pn(G) is the face poset of a unique (up to isomorphism)
abstract cube complex Kn(G). There is an embedding i : Kn(G) ↪→ Confn(G), and a de-
formation retract ht : Confn(G) → Confn(G) of Confn(G) onto the image of Kn(G) in
Confn(G). In addition, the following holds:

(a) The embedding i takes vertices of Kn(G) exactly to the configurations where the tokens
are spread out evenly on each edge.

(b) For any configuration x ∈ Confn(G), no tokens of x leave or enter any edges or
vertices along the path t 7→ ht(x). Alternatively, the paths t 7→ ht(x) and t 7→ h1−t(x)
are both Type I for every x.

(c) Tokens of configurations in Kn(G) are uniformly far from each other. That is, there
exists some ε > 0 such that for all x = (x1, . . . , xn) ∈ Kn(G), we have d(xi, xj) ≥ ε.

Corollary 8.4. If G has k branched vertices, then Confn(G) has the homotopy type of a
min{k, n}-dimensional cell complex.
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Proof. Indeed, one can check that Kn(G) is min{k, n} dimensional. Details can be found in
[Lü14]. �

Intuitively, we can imagine the vertices of Kn(G) to be the configurations of Confn(G)
where the vertices in each edge are equally spaced, as suggested in Theorem 8.3(a). Given
such a configuration x, we discuss how to define the associated vertex F of Pn(G). For a
positively oriented edge ē ∈ Ē , set F (ē) to be the tuple of indices whose corresponding tokens
of x lie in ē, ordered consistently with the orientation on ē. For a branched vertex v ∈ B,
set F (v) to be the index of the token of x, if it exists, occupying v.

An edge in Kn(G) corresponds to a continuous move between vertices of Kn(G) which
moves a single token from a vertex into the interior of an edge. Similarly, a k-dimensional
face corresponds to a set of k moves which can be performed consistently, that is, they
involve distinct vertices and tokens.

In our construction of the poset Pn(G), for a fixed face F , the indices associated with
positively oriented edges ē and vertices v correspond to tokens which are essentially fixed on
the image of F , and the location of the token corresponding to such an index is determined by
which positively oriented edge or vertex it is associated to. Conversely, the indices associated
to oriented edges e correspond to tokens which can move from the interior of e to the vertex
ve throughout F . For such an e, the associated face F+

e corresponds to the boundary face of
F where the moving token on e is instead taken to be stationary at ve, and F−e corresponds
to the boundary face where the moving token on e is taken to be stationary on the interior
of e.

Example 8.5. Let G be the dumbbell graph pictured in Figure 16, with the given labels
and choices of positive orientations, and let n = 5.

e1
b1 e3

b2 e2

Figure 16

A vertex of Kn(G) maps to a configuration like x, pictured in Figure 17, such that the
vertices on each edge are evenly spaced apart.

x1
x2

x5

x4

x3

Figure 17

Let Fx be the 0-face which maps to x. Explicitly, we can compute:

F (ē1) = (3, 1, 5),

F (ē2) = (4),

F (b2) = 2,

and every other value of F is trivial.
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We now turn to the question of extending identifying functions defined on Kn(G) to
Confn(G).

The important fact is that under certain mild conditions, we can extend any identifying
function defined on Kn(G) to all of Confn(G).

Definition 8.6. Suppose A ⊂ Kn(G) is a subset containing the 0-skeleton of Kn(G), and
f : A → G is a partially defined identifying function. We say that f is extendable if the
following situation never occurs: Select a free edge e (edge connected to a free vertex) which
is connected to a branched vertex v. Then there exists a vertex F of Kn(G) where F (v)
exists, F (ē) is empty, and f(F ) ∈ e.
Proposition 8.7. A partially defined identifying function f : Kn(G) → G extends to an
identifying function on Confn(G) if and only if f is extendable.

Proof. Suppose f is extendable, and let x = (x1, . . . , xn) be a configuration, let y = (y1, . . . , yn) =
h1(x), and let p = f(y). If p is a branched vertex of G, then define f(x) = p. Note that
p 6= x1, . . . , xn, since the path t 7→ h1−t is Type I by Theorem 8.3(b). If p is not a branched
vertex of G, then p lies in some component A of G\ (h1(x)∪B). Note that A must be either:
an open interval (a1, a2) or a half-open interval (a1, a2], where a2 is a free vertex of G. Let
V be the set of (branched or free) vertices of G. Define a function

ψ : {y1, . . . , yn} t V → G

by:

ψ(q) =

{
xj q = yj
q q ∈ V

.

We would like to define f(x) to lie in the open interval (ψ(a1), ψ(a2)), where we take
a1, a2 ∈ {y1, . . . , yn} if possible.

First we must check that (ψ(a1), ψ(a2)) is nonempty. If ψ(a1) = ψ(a2), then we must have
that a2 is a free vertex of G and a1 = yj for some j. Then, there is a path in Confn(G)
from y to a vertex F of Kn(G) such that yj moves directly onto the nearest branched vertex
v. By Lemma 6.8 and Proposition 6.9, if f extends, we must have f(F ) ∈ [a2, v), which
contradicts the fact that f is extendable. Therefore (ψ(a1), ψ(a2)) is a nonempty interval.

We define f(x) to lie between ψ(a1), ψ(a2) in the same proportion that f(y) lies between
a1, a2. This defines f on Confn(G), and it is easily verified to be a continuous identifying
function.

Now suppose f is not extendable. Note that the situation in Definition 8.6 contradicts
Corollary 6.11, so f does not extend to an identifying function on Confn(G). �

Corollary 8.8. If G has no free vertices, then every identifying function on Kn(G) extends
to Confn(G).

9. Sharpness of n ≥ 2− χ(G)

In this section we use the methods of Section 8 to show that we cannot make any stronger
claims about the existence or nonexistence of sections based only on the homotopy type of a
graph, that is, whenever n < 2− χ(G) and χ(G) < 0, it is impossible to determine whether
G admits an identifying function. First, we prove an existence result.

Proposition 9.1. Suppose G contains a vertex w, such that G \ w contains k components
which are connected to w at least twice. Then, if n ≤ k, G admits an identifying function.
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Proof. First, we consider the graph H =
∨k

1 S
1
k , a wedge of k circles, where k ≥ n. Let v be

the unique branched vertex, and let p1, . . . , pk be the points such that pi is the point of S1
i

antipodal to v. Let S be the set {1, 2, . . . , k}, and let F be the class of functions ψ : S → N
such that ∑

s∈S

ψ(s) = n− 1.

Let h : F → S be a function such that ψ((h(ψ))) = 0 for all ψ ∈ F . Since k ≥ n, such a
function always exists.

Select some small ε > 0, and let M ⊂ Hn be the subset:

M = {(x1, . . . , xn) : xi ∈ H, there is at most one i such that d(xi, v) < ε}.
(note that we do not require the xi to be distinct). We will define a Σn-invariant identifying
function on M , that is, a function f : M → H such that f(x1, . . . , xn) 6= xi for all x =
(x1, . . . , xn) ∈ M , and i = 1, . . . , n such that f(σx) = f(x), where Σn acts on M by
permuting indices. Let N ⊂ H be the ε-neighborhood of v, and let A = (G \ N)n and
B = N × (G \ N)n−1. Note that A and B are disjoint, and every element of M is in the
Σn-orbit of an element in A or B (but not both), so it suffices to define f on A ∪B. On A,
we simply define f to be constantly equal to v. On B, we will define f separately on each
component X of B. For each X, we can define a function ψX : S → N by setting ψX(i) to
be the number of tokens of an element of X contained in S1

i \ N . Clearly, ψX ∈ F . Let
π : B → N be the projection of B onto N . We can define a map λ : N̄ → S1

h(ψX) such that:
(a) λ(v) = ph(ψX)

(b) For each free vertex u of N̄ , λ(u) = v
(c) λ has no fixed points, that is, λ(q) 6= q for all q ∈ N ∩ S1

h(ψX).
By the definition of h, ψX(h(ψX)) = 0, so Sh(ψX) contains no tokens of any element of X by
the definition of ψX . Therefore, such a map exists. We define f = λ ◦ π on X. This is an
identifying function on X, and by applying this process to all components of B, we get an
identifying function on B. Further, by taking f to be Σn invariant, we get an identifying
function on M , as desired, by noting that the local definitions of f glue continuously.

Now, we turn to the task of defining an identifying function on G. By our assumptions
on w, there exists an embedding i : H ↪→ G such that i(v) = w, and a retract r : G → H
such that r−1(w) = {v}. Note that r induces a map R : Kn(G)→ Hn, by applying r to each
token of a configuration. By Theorem 8.3(c), there is some ε such that at most one token
of any configuration of Kn(G) is within ε of w. Taking sufficiently small ε, we can see that
this implies that R(Kn(G)) ⊂ M . Then, let g = i ◦ f ◦ R, where f is as constructed above.
For any x ∈ Kn(G), note that none of the tokens of x lie in the image of the circle which
contains g(x), so g is a partially defined identifying function. Further, the image of H in G
intersects no free edges, so g is extendable, and by Proposition 8.7, we conclude.

�

Now we present a class of examples with n < 2− χ(G) where sections do not exist.

Example 9.2 (Wedge of balloons). Let B be the balloon graph, as pictured in Figure 18
Suppose G =

∨k
1 B is a wedge of balloons, glued at the free vertices of each balloon, and

suppose that n ≤ k. If n ≥ 2, then statement (A) holds, and if n ≥ 3, statement (B) holds,
and the proofs of these are quite similar to the proof of Theorem 3.1. The key observation
is that whenever we have a configuration x with f(x) in a copy of B and a token (say x1)
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Figure 18

as depicted in Figure 19, there always exists a distinguished pair (1, j) in the circle in that
copy of B (in fact for any j 6= 1, possibly after changing orientation).

x1

f(x)

Figure 19

To see why, note that we can slide any token xj into B, and continue through the path
depicted by Figure 20.

x1

f(x)

xj x1

f(x)

xj

f(x)

x1

Figure 20

To prove (A) and (B), note that we can avoid placing tokens in any balloons we would
like, and copy the proof of Theorem 3.1, and the fact above when necessary.

Therefore we have shown that when n < 2 − χ(G) (and n ≥ 4), we cannot say for sure
whether or not G admits a section.
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