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Abstract. We investigate the relationship between stability and symmetry
for point configurations on S2 which minimize an energy functional. We first

present some known results which allow us to obtain bounds on stability in

terms of symmetry. We then describe a computational experiment which tested
whether the bound is always achieved. Finally, we prove a simple inequality

that allows us to determine that the bound is not achieved in some concrete

cases.
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1. Notation

Throughout this paper, we will consider collections of points in {x1, . . . xn} ⊂ R3.
In order to simplify some notations, we will often treat such a collection as a point
in the space R3 ⊕R3 ⊕ · · · ⊕R3 or some subspace thereof. This amount to viewing
{x1, . . . xn} as the matrix

n⊕
i=1

xTi =


xT1

xT2
. . .

xTn


where the xi are thought of as row vectors. If Ti : R3 → R are linear maps, then if
we think of the Ti as matrices, we can represent their direct sum as

T =

n⊕
i=1

Ti =


T1

T2
. . .

Tn


If S and T are such maps, then

ST =


S1T1

S2T2
. . .

SnTn


Sometimes C = {x1, . . . , xn} will be regarded as the set of x1, . . . , xn rather than
as a point in R3 ⊕ R3 ⊕ · · · ⊕ R3. This should be clear from context, as in such
cases when we write x ∈ C or |C| to indicate set inclusion and set size respectively.
(Norms in the direct sum space will be denoted with double bars ‖ · ‖).

We will also often suppress the indices of the points xi and write an expression
of the form ⊕

x∈C
Tx(x) (1.1)

If C′ ⊂ C, then we will want to regard the element⊕
x∈C′

Tx(x) (1.2)

as a member of the same space that 1.1 occupies. Thus, 1.2 will be taken to
represent ⊕

x∈C
T ∗x (x)

where

T ∗x (x) =

{
Tx(x), x ∈ C′

0, x ∈ C \ C′
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2. Background

In this paper, we investigate the relationship between certain stability and sym-
metry properties of energy minimal point configurations on the sphere S2. A point
configuration is any finite C ⊂ S2. In order to study the properties of energy mini-
mal configurations, we will need to appeal at times to the idea of varying a quantity
over all possible force laws. Thus we need to define a formal notion of force law for
this idea to make sense. In doing so, we will want our notion of law to satisfy two
general requirements:

• The collecton of force laws should resemble the actual force laws found in
physics
• The collection should be large enough to allow for significant variation in

the behavior of different forces

In order to satisfy the first requirement, we will choose force laws that act pair-
wise between points of our configurations and which depend only on the distances
between those points. (In our case, we will choose our forces to be functions of
the squared distance, since this will make computations must more tractable later).
Thus, the total energy of the configuration will will be given as∑

x,y∈C
x 6=y

f
(
|x− y|2

)
for some appropriate choice of f . In the case of the classical Coulomb potential
from physics, we have f(x) = x−1/2. And, in general, compatibility with physics
suggests that we should at least choose f to be decreasing and convex. In fact, we
will follow [Coh16] and require something more strict, but which naturally extends
these conditions. Specifically, we will require that f ∈ CM((0, 4]) where

CM((0, 4]) =
{
f ∈ C∞((0,∞))

∣∣∣ (−1)kf(x)(k) ≥ 0 for all x ∈ (0, 4] and all k ≥ 0
}

is the class of completely monotonic functions. Then for any configuration C and
force potential f ∈ CM((0, 4]), we can define the total energy of the configuration
as

Ef (C) =
∑
x,y∈C
x 6=y

f
(
|x− y|2

)
(2.1)

The collection CM((0, 4]) maintains significantly compatibility with the idea of a
force law from physics. It is also diverse enough to support significant variation
in force behavior. In particular, it contains every inverse power law f(x) = x−a

for a > 0 and all positive linear combinations thereof. It also contains a large
collection of polynomials, which we will see later gives us independent control over
the strength of the force at different distances.

Further motivation for this choice of force laws comes from the fact that some
configurations have been shown to minimize Ef for all completely monotonic f , but
not for all decreasing and convex f (see [CK06]). This suggests that the additional
constraints of complete monotonicity make a meaningful difference in the study of
energy minimization.

2.1. Measuring the Stability of Point Configurations. Let C be some point
configuration, and fix x ∈ C. Then we denote the tangent space at x by Tx = x⊥.
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Considering C as a point in S2 ⊕ S2 ⊕ · · · ⊕ S2, we can express the tangent space
at C as

TC = Tx1 ⊕ Tx2 ⊕ · · · ⊕ TxN

For any f ∈ CM((0, 4]), we can define the surface gradient of Ef at C as

∇sEf (C) = (1− PC)∇Ef (C)

where ∇Ef (C) =
⊕

x∈C ∇xEf (C), and PC is projection onto the unit normal vectors
xi, and is given by

PC =


x1x

T
1

x2x
T
2

. . .

xNx
T
N

 =

N⊕
i=1

xix
T
i

Thus (1− PC) is just projection onto TC .
As in [BBC+09], we will adopt the following terminology:

Definition 2.1. A configuration C ⊂ S2 is energy minimal if there exists some
f ∈ CM((0, 4]) such that C is a local minimum for Ef . We say C is in equilibrium
if

∇sEf (C) = 0

and we say C is balanced if it is in equilibrium for all choices of f ∈ CM((0, 4]).

If C is balanced, then as we vary f over all force laws, the points in C remain
fixed in place. In other words, they have zero degrees of freedom for movement as
f varies. While very few C satisfy this strong stability condition, we can quantify
how far from balanced a configuration C is. We do this by counting the number of
degrees of freedom that the points in C have for movement as the force law f varies.

To formalize this idea, we will need some additional terminology. We denote the
collection of surface gradients of C as

∇E(C) =
{
∇sEf (C) ∈ TC

∣∣∣ f ∈ CM((0, 4])
}

Let ∇sEf (C),∇sEg(C) ∈ ∇E(C) and α, β ≥ 0. Then f, g ∈ CM((0, 4]), and it
follows by definition that αf + βg ∈ CM((0, 4]). Furthermore, we have

α∇sEf (C) + β∇sEg(C) = ∇Eαf+βg(C) ∈ ∇E(C)

which follows from the fact that ∇s is linear and Ef is linear in f . Thus ∇E(C) is
a convex cone in TC .

Now denote the set of distances occuring between points in C as

DC =
{
d ∈ R+

∣∣∣ ∃x, y ∈ C, |x− y| = d
}

The following definition is the primary tool for understanding the stability of point
configurations.

Definition 2.2. For each d ∈ DC , define the d−perturbation of C as

∇(d)C = (1− PC)

⊕
x∈C

∑
y∈C
|x−y|=d

(x− y)


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Figure 1. An example of a d−perturbation for five points ar-
ranged as a square pyramid. There are three d−perturbations for
this configuration corresponding to the following distances: the
distance between each point on the base and each adjacent base
point, the distance between each base point and the opposite base
point, and the distance occurring between each base point and the
apex point (pictured above).

In other words, the d−perturbation of C is the element of TC that is obtained
when each pair of points that are distance d apart repel each other with unit
force. The usefulness of this concept becomes immediately apparent in the following
proposition.

Proposition 2.3. Every element of ∇E(C) can be written as a linear combination
of the d−perturbations of C.

Proof. This follows directly from the definition of the surface gradient. Indeed, we
can write

∇sEf (C) = (1− PC)(∇x1
⊕∇x2

⊕ · · · ⊕ ∇xN
)Ef (C)

= (1− PC)

⊕
x∈C

1

2

∑
y,z∈C

∇xf(|y − z|2)


= (1− PC)

⊕
x∈C

∑
y∈C

f ′(|x− y|2)(x− y)


= (1− PC)

⊕
x∈C

∑
d∈DC

∑
|y−x|=d

f ′
(
d2
)

(x− y)


= (1− PC)

⊕
x∈C

∑
d∈DC

f ′
(
d2
) ∑
|y−x|=d

(x− y)


=
∑
d∈DC

f ′
(
d2
)(1− PC)

⊕
x∈C

∑
|y−x|=d

(x− y)


=
∑
d∈DC

f ′
(
d2
)
∇(d)C
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which shows that the surface gradient can be written as a linear combination of
the d−perturbations.

�

Note that this does not show that ∇(d)C ∈ ∇EC. Indeed, for d0 ∈ DC , there does
not generally exist f ∈ CM((0, 4]) with the property that f ′(d20) = 1 and f ′(d2) = 0
for d ∈ DC \ {d0}. However, CM((0, 4]) is flexible enough to allow us to set the
values f ′(d2) independently.

Proposition 2.4. For any finite {di}ni=0 ⊂ (0, 4] and any f ∈ CM((0, 4]), there is
an infinite family {gj}j∈J ⊂ CM((0, 4]) such that g′j(di) = f ′(di) for all j ∈ J and
1 ≤ i ≤ n but g′j(d0) 6= g′k(d0) for j 6= k.

Proof. First suppose that f, g ∈ CM((0, 4]) with f ′(di) = g′(di) for 1 ≤ i ≤ n and
f ′(d0) 6= g′(d0). If 0 ≤ α ≤ 1, then we already saw that

gα = αf + (1− α)g ∈ CM((0, 4])

and clearly every pair of functions in {g′α}α∈[0,1] agree on di for 1 ≤ i ≤ n and
disagree on d0. Thus if we can find a single such pair of f, g ∈ CM((0, 4]), then we
can construct an infinite family.

We can construct such a pair of functions directly as follows. We claim that if
{αk}nk=1 ⊂ [4,∞) are distinct, then we have

P (x) = (−1)n
n∏
k=1

(x− αk) ∈ CM((0, 4])

To see this, observe that, for any k ≥ 0, we have

P (k)(x) = (−1)nCk
∑

j1<j2<···<jk

∏
j /∈{j1,...,jk}

(x− αj)

for some Ck > 0 depending only on k. Now for x ∈ (0, 4), (x − αi) < 0 for all
1 ≤ i ≤ n. So if k is even, for all j1 < j2 < · · · , jk, we have that

sign

 ∏
j /∈{j1,...,jk}

(x− αj)

 = (−1)n−k

since there are n− k nonpositive terms in every such product, and so we have

sign
(
P (k)(x)

)
= (−1)n(−1)n−k = (−1)−k = 1

and similarly sign
(
P (k)(x)

)
= −1 for all k odd. Since clearly P ∈ C∞((0,∞)), we

have P ∈ CM, as claimed.
Now take 4 < α1 < α2 < · · · < αn and form the polynomial P as above. Let

p(x) = xn + a1x
n−1 + · · ·+ an = P ′(x)

and set βi = p(di) for 0 ≤ i ≤ n. Now if p0 = xn + a01x
n−1 + · · ·+ a0n interpolates

the points (di, βi), then we must have
dn0 dn−10 · · · d0 1
dn1 dn−11 · · · d1 1
...

...
. . .

...
...

dnn dn−1n · · · dn 1




1
a01
...
a0n

 =


β0
β1
...
βn


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Taking D to be the lefthand matrix above, we have the Vandermonde determinant
formula:

det(D) =
∏

0≤i<j≤n

(di − dj)

which immediately shows that det(D) > 0 since the di are all distinct. Thus D is
invertible, which shows that the solution p0 is unique (and therefore p0 = p and
a0i = ai since p interpolates (di, βi) by definition). And since D−1 is continuous
(as a linear map between finite-dimensional normed spaces), we also see that the
coefficients of the intpolating polynomial are a continuous function of the βi.

Thus if we fix δ > 0, we can find δ′ > 0 such that if

|(γ0 − β0, γ1 − β1, . . . , γn − βn)| < δ′

and if q = xn + b1x
n−1 + · · ·+ bn is the polynomial which interpolates (di, γi), then

|(a0 − b0, a1 − b1, . . . , an − bn)| < δ

where a0 = 1. In particular, we can choose γi such that γi = βi for 1 ≤ i ≤ n and

γ0 ∈ (β0 − δ′, β0 + δ′)

Now we have

P = A0x
n+1 +A1x

n + · · ·+Anx+ C

where Aj =
aj

n+1−j . And if we define

Q = xn+1 +B1x
n + · · ·+Bnx+ C

with Bj =
bj

n+1−j , then Q′ = q, and

|Aj −Bj | =
1

n+ 1− j
|aj − bj | <

δ

n+ 1− j
≤ δ

for all 0 ≤ j ≤ n.
Moreover, it is known that if all the roots of P are real and simple (i.e. multi-

plicity 1), then there is a real-valued function φ defined in an open neighborhood U
of (A0, A1, . . . , An) which takes (u0, u1, . . . , un) ∈ U to the roots of the polynomial
with coefficients ui. And in fact, φ is continuous at (A0, A1, . . . , An) (see [Ale13]
for details).

Now fix some ε < min1≤k≤n |αk−4|. Then the above just says that there is some
δ > 0 such that if |Bj −Aj | < δ for all 0 ≤ j ≤ n, then the roots of Q are within ε
of the roots of P . But we already saw that this is possible as long as |γ0−β0| < δ′.
By our choice of ε, this establishes that the roots of Q are all greater than 4, and
thus Q ∈ CM((0, 4]), and Q′ interpolates (di, γi). �

This shows that we have independent control over each of the coefficients in∑
d∈DC

f ′
(
d2
)
∇(d)C

Moreover, we know that ∇E(C) ⊂ span
({
∇(d)C

}
d∈DC

)
, and the above shows that

this is the smallest subspace of TC which contains ∇E(C). This observation leads
naturally to the following definition.
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Figure 2. Point configuration consisting of the vertices of a reg-
ular tetrahedron (left) and a regular octahedron (right).

Definition 2.5. For any finite C ⊂ S2, we say that the parameter count of C is
given by

P (C) = dim span

({
∇(d)C

}
d∈DC

)
Recall that ∇sEf (C) indicates the directions that the points in C will move

under the action of the force law f . The parameter count quantifies the number of
degrees of freedom that the points in C have to move in under arbitary force laws
in CM((0, 4]). A low parameter count indicates a highly stable configuration of
points, with P (C) = 0 indicating that the configuration is balanced (in equilibrium
for all potentials).

Consider, for example the point configuration C consisting of the vertices of
a regular tetrahedron. There is only one nonzero distance d occurring in this
configuration. Thus this d−perturbation is just the element of TC which is obtained
when every pair of points in the configuration repel each other with unit force.

To compute this d−perturbation, fix u ∈ C. Then the three other points x, y, z
have 3−fold rotational symmetry about the axis formed by u and the origin. If R
is rotation by 2π

3 around this axis, then

R(x+ y + z) = R(x+Rx+R2x) = x+Rx+R2x = x+ y + z

so x+ y + z = cu for some c ∈ R. And if Pu = uuT ,

(1− Pu)

 ∑
w∈C

|u−w|=d

(u− w)

 = (1− Pu)(3u− (x+ y + z)) = (3− c)(1− Pu)(u) = 0

Thus we have

(1− PC)

⊕
x∈C

∑
y∈C
|x−y|=d

(x− y)

 =
⊕
u∈C

(1− Pu)

 ∑
w∈C

|u−w|=d

(u− w)

 = 0

So in this case we have P (C) = 0.



10 COLLIN CADEMARTORI ADVISOR: PROF. GOVIND MENON

Now consider the configuration C consisting of the vertices of a regular octa-
hedron. There are two nonzero distances in this configuration: the distance of 2
between each point and the opposite point and the distance of

√
2 between each

point and the four adjacent points.
Then the 2−perturbation of C is clearly 0 since for any x ∈ C, the only point

that is distance 2 from x is −x, and thus

(1− Px)

 ∑
y∈C
|x−y|=2

(x− y)

 = (1− Px)(2x) = 0

Now the four points which are distance
√

2 from x have 4−fold rotational symmetry
about the axis formed by x and the origin. Thus, the same argument used for
the terahedron shows that the

√
2−perturbation is also 0, and so we again have

P (C) = 0.
This shows that the tetrahedral and octrahedral configurations are both balanced

(in equilibrium under every force law). However, this only tells us that they are
critical points of Ef for all f ∈ CM((0, 4]), not that they are energy minimal for all
such f .

2.2. Bounding Stability Using Symmetry. The configurations C which are
energy minimal for some potential f almost always exhibit structure in the form of
nontrivial symmetries. It is natural to expect that those configurations with more
symmetric structure would be more stable in the sense of having a low parameter
count. Indeed, this idea can be formalized.

Definition 2.6. The symmetry group of C is given by

S(C) =
{
T ∈ O(3)

∣∣∣ T (x) ∈ C for all x ∈ C
}

Let Px = xxT , we have the following proposition.

Proposition 2.7. For any T ∈ S(C), we have

T ((1− Px)∇xEf (C)) = (1− PT (x))∇T (x)Ef (C)

Proof. We have

T ((1− Px)∇xEf (C)) = T (∇xEf (C))− T (Px∇xEf (C))
First we see that

T (∇xEf (C)) = T

∑
y∈C

f ′(|x− y|2)(x− y)


=
∑
y∈C

f ′(|x− y|2)(Tx− Ty)

=
∑
y∈C

f ′(|Tx− Ty|2)(Tx− Ty)

=
∑
z∈C

f ′(|Tx− z|2)(Tx− z) (2.2)

= ∇T (x)Ef (C)
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where 2.2 follows from the substitution y = T−1z, which preserves the equality
since T−1(C) = C.

Next observe that

PT (x)T = (Tx)(Tx)TT = TxxTTTT = TxxT = TPx

where we used the fact that the inverse of an orthogonal transform is its transpose.
Combining this with the last part gives

T (Px∇xEf (C)) = PT (x)T (∇xEf (C)) = PT (x)∇T (x)Ef (C)
Putting everything together, we get

T ((1− Px)∇xEf (C)) = (1− PT (x))∇T (x)Ef (C)
as needed. �

Now we recall a few definitions from group actions.

Definition 2.8. For any x ∈ C, the stabilizer of x under S(C) is the subgroup

Sx =
{
T ∈ S(G)

∣∣∣ T (x) = x
}

and the orbit of x under S(C) is

Ox =
{
y ∈ C

∣∣∣ y = Tx for some T ∈ S(C)
}

The following subspaces are the key to extracting stability information from
symmetry.

Definition 2.9. For any x ∈ C, the fixed subspace of x is

Vx =
{
y ∈ Tx

∣∣∣ T (y) = y for all T ∈ Sx
}

=
⋂
T∈Sx

{
y ∈ Tx

∣∣∣ T (y) = y
}

Then clearly Vx is a subspace of Tx.
Let O = {Ox | x ∈ C} be the partition of C into orbits under S(C). Then we

claim that we have the following upper bound on the parameter count.

Proposition 2.10. For any point configuration C, we have

P (C) ≤
∑
Ox∈O

dimVx

Remark 2.11.

• This sum is well-defined. Indeed, if Ox = Oy, then there is some T ∈ S(C)
such that T (y) = x. Then it follows directly that Sy = TSxT

−1, and so
U(z) = z for all U ∈ Sx if and only if V (Tz) = Tz for all V ∈ Sy. Since T
is a linear bijection, it follows that dimVx = dimVy, and so the above sum
is well-defined.
• The above sum depends only on knowing the symmetry group of C, so this

result formalizes the intuition that configurations with more symmetric
structure are more dynamically stable.

Proof. To prove the above bound, first observe that, for all T ∈ Sx, we have
T ((1− Px)∇xEf (C)) = (1− Px)∇xEf (C) by proposition 2.7. Therefore we have

(1− Px)∇xEf (C) ∈ Vx
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for all x ∈ C. Now we can break up the surface gradient over orbits.

∇Ef (C) = (1−PC)
⊕
x∈C
∇xEf (C) =

⊕
x∈C

(1−Px)∇xEf (C) =
∑
Ox∈O

⊕
y∈Ox

(1− Py)∇yEf (C)


Now for each x ∈ C and y ∈ Ox, let T yx ∈ S(C) be such that T yx (x) = y (with

T xx = I). Then, by the above claim,⊕
y∈Ox

(1− Py)∇yEf (C) =
⊕
y∈Ox

(1− PTy
x (x))∇Ty

x (x)Ef (C)

=
⊕
y∈Ox

T yx ((1− Px)∇xEf (C))

∈ Φx(Vx)

where Φx : Tx → TC is the map

Φx(z) =
⊕
y∈Ox

T xy (z)

Plugging this in to the above, we have

∇Ef (C) =
∑
Ox∈O

⊕
y∈Ox

T yx ((1− Px)∇xEf (C))

 ∈ ⊕
Ox∈O

Φx(Vx)

Now observe that Φx clearly has inverse given by the map PTx : TC → Tx which
is projection onto Tx. Thus we know that

dim(Φx(Vx)) = dim(Vx)

for all x ∈ C. And by proposition 2.4, we know that span
({
∇(d)C

}
d∈DC

)
is the

smallest linear subspace of TC containing every ∇Ef (C), so we must have

span

({
∇(d)C

}
d∈DC

)
⊂
⊕
Ox∈O

Φx(Vx)

and thus

P (C) ≤ dim

( ⊕
Ox∈O

Φx(Vx)

)
=
∑
Ox∈O

dim(Φx(Vx)) =
∑
Ox∈O

dimVx

as claimed.
�

For simplicity, we will henceforth denote the quantity
∑
Ox∈O dimVx by B(C).

Consider the tetrahedral configuration C from above. As we noted when we
computed the parameter count of C, any x ∈ C is fixed by a 3−fold rotatation
Rx ∈ S(C). But Rx fixes only the subspace span({x}), which clearly intersects Tx
only at the origin. Thus dimVx = 0 for all x ∈ C, and B(C) = 0.

For the octahedral configuration C, we again have that each x ∈ C is fixed by a
4−fold rotation Rx ∈ S(C). But then we again have dimVx = 0 for all x ∈ C, and
so B(C) = 0.

The calculations of P (C) and B(C) above both exploited the symmetry of the
configurations to constrain the degrees of freedom. The question therefore arises
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as to whether there is anything constraining the points other than symmetry. In
other words, is it the case that

P (C) = B(C)
for all C which are in equilibrium under the action of some potential f ∈ CM((0, 4])?
We investigate this question through a series of computational experiments.

3. Computational Experiments

In order to investigate this question, we found configurations of 4 to 55 points
on S2 which minimized energy for the Coulomb potential (f(x) = x−1/2). We then
computed the parameter count and symmetry bound for each of these configurations
in order to study the relationship between them.

3.1. Minimizing Energy with Gradient Descent. The first step in this process
involved applying a gradient descent algorithm to find good approximations of
energy minimal configurations. Traditional gradient descent cannot be directly
applied to this problem since the domain is

S2 ⊕ S2 ⊕ · · · ⊕ S2︸ ︷︷ ︸
N times

which is closed and nonconvex. Instead, we use an algorithm that searches for the
direction of steepest descent in the tangent space

TC = Tx1 ⊕ Tx2 ⊕ · · · ⊕ TxN

In other words, we solve the following optimization problem:

argmin
u∈TC
‖u‖=1

〈∇Ef (C), u〉 (3.1)

Now observe that by homogeneity of the inner product, we can replace ∇Ef (C)
by K∇Ef (C) for any K > 0 without changing the solution. In order to solve this
problem, first observe that

argmax
u∈TC
‖u‖=1

〈K∇Ef (C), u〉 = argmin
u∈TC
‖u‖=1

(
‖K∇Ef (C)‖2 − 2〈K∇Ef (C), u〉+ ‖u‖2

)
= argmin

u∈TC
‖u‖=1

‖K∇Ef (C)− u‖2

But we know that from linear algebra that the problem

argmin
u∈TC

‖K∇Ef (C)− u‖2

is solved by taking u to be the orthogonal projection of K∇Ef (C) onto the space TC .
But this is just u = (1−PC)K∇Ef (C) = K∇sEf (C). By taking K = ‖∇sEf (C)‖−1,
we get ‖u‖ = 1, and thus

argmin
u∈TC
‖u‖=1

〈∇Ef (C), u〉 = − argmax
u∈TC
‖u‖=1

〈K∇Ef (C), u〉 = − (1− PC)∇Ef (C)
‖(1− PC)∇Ef (C)‖

(3.2)

Once we have found the direction of steepest descent in the tangent space, we would
like to follow this direction to obtain our updated point configuration. However,
this point will be an element of the ambient space E = R3 ⊕ R3 ⊕ · · · ⊕ R3 rather
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Figure 3. Computed energy minimal configurations for the
Coloumb force law with 35 and 48 points respectively

than C itself, so we must perform the additional step of projecting our new point
back into our domain.

If v ∈ E, then let vi ∈ R3 denote the ith component of v, so that v = ⊕Ni=1vi.
We consider E as a normed space with norm

‖v‖ =

N∑
i=1

‖vi‖R3

where ‖ · ‖R3 is the usual Euclidean norm. (We note that this norm is equivalent
to the usual 2−norm on R3N .) Then v′ solves the optimization problem

argmin
w∈S2⊕···⊕S2

‖w − v‖ (3.3)

if and only if v′i solves the problem

argmin
wi∈S2

‖wi − vi‖R3 (3.4)

for i = 1, . . . , N . But this optimization is clearly solved by taking v′i = vi
‖vi‖ ,

and so our original problem is solved by taking v′ = ⊕Ni=1
vi
‖vi‖ . With these two

modifications (choosing the descent direction in the tangent space and projecting
back into the domain), we can describe the full gradient descent algorithm:

(1) Choose an initial point configuration C0, and set k = 0.

(2) Compute ∇Ef (Ck) and the matrix PCk . Set Dk ← (1− PCk)∇Ef (Ck).

(3) Search (0, 1] for the optimal step size αk.

(4) Set C′k ← Ck − αkDk, then C′k = ⊕Ni=1y
k
i ∈ E.

(5) Set xk+1
i ← yki

‖yki ‖
and Ck+1 ← ⊕Ni=1x

k+1
i .

(6) If ‖Dk‖ < ε, return Ck+1. Otherwise set k ← k + 1 and return to step 2.
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Step 1 was performed by generating a random N point configuration in S2. Step
3 was performed using a backtracking line search (i.e. starting with αk = 1 and
decrementing at each step) that stopped when αk satisfied the following condition:

Ef (Ck − αkDk) ≤ Ef (Ck)− cαktr
(
DT
k∇Ef (Ck)

)
(3.5)

where 0 < c < 1 is some tolerance parameter. This condition is referred to as the
Armijo condition. The quantity tr

(
DT
k∇Ef (Ck)

)
is the directional derivative of

Ef in the direction Dk, and so applying the Armijo condition amounts to searching
for the largest step size such that Ef decreases by the amount predicated by the
directional derivative (up to some tolerance c).

It should be noted that there is no guarantee that the computed approximate
energy minima are global minima of Ef . In general, we do not know enough about
the structure of the minima of such functions to be able to rule out the possibility
that the global minimum has a very small basin of attraction. In fact, [BBC+09]
present evidence that there may be local minima with very small basins of attraction
for some Ef . However, as long as our computed configurations are close to some
local minimum of Ef , the following computations remain sensible and informative.

3.2. Computing The Parameter Count and Symmetry Bound. Our next
step is to compute P (C) and B(C) for each of the approximately energy minimal
configurations generated by gradient descent. While the true energy minimal con-
figurations often have enough symmetry to contain many repeated distances, the
distances in the approximate, computed configurations are rarely exactly equal.
Thus the following computations of P (C) and B(C) are based on a suitable round-
ing of the distances in the computed configurations.

Recall that the d−perturbation of C is given as

∇(d)C = (1− PC)

⊕
x∈C

∑
y∈C
|x−y|=d

(x− y)


which we computed directly from C for each d ∈ DC . Then the parameter count
was computed by taking the rank of the matrix

(
∇(d)C

)
d∈DC

.

In order to compute the symmetry bound, we first had to compute the symmetry
group S(C). Following [BBC+09], we solve an equivalent problem of computing the
symmetry group of a graph.

Definition 3.1. An edge-labelled graph G = (E, V, `) is a graph G = (V,E)
along with a function ` : E → R which is called the edge labelling of G.

An isomorphism of edge-labelled graphsG1 = (V1, E1, `1) andG2 = (V2, E2, `2)
is an invertible mapping φ : V1 → V2 such that

• (u, v) ∈ V1 if and only if (φ(u), φ(v)) ∈ V2
• `1(u, v) = `2(φ(u), φ(v)) for all u, v ∈ V1

Let C be a point configuration. We can assocate the edge-labelled graph GC =
(C, C × C, `) where

`(x, y) = 〈x, y〉
Then in order to compute the symmetry group of C, it suffices to compute the
automorphism group of GC .

Proposition 3.2. Suppose dim span(C) = 3, then S(C) is isomorphic to Aut(GC).
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Proof. First let φ be an automorphism of GC . Then we claim there is a unique
T ∈ S(C) such that T |C= φ. To see this, fix x1, x2, x3 ∈ C linearly independent,
which we can choose in view of our assumption that the points in C span R3. Then
there is a unique linear map T : R3 → R3 such that T (xi) = φ(xi) for i = 1, 2, 3.

For any y, z ∈ R3, we can write y = a1x1+a2x2+a3x3 and z = b1x1+b2x2+b3x3,
and then we have

〈Ty, Tz〉 =

3∑
i,j=1

〈aiTxi, bjTxj〉

=

3∑
i,j=1

aibj〈Txi, Txj〉

=

3∑
i,j=1

aibj〈φ(xi), φ(xj)〉

=

3∑
i,j=1

aibj`(φ(xi), φ(xj))

=

3∑
i,j=1

aibj`(xi, xj)

=

3∑
i,j=1

aibj〈xi, xj〉

= 〈y, z〉

So T is orthogonal, and thus also invertible. Therefore, Tx1, Tx2, Tx3 form a basis
of R3. And if x ∈ C, then we have

〈Tx, Txi〉 = 〈x, xi〉 = 〈φ(x), φ(xi)〉 = 〈φ(x), Txi〉 (3.6)

for i = 1, 2, 3. Now if we have Tx− φ(x) = c1Tx1 + c2Tx2 + c3Tx3, then we have
that

‖Tx− φ(x)‖2 = 〈Tx− φ(x), c1Tx1 + c2Tx2 + c3Tx3〉 = 0

by linearity of the inner product and 3.6. Thus we must have Tx = φ(x) for all
x ∈ C. But this shows both that T |C= φ and that T ∈ S(C). Clearly any such T
must satisfy Txi = φ(xi) for i = 1, 2, 3, and thus T is unique.

Let Tφ denote this transformation, and let Ψ : Aut(Gc) → S(C) be given by
Ψ(φ) = Tφ. If φ1, φ2 ∈ Aut(GC), then for any x ∈ S(C),

Tφ1φ2
(x) = φ1(φ2(x)) = φ1(Tφ2

(x)) = Tφ1
Tφ2

(x)

and so Ψ(φ1φ2) = Ψ(φ1)Ψ(φ2), which shows that Ψ is a homomorphism. Now if
T ∈ S(C), then T |C : C → C is an automorhism of G(C) since GC is complete and T
preserves inner products and hence `. We claim that Ψ−1(T ) = T |C . To see this,
observe that

Ψ−1(Ψ(φ)) = Tφ |C= φ

by construction of Tφ. Likewise

Ψ(Psi−1(T )) = Ψ(T |C) = T
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since T agrees with T |C on C, and we showed that this extension was unique. Thus,
S(C) ' Aut(GC), as claimed. �

The method of constructing Tφ in the above proof allows us to compute S(C)
from Aut (GC). Thus, we can replace the problem of direclty constructing the
T ∈ O(3) which are symmetries of C with the combinatorial problem of finding
Aut (GC).

In order to carry out this computation, we first converted GC from an edge-
labelled graph to a vertex-labelled graph with the same automorphism group. As
in [MP16], we use the vertex-labelled graphHC = (VH , EH , `H) which is constructed
from GC as follows. Let `G be a labelling of GC which is equivalent to the inner-
product labelling (i.e. gives the same automorphism group) but takes values in the
positive integers, let {vi}Ni=1 be the vertices of GC , and let M = dlog2 (|DC |+ 1)e.

For each 1 ≤ k ≤ M we form a row of N = |C| vertices {vki }Ni=1 and label all

the vertices in this row as `H
(
vki
)

= k. We then form the edges (vki , v
k+1
i ) for all

1 ≤ i ≤ N and 1 ≤ k ≤ M − 1, connecting the rows. Then for each 1 ≤ k ≤ M ,
and 1 ≤ i < j ≤ N , we form the edge (vki , v

k
j ) if the kth bit in the binary expansion

of `G(vi, vj) is 1 (hence why we took the number of rows to be the base 2 logarithm
of 1 plus the number of labels in GC).

The resulting graph HC encodes all of the information that was contained in GC
since the edge colors can be recovered by observing which rows of HC contain a
given edge. It is easy to see that the coloring of the rows and the paths connecting
the vertices between rows remove any additional degrees of freedom that adding
vertices could have introduced, and indeed Aut(HC) ' Aut(GC).

Once we formed HC , we then used the software package nauty, which can
compute a collection of permutations that generate the automorphism group of
any vertex-labelled graph.

Now in order to compute B(C) from S(C), we constructed a basis for each fixed
subspace Vx. To do this, we used the software package GAP, which can perform
computations on finitely-generated permutation groups. In particular we supplied
the generators found by nauty and, for each Ox ∈ O, we used GAP to find the
stabilizer Sx.

For each stabilizer Sx, we converted the permutation representation to a repre-
sentation in terms of matrices (using the same method as the proof of proposition
3.2). For each such matrix M , let EM (λ) be the eigenspace of M corresponding to
eigenvalue λ. Finding Vx then requires finding

Vx =
⋂

M∈Sx

EM (1) =

( ⊕
M∈Sx

EM (1)⊥

)⊥
(3.7)

Now if A is a matrix and U is a vector space, we write A ∼ U when the columns
of A form a basis for U . We also let {Mi}ki=1 enumerate Sx. To find a basis for
the right hand side of 3.7, we started by computing for each Mi a matrix Axi such
that Axi ∼ EMi(1). Next we computed Bxi ∼ E(Ax

i )
T (0) and formed the matrix

Bx = [Bx1 B
x
2 · · · Bxk ], which has as colums a basis for ⊕M∈SxEM (1)⊥. Finally we

computed Cx ∼ EBT
x

(0), which has as columns a basis for Vx. With bases for each
Vx, we then directly computed

B(C) =
∑
Ox∈O

dim(Vx) =
∑
Ox∈O

rank(Cx)
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3.3. Computational Results. For 43 of the 52 energy minimal configurations C
we generated, we found that P (C) = B(C). However, for all of the remaining 9
configurations we found instead that P (C) = B(C)− 1.

Table 1. Parameter count and symmetry information for the 9
configurations for which the parameter count and bound disagreed.
The column S(C) lists whether the symmetry group was generated
by a reflection or a rotation, and the orbits column lists information
about the orbit structure of C in the format
n(number of orbits of size n).

|C| P (C) B(C) |S(C)| S(C) Orbits
25 24 25 2 reflection 1(5) 2(10)
26 25 26 2 rotation 1(0) 2(13)
33 32 33 2 reflection 1(7) 2(13)
35 33 34 2 rotation 1(1) 2(17)
47 46 47 2 reflection 1(9) 2(19)
49 31 32 3 rotation 1(1) 3(16)
52 33 34 3 rotation 1(1) 3(17)
54 53 54 2 rotation 1(0) 2(27)
55 53 54 2 rotation 1(1) 2(27)

The most important observations about these 9 discrepant configurations are
presented in table 1 and the following list:

• Every symmetry group for these configurations has order either 2 or 3. By
contrast, every symmetry group of the configurations for which we found
agreement between parameter count and bound has order at least 4.
• Every orbit is contained in a proper affine subspace of R3.
• Those cases in which B(C) < |C| are exactly the cases in which S(C) is a

rotation group and some point is fixed by the whole group.

These observations indicate that when the symmetry of the configuration degen-
erates sufficiently, the configuration may contain some additional structure that is
not captured by its global symmetries. However, we note that both the parameter
count and symmetry group calculations are sensitive to the accuracy of the inner
product calculations for our configurations. Because these inner products can be
close, it is difficult to know a priori that our approximations of the energy minimal
configurations are accurate enough to give exactly the right parameter count and
bound in every case. The fact that the count and bound agreed in our computa-
tions for most configurations, and that the other discrepancies were small, indicates
that some independent verification of these gaps is needed. Indeed, the inequality
presented in the next section allows us to rule out the possibility that these gaps
are due to some small computational error.

4. A Necessary Condition for P (C) = B(C)

In order to verify these gaps, we prove a simple inequality that allows us to bound
the product of P (C) and |S(C)| whenever P (C) = B(C). We use this necessary
condition as a way to check whether the discrepancies listed in table 1 could be
computational errors.
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4.1. A Basic Inequality from Symmetry. We begin by establishing a simple
lemma. Define

Ux =
{
x ∈ R3

∣∣∣ Tx = x for all T ∈ Sx
}

(4.1)

If Vx is the subspace of Tx fixed by Sx as in definition 2.9, then clearly Vx =
Ux ∩ Tx. Using this relation and the properties of orthogonal transformations, we
can infer dim(Vx) from the size of the stabilizer of x.

Lemma 4.1. Fix x ∈ C. If Vx, Ux, and Sx are as above, then

• dim(Vx) = dim(Ux)− 1
• If |Sx| > 2, then dim(Vx) = 0.

Proof. Clearly we have x ∈ Ux by definition. Then we also have{
y ∈ Ux

∣∣∣ 〈y, x〉 = 0
}

= span(x)⊥ ∩ Ux = Tx ∩ Ux = Vx

which shows that
Ux = span(x)⊕ Vx

and thus dim(Vx) = dim(Ux)− dim(span(x)) = dim(Ux)− 1.
Now if |Sx| > 2, then we can find two distinct non-identity T1, T2 ∈ Sx. Let

W1 and W2 be the subspaces of R3 fixed by T1 and T2 respectively. We must have
dim(Wi) < 3 for i = 1, 2 since otherwise Wi = R3 and Ti = I which contradicts our
choice of T1 and T2.

If dim(W1) = 2, then let w ∈ W⊥1 with ‖w‖ = 1. Then the fact that T1 is
orthogonal implies that ‖T1(w)‖ = 1 and T1(w) ∈W⊥1 . But since T1 6= I, we must
have T1(w) = −w, and so T1 is uniquely determined by W1 when dim(W1) = 2 and
likewise for T2. Since T1 and T2 are distinct, and since W1,W2 ⊃ span({x}), we
therefore must have

dim(W1 ∩W2) = 1

but then
dim(Vx) = dim(Ux)− 1 ≤ dim(W1 ∩W2)− 1 = 0

and we are done. �

The basic tool we need to prove the following inequality is the orbit-stabilizer
theorem which we restate here for S(C).

Theorem 4.2. (Orbit-Stabilizer Theorem) Let C be a point configuration with sym-
metry group S(C). For x ∈ C, let Ox and Sx be the orbit and stabilizer of x as before,
then we have

|Ox||Sx| = |S(C)|

Now using this and the preceeding lemma, we can prove a basic inequality that
relates the symmetry bound to the size of the configuration and the size of its
symmetry group.

Proposition 4.3. (Symmetry Inequality) Let N = |C|, B = B(C), and M = |S(C)|,
then if M ≥ 2, we have

MB

2
≤ N and MB = 0 (mod 2)

and if M = 2 and S(C) is either generated by a reflection or generated by a rotation
which fixes no point in C, we have

B = N
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Proof. Fix x ∈ C. If |Ox| = M , then by the orbit-stabilizer theorem, we have
|Sx| = 1. But then lemma 4.1 implies that

dim(Vx) = dim(Ux)− 1 = dim
(
R3
)
− 1 = 2

If |Ox| = M/2, then again by the orbit-stabilizer theorem, |Sx| = 2, and so
dim(Ux) ≤ 2. Again by the lemma, we then know that dim(Vx) ≤ 1. Finally if
|Ox| < M/2, then |Sx| > 2, so dim(Vx) = 0 by the lemma.

Now let n1 be the number of orbits of size M , and let n2 be the number of orbits
of size M/2 for which dim(Vx) 6= 0. Then the above conclusions imply the formula

B =
∑
Ox∈O

dim(Vx) = 2n1 + n2 (4.2)

On the other hand, we know that the collection of orbits O partitions C. Thus we
must also have

Mn1 +
M

2
n2 ≤ N (4.3)

But the left side of 4.3 is just M/2 times the right side of 4.2. This shows that

MB

2
≤ N (4.4)

as claimed.
If M is even, then we automatically have MB = 0 (mod 2). If M is odd, then

there are no orbits of size M/2, so n2 = 0 in 4.2 above, which shows that B is even
and therefore again MB = 0 (mod 2).

Now suppose that M = 2 and S(C) is generated by a reflection. Then for any
x ∈ C, we have either |Ox| = M or |Ox| = M/2. And in the latter case, we must
always have dim(Vx) = 1 (since Ux is the plane of reflection). But then we have

B = 2n1 + n2 = Mn1 +
M

2
n2 = N

which is enough to make the inequality 4.4 into an equality. If M = 2 and S(C) is
generated by a rotation which does not fix any point in C, then |Ox| = M for all
x ∈ C, and then we again have

B = 2n1 = N

as claimed. �

4.2. A Test for Discrepancies Between Parameter Count and Bound. We
now apply these constraints on the symmetries of point configurations to restrict
the possibilities for errors in the calculations presented in table 1. Suppose that
C∗ is a true energy minimal configuration and C is our computed approximation to
C∗. Recall that DC is the collection of distances occurring between points in C. We
begin by noting that errors introduced by approximating C∗ by C could result in
an error of the form |DC | > |DC∗ |. On the other hand, approximation error almost
certainly would never lead to an error of the form |DC | < |DC∗ |. For this to occur,
there would have to be x∗1, x

∗
2, y
∗
1 , y
∗
2 ∈ C∗ such that

|x∗1 − x∗2| 6= |y∗1 − y∗2 |
while the points x1, x2, y1, y2 ∈ C which approximate the x∗i and y∗i would have
the property that |x1 − x2| would agree with |y1 − y2| to many decimal places
(over 8 in our case). Any such error can be ruled out by noting that multiple
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runs of our gradient descent search with random starting configurations resulted in
configurations that had the same computed parameter counts and bounds.

Thus, if we can rule out the possibility of agreement between P (C) and B(C) for
values of P (C) close to but not above the calculated values in table 1, we would
have strong evidence that the computed discrepancies between parameter count
and bound are not merely an artifact of computational error.

In order to do this, we note that if P (C) = B(C), then we can substitute P = P (C)
for B in all of the conclusions of propositon 4.3 above. Thus, if the conclusions fail
to hold for given values of B = P (C),M , and N , then we cannot have P (C) = B(C)
for any configuration C which realizes those values.

For each configuration C that appears in table 1, we computed the largest value
P ∗ ≤ P (C) such that the conlusions of proposition 4.3 are satisfied for any M ≥ 3
and B = P ∗. For the case M = 2, we note that there is no C in table 1 such that
P (C) = |C|. Therefore, by the second part of 4.3, we can never have agreement
between parameter count P and bound when P < P (C) and S(C) is generated by
a reflection or a rotation which fixed no points in C.

Thus the only case not covered by these tests is that of a configuation with order
2 rotational symmetry that fixes at least one point of C. But there are only finitely
many such rotations (at most one per x ∈ C), so we can computationally check if the
computed configuration C is close to a configuration with such a symmetry group. If
not, then we can be confident that C∗, the energy minimum we are approximating,
does not have this size and symmetry.

In particular, for each x ∈ C, we took the rotation Rx of π radians around the
axis formed by x and the origin. We then computed C′ = Rx(C), and for each
y ∈ C′, we computed

dx(y) = min
x∈C
|x− y|

where | · | is just the Euclidean norm. We then compute the value

Dx = max
y∈C′

dx(y)

Then Dx is the maximum of the minimal distances between a point in C′ and C. If
C were close to having rotational symmetry Rx, then Dx should be small.

The values in table 2 show the computed values of P ∗ and minx∈C Dx for each
discrepant configuration listed in table 1. We can split the configurations in 2 up
as follows. For |C| ∈ {25, 26, 33, 47, 54}, the values of P ∗ are at least 8 less than
P (C) and minx∈C Dx is not within approximation error of zero. The second number
indicates that the true C∗ do not have an order 2 rotational symmetry group that
fixes at least one point in C. And the first number indicates that if P (C∗) = B(C∗),
then there must have been an error of at least 8 in the computation of P (C).

For |C| ∈ {35, 55}, we have P ∗ much smaller than P (C), but minx∈C Dx is 0
because S(C) is an order two rotation group that fixes a point in both cases. If
the true configurations C∗ have this symmetry, then since 35 and 55 are odd, there
must be exactly one point in C∗ that is fixed (rather than 2). But in that case,
the first result of lemma 4.1 tells us that B(C∗) = |C∗| − 1. In table 1, we have
P (C) = |C| − 2, and we observed that almost certainly P (C∗) ≤ P (C). Thus if
S(C∗) has order two rotation symmetry that fixes a point, then we cannot have
agreement between parameter count and bound. If S(C∗) has higher order, then as
before there must be a large error in the calculation of P (C).
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Table 2. Results of testing each |C| that appears in table 1 for
whether possibly P (C∗) = B(C∗). The second column displays the
largest value less than or equal to the computed value of P (C) such
that the conlusions of propositon 4.3 hold for some M ≥ 3. The
third column displays the minimal distances between the computed
configurations C and their order 2 rotations C′.

|C| P ∗ minx∈C Dx

25 16 0.327
26 16 0.355
33 22 0.331
35 22 2.446× 10−7

47 30 0.257
49 30 0.276
52 32 0.262
54 36 0.224
55 36 1.305× 10−8

For |C| ∈ {49, 52}, the values of minx∈C Dx are large enough to rule out order two
rotational symmetry with a fixed point. However, P ∗ = P (C)−1. But as in the last
case, we can rule out some additional possibilities. If |S(C∗)| = 3, then S(C) must
be a rotation group, and so there can be at most 2 fixed points in C∗. But we can
see directly that this only happens if there is one fixed point and 16 orbits of size 3
(for 49 points) or 17 orbits of size 3 (for 52 points). Again lemma 4.1 tells us that
the bounds from symmetry must then be 32 and 34 respectively, which are larger
than the respective computed values of P (C). Since P (C∗) ≤ P (C), we cannot
have agreement between parameter count and bound for these configurations if
|S(C∗)| = 3.

We can then look for the largest value of P ∗ ≤ P such that the conclusions of
propositon 4.3 are satisfied for some M ≥ 4, which yields P ∗ = 24 for |C| = 49 and
P ∗ = 26 for |C| = 52. These numbers are both 8 less than the computed P (C),
and so we can again conclude that if P (C∗) = B(C∗), then there must have been a
significant error in the calculation of P (C).

Thus the computations in table 2 strongly indicate that the calculated discrep-
ancies between parameter count and bound listed in table 1 are real and not merely
the result of computational error.
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