
The Desargues-Hilbert Billiard

Kevin Casto

April 29, 2013

Given two distinct conics C1 and C2 in RP 2, defined by equations p1(x, y, z) = 0 and p2(x, y, z) = 0, so
that p1 and p2 are homogeneous quadratic polynomials, we can form their pencil, which is the set of all their
linear combinations; i.e., the set of all solutions to λp1 + µp2 = 0 for each λ, µ ∈ R. It is clear that scaling
(λ, µ) leads to the same solution set, so that the elements of the pencil are parameterized by points on the
projective line with homogeneous coordinates [λ : µ]. In fact, if we write the conics in standard form as

p1(x, y, z) =
(
x y z

) a1 b1/2 c1/2
b1/2 d1 e1/2
c1/2 e1/2 p1

xy
z

 = a1x
2 + b1xy + c1xz + d1y

2 + e1yz + f1z
2 = 0

p2(x, y, z) =
(
x y z

) a2 b2/2 c2/2
b2/2 d2 e2/2
c2/2 e2/2 p2

xy
z

 = a2x
2 + b2xy + c2xz + d2y

2 + e2yz + f2z
2 = 0

then, again, scaling either gives the same solution set, so that we can consider each conic as a point [a : b :
c : d : e : f ] in five-dimensional projective space. Thus a pencil of conics is just a (projective) line in this
space. Let us abuse notation slightly and denote the pencil C1C2

There is a theorem of Desargues that says the following: given two conics C0 and C1, consider a tangent
line ` to C0. ` intersects each conic in C0C1 at two points (counting multiplicity); thus the pencil induces a
map on `, which we shall denote Des`(C0C1), sending one point of intersection to the other (so that a point
of tangency is fixed). Then the theorem says that this map is a projective transformation of `, in particular
a projective involution.

Clearly for any other conic C2 in C0C1, we have C0C2 = C0C1, so that Des`(C0C2) = Des`(C0C1) for
each tangent ` to C0. Our first theorem investigates a converse to this:

Theorem (1). Given three distinct nondegenerate conics C0, C1 and C2, if for seven distinct tangent lines
`1, . . . , `7 to C0, we have Des`i(C0C1) = Des`i(C0C2), then the three conics lie in a pencil. Furthermore,
this bound is sharp.

Letting the conics be the zero-sets of homogeneous quadratics p0(x, y, z), p1(x, y, z), and p2(x, y, z), we
know that there is a projective transformation sending C0 to the unit circle in the standard affine plane, so
that WLOG we may assume p0(x, y, z) = x2 +y2−z2. For a given tangent line ` to C0, if we pick two points
P and Q on `, we may parameterize ` by (x1 : x2) 7→ x1P +x2Q. One natural point is the point of tangency
with C0; and since C0 is the unit circle, we know that the “line at infinity” z = 0 does not intersect C0 over
R, so the intersection point of ` with this line will always give us another distinct point. We let P be this
point at infinity and Q be the point of tangency, so that the point of tangency is given by (0 : 1).

Now, we have a projective involution Des`(C0C1) = Des`(C0C2) of `, which we can write under the
projective parameterization as just a 2× 2 matrix A, considered up to scalar multiples.

Claim. Under this parameterization of `, we have A ≡
(

1 0
c −1

)
, which in standard affine coordinates

where x2 6= 0 is the linear-fractional transformation t 7→ t

ct− 1
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Proof. Since Q, given by (0 : 1), is a fixed point of the transformation, we must have

A

(
0
1

)
=

(
a b
c d

)(
0
1

)
=

(
b
d

)
=

(
M
0

)
for some constant M , so that we must have b = 0. Furthermore, since we have an involution, A2 must act
as the identity, so that A2 = λI for a scalar λ. Thus

A2 =

(
a2 0

ac+ cd d2

)
=

(
λ 0
0 λ

)
=⇒ d = ±a

If d = a, then since ac + cd = 2ab = 0, either a = 0 and A is the zero map, which is impossible, or c = 0
and A the identity, which is impossible since the map interchanges two distinct points. Thus we must have

d = −a, and so since a is nonzero, we can write A as

(
1 0
c −1

)
.

We notice that on the affine line, for t 6= 0 we have that

t−1 +

(
t

ct− 1

)−1
= c

We can extend this result to all of ` with the following “reciprocal addition” law:

Definition Let ⊕ : R2 × R2 → R2 be given by (a, b) ⊕ (c, d) = (ac, bc + ad). Then ⊕ is invariant under
scalar multiplication, and so descends to a map RP 2 × RP 2 → RP 2.

For any point (x1 : x2) in `, we then have(
x1
x2

)
⊕A

(
x1
x2

)
=

(
x1
x2

)
⊕
(

x1
cx1 − x2

)
=

(
x21

x1x2 + cx21 − x1x2

)
=

(
1
c

)
as long as x1 6= 0, i.e., as long as (x1 : x2) 6= (0 : 1) = Q. This allows us to establish the equivalence of the
two projective involutions in a simple way:

Claim. Des`(C0C1) = Des`(C0C2) iff for every tangent line ` to C0, we have P1 ⊕ P ′1 = P2 ⊕ P ′2, where P1

and P ′1 are the points of intersection of ` with C1, and P2 and P ′2 with C2.

Proof. One direction is trivial. For the other direction, we note that for a given tangent line `, the two
involutions A1 and A2 are uniquely determined by their values c1 and c2. Thus if P1⊕P ′1 = c1 = P2⊕P ′2 = c2,
we must have A1 = A2. If this is true for every tangent line, the two transformations are necessarily
identical.

So if we can solve algebraically for the generic points of intersection of ` with C1 and C2, we can express
the fact that Des`(C0C1) = Des`(C0C2) in a purely algebraic way. We do this as follows: we have a standard
isomorphism RP 1 → C0 given by (x1 : x2) 7→ (x21 − x22 : 2x1x2 : x21 + x22). If `, given in dual coordinates by
[a : b : c], intersects C0 at a point parameterized by (x1 : x2), we must have

a(x21 − x22) + b(2x1x2) + c(x1 + x2) = (c+ a)x21 + (2b)x1x2 + (c− a)x22 = 0

For ` to be tangent, the discrimant b2 − (c+ a)(c− a) = a2 + b2 − c2 must vanish, so that lines tangent to
C0 lie on the “dual circle” a2 + b2 − c2 = 0. So we likewise have an isomorphism from RP 1 to the space of
lines tangent to C0; here it makes sense to take modified form (λ : µ) 7→ [−λ2 +µ2 : −2λµ : λ2 +µ2], so that
we have

(λ2 − µ2)(x21 − x22) + (−2λµ)(2x1x2) + (λ2 + µ2)(x21 + x22) = 2(µx1 − λx2)2 = 0

2



and the point of tangency Q is (x1 : x2) = (λ : µ), and is given in planar coordinates by (λ2 − µ2 : 2λµ :
λ2 + µ2). That is, the two maps simultaneously parameterize a point on C0 and the line tangent to it at
that point.

To then find P , the point of intersection of ` with the line z = 0, we note that the line ax+by+cz = 0 and
z = 0 will intersect at the point (−b : a : 0), so we have P = (2λµ : −λ2 + µ2 : 0). So our parameterization
of ` is given by

(x1 : x2) 7→ x1Q+ x2P = (2λµx1 + (λ2 − µ2)x2 : (µ2 − λ2)x1 + 2λµx2 : (λ2 + µ2)x2)

Note that this is not well-defined over C: at the tangent line parameterized by (λ : ±iλ), we have P = Q =
(1 : ±i : 0), one of the so-called circular points at infinity, and the map on tuples is given by (x1 : x2) 7→
2λ2(x2 ± ix1)(±1 : i : 0), so that (±i : 1) 7→ (0 : 0 : 0).

We can now find the points of intersection of ` with C1 and C2 by plugging the parameterized equation
of ` into the conics: if a conic C has equation ax2 + bxy + cxz + dy2 + eyz + fz2 = 0, then the points of
intersection are the roots of

(dλ4 − 2bλ3µ+ (4a− 2d)λ2µ2 + 2bλµ3 + dµ4)x21 +

(−(b+ e)λ4 + (4a+ 2c− 4d)λ3µ+ 6bλ2µ2 + (−4a+ 2c+ 4d)λµ3 + (e− b)µ4)x1x2 +

((a+ c+ f)λ4 + 2(b+ e)λ3µ+ (−2a+ 4d+ 2f)λ2µ2 + 2(e− b)λµ3 + (a− c+ f)µ4)x22 = 0

If we write this as αx21 + βx1x2 + γx22 = 0, then its roots are r1 = (2γ : −β +
√
β2 − 4αγ) and r2 = (2γ :

−β −
√
β2 − 4αγ), and we have that r1 ⊕ r2 = (γ : −β). But as we proved in the lemma, this quantity is

the same for both C1 and C2, so that (γ1 : −β1) ≡ (γ2 : −β2), and therefore γ1β2 − γ2β1 = 0. Expanding
this out, we get a degree eight homogeneous polynomial P (λ, µ) in λ and µ.

Claim. P (λ, µ) is divisible by λ2 + µ2, i.e., P (λ,±iλ) = 0

Proof. As was mentioned, if we try to extend our notions to CP 2 and look at the tangent line parameterized
by (λ : ±iλ), the map RP 1 → ` degenerates to (x1 : x2) 7→ 2λ2(x2 ± ix1)(±1 : i : 0), which is not even well-
defined at (±i : 1). Since we have only been working over R, this does not bother us, but it does mean that if
we formally carry out our procedure, well-defined over R, of plugging in the parameterized equation for ` into
the conic equation, we get as our homogeneous polynomial in (x1 : x2) simply 4λ4(a+bi−d)(x2+ix1)2. Thus
γk and βk are just (ak + bki−dk) times a term without any of the conic coefficients, so that γ1β2−γ2β1 = 0,
and P (λ,±iλ) = 0.

Dividing P through by λ2 + µ2, we get a degree six homogeneous polynomial Q(λ, µ). Since Q(λ, µ) =
(γ1β2−γ2β1)/(λ2 +µ2), all the coefficients consist of terms of the form v1w2−w2v1 = (v1, v2)×(w1, w2), the
two-dimensional scalar cross product. This motivates us to define a = (a1, a2),b = (b1, b2), . . . , f = (f1, f2).
Having done this, the coefficients are further simplified by making the substition A = a + f, D = d + f,
which eliminates f. We can then write

Q(λ, µ) = (b + e)× (A + c)λ6+

2((2D−A)× c− 2A×D)λ5µ+

((A + 3c + 4D)× b+ (−5A− 3c + 4D)× e)λ4µ2+

4(A× c + 2e× b)λ3µ3+

((A− 3c + 4D)× b + (5A− 3c− 4D)× e)λ2µ4+

2((2D−A)× c + 2A×D)λµ5+

(b− e)× (A− c)µ6
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If Q is nonzero, it has at most six real roots in RP 1; but it vanishes for each (λ : µ) parameterizing a
point on the unit circle with a projective tangent line; thus if there are seven distinct such tangent lines, it
must be identically zero, so that all of its coefficients vanish. We thus get a system of seven equations. By
adding and subtracting opposite pairs of these equations (first and last, second and second-to-last, etc.), and
combining pairs of equations with one side equal, these can be reduced to the following:

A×D = 0

(2D−A)× c = 0

(A + D)× b = 0

(−2A + D)× e = 0

A×D = 0 tells us that A and D are parallel. They can thus be written as scalar multiples of the same
vector v; so say A = Av and D = Dv. But then 2D − A, A + D and −2A + D are also parallel to v,
meaning that, by the other three equations, b, c and e are as well, so that we can also write b = bv, c = cv,
and e = ev. But then, if v = (v1, v2), we have

A1

b1
c1
D1

e1

 = v1


A
b
c
D
e

 ;


A2

b2
c2
D2

e2

 = v2


A
b
c
D
e


In our original coordinates, we have a = A− f and d = D− f, and thus

C1 =


a1
b1
c1
d1
e1
f1

 =


v1A− f1
v1b
v1c

v1D − f1
v1e
f1

 ; C2 =


a2
b2
c2
d2
e2
f2

 =


v2A− f2
v2b
v2c

v2D − f2
v2e
f2


Furthermore, we know that v1 6= 0, v2 6= 0, because otherwise we would just have C1 = C0 or C2 = C0

(recall that C0 is parameterized by (1 : 0 : 0 : 1 : 0 : −1)). But then it is clear that

v2C1 − v1C2 + (v2f1 − v1f2)C0 = 0

so that the three conics are collinear in projective space, i.e., lie in a pencil.

Finally, to see that the bound is sharp, consider the conics C0 the unit circle and Ci given by the equa-
tion aix

2 + (3ai + 2fi)y
2 + eiyz + fiz

2 = 0 for i = 1, 2, so that Ci = (ai : 0 : 0 : 3ai + 2fi : ei : fi).
Then one can confirm that, in the terminology above, Q(λ, µ) = e × (a + f)(λ6 − 7λ4µ2 + 7λ2µ4) =
e× (a + f)(λ−µ)(λ+µ)(λ− (

√
2− 1)µ)(λ+ (

√
2− 1)µ)(λ− (1 +

√
2)µ)(λ+ (1 +

√
2)µ). Since we can clearly

choose a, e, and f to make e× (a + f) nonzero, the three are not in the same pencil, but for the six tangent
lines to C0 parameterized by the roots of Q, we have Des`(C0C1) = Des`(C0C2). As a concrete example, we
may take the ellipses 4x2 + 2y2 − 5 = 0 and 3x2 + y2 − 2y − 4 = 0, both of which lie entirely outside C0.
Since they intersect one another but not C0, it is clear that they cannot all lie in the same pencil, but again,
we have Q(λ, µ) = 2(−λ6+7λ4µ2−7λ2µ4+µ6), so that it has the full set of distinct real roots listed above.

While the rather delicate algebro-geometric questions restricted to pencils of conics are interesting, there
is a rather different direction we can go in: namely, we can consider the Desargues map not just operating on
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individual lines at a time, but on the whole plane simultaneously. This opens the subject up to a dynamical
systems perspective which proves quite fruitful.

So, given a (nondegenerate) conic C and a pencil P that it lies in, for any point p there are by duality
two lines through p tangent to C; the lines are equal if p ∈ C, both complex if p is “inside” C (in the
component of RP 2 \C homeomorphic to a disc) and both real if is “outside” C (in the component of RP 2 \C
homeomorphic to a Möbius strip). Suppose we pick one of the two and call it R; then DesR(P) takes p
to another point p′. Clearly one of the tangent lines through p′ will be R, so call the other R′: we then
continue by using DesR′(P) to map p′ to p′′, and so on. Letting p = p0, we get an infinite sequence of points
(p0, p1, p2, . . . ). Likewise we can use the other tangent line—call it L—to go “backwards”, and thus get a
doubly-infinite sequence of points (. . . , p−2, p−1, p0, p1, p2, . . . ).

The names L and R are chosen because we are distinguishing left from right, from the point of view of p
looking at C. Unfortunately, since RP 2 is non-orientable, we cannot consistently do this on the entire plane.
However, any affine neighborhood U of C is clearly orientable, so that if U+ is the component of U “outside”
of C (homeomorphic to an annulus), we get a well-defined map DesU (P) : U+ → U+. By definition, each
conic in P (or its intersection with U+) is invariant under this map. Our last theorem thus proves a very
rigid kind of invariance of conics under this map: namely that if Des(P) takes any seven points of a conic
into itself, then in fact the whole conic is invariant under the map.

This leads us to consider the invariance of other curves under the map. Are there other curves besides
conics in P that are invariant? If there are, the invariance becomes less interesting: after all, conics in a
pencil are invariant under the identity map, but that has nothing to do with their being conics. What we
are really after is a minimal set of invariant curves, so that our dynamical system is integrable. Integrability
is a famously vague and variously-defind notion, but here we mean that, at least in a neighborhood U+ of
C, we have a foliation of minimal invariant curves. All we have left is to establish minimality; but to answer
that question, it’s worth recognizing the map Des(P) in a different guise.

In fact, this map has been relatively well-studied: it is the so-called “dual billiards”, or “outer billiards”
map, in the hyperbolic plane, as discussed and proven in [BILL]. The idea of outer billiards is to take a
convex shape in the plane, and then maps points outside of it to their reflection through tangent lines; this
turns out to be spherically dual to the standard billiards map of points (or really, directed lines) bouncing
around inside a convex shape. Euclidean outer billiards obviously uses the Euclidean metric to measure
distance—the idea being that the point goes twice the distance to the point of tangency of one of its tangent
lines to the shape—but we can just as well play this game in the hyperbolic plane. If we take an element of
the pencil around C which is still “around” C, then we can map this outer ellipse to the unit circle, and use
this as a Beltrami-Klein model of hyperbolic geometry, with Cayley’s cross-ratio metric placed on it. Since
Des(P) is defined projectively, it’s not too hard to see that in fact it’s exactly the map sending a point to
its outer billiard reflection through the point of tangency.

While we will continue to make use of all the work that has already been done on outer billiards, the
only thing we really want right now is the existence of an area form ω invariant under our map. This is the
tool we need to prove our theorem:

Theorem (2). In sufficiently small affine neighborhoods U+ of C, any smooth curve Γ ⊂ U+ invariant
under DesU (P) is a conic and thus an element of P.

Proof. The “sufficiently small” clause is just to assure us that the pencil is still a foliation of nested ellipses,
so that we still use the hyperbolic construction. (We will try to get beyond this to more general situations
shortly.) For each conic D in the pencil, the area form ω gives us a length element dx on D which is also
invariant under Des(P): namely, to measure a portion L ⊂ D, take an annular strip Lε of height ε, and
then take the limit of ω(Lε)/ε as ε→ 0. The invariance of dx then just follows from the invariance of ω by
construction. This means that, from the point of view of dx, the map Des(P)|D is just a rotation by a fixed
amount, because otherwise dx wouldn’t be invariant. Thus each element of the pencil has some rotation
number θD. It is clear that θC = 0 and, at least close to C as we are assuming, θ increases as we move away,
since points outside C are not fixed, and θ varies continuously by the continuity of ω. Now, suppose Γ 6⊂ D
for any D ⊂ U+; then since the conics cover U+, it must meet at least two, say C1 and C2, where WLOG
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C1 is the smaller one enclosed by C2. But then, since the region between C1 and C2 is an annulus, Γ must
intersect all the conics between them. And since θ varies continuously, this means it intersects at least one
conic C3 with irrational rotation number. If we call the point of intersection p0, then since Γ is invariant,
all the images of p0 under Des(P) must lie in it, but likewise for C3. And since Des(P)|C3

is just given by
t 7→ t + θ (mod 1), with θ irrational, we get an infinite sequence p0, p1, . . . which gets arbitrarily close to
every point of C3. So since Γ is a smooth curve, we must have Γ = C3.

Thinking about it from the outer billiards perspective, we have proven that when playing outer billiards
in the hyperbolic plane with a conic table, that any invariant curve must be a conic. We might also wonder
whether (again, still in the hyperbolic plane) any continuous convex closed curve that we take as an outer
billiards table, which has a conic as an invariant curve, must itself be a conic. To prove this, we use another
result from [BILL], based on the existence of the invariant area form ω, which in fact is much stronger:

Theorem (3). Given a convex curve in the hyperbolic plane, there is a foliation of outer billiards tables
inside the curve that have it as an invariant curve under the outer billiards map.

The basic idea is an area construction, dual to the “string construction” used for an analagous theorem
in standard billiards. If the outer billiards table C0 has an invariant curve C1, then for each tangent line `
to C0, the region bounded by ` and C1 has constant area under ω as ` varies around C0. So if we are given
C1, we can reconstruct C0 as the envelope of the family of lines cutting off a fixed amount of area out of C1.
Clearly if the area is 0, this is just C1, and as we increase the area from this, we get a foliation of nested
curves, which do not intersect one another.

This immediately gives us our desired statement:

Corollary. If a billiard table C0 in the hyperbolic plane has a conic C1 as an invariant curve, C0 must be
a conic.

Proof. This is simply because the foliation of billiard tables with C1 as an invariant curve is just the pencil
of conics generated by C1 and the circle at infinity. In particular, there is some fixed area α carved out by
the tangent lines to C0; but we already know that the envelope of all lines carving out area α from C1 is a
conic, so that C0 must be a conic.
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