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1 Introduction

The phrase “correlation is not causation” is frequently repeated in statistics
classrooms. Statisticians have a solid grasp on what “correlation” is. And,
using a bit of intuition, we know that “causation” is definitely not the same as
“correlation” (the reading on my barometer is correlated with the chances of
rain. But certainly, my barometer’s movement does not cause rain). If causation
is not correlation, what is it? In particular, when we make a claim such as “the
spark caused the explosion”, what are we saying?

One thing we are saying is that, if we were to model the world correctly
using mathematical formalism, we should take into account a particular kind
of connection - a causal connection, between the spark and the explosion. So, an
adequate understanding of causation should include, at least, a mathematical
formalism for modelling causal connections. This thesis is a survey of the kinds
of mathematical formalism for modelling causation. It culminates, in the final
chapters, with a proposal for a brand new formalism.

We begin, in chapter 2, with a brief overview of the philosophical discourse
about causation. The ideas presented in this discourse underpin much of the
mathematical models we develop, and they also serve to illustrate the various
challenges that mathematical formalism for causal modelling needs to address.
In particular, in this chapter we will see that

1. A successful causal model not only needs to describe what we do observe
in the world, but also what we would observe, if we were to intervene, as
agents, on certain objects in the world.

2. Causal models are not black boxes, but have internal structure. In partic-
ular, causal models should have compositionality: they should be built
out of smaller units, and they in turn should be capable of building up a
larger picture.

3. Differing causal models are not stand-alone ideas, but bear meaningful
relations to each other. A successful formalism for causal modelling should
make explicit these meaningful relations between models.

We will see, in subsequent chapters, that these requirements are gradually
fulfilled by more and more complex mathematical formalisms.

In chapter 3, we review the formalism known as the potential outcomes
framework, or Rubin Causal Models (RCM). We will see that RCMs are very
useful in clinical settings, in which there is exactly one cause (a treatment), and
one effect (an outcome) to be modelled. They fulfill requirement number 1
above, but not 2 and 3.

In chapter 4, we review the formalism known as Structural Causal Models
(SCM). We explain the sense in which SCMs are really generalizations of RCMs,
and discuss the major strengths of the SCM approach. In particular, we will see
that they fulfill requirements 1 and 2, but they do not fully meet requirement 3.

Then, in chapter 5, we take a brief detour, and survey some core concepts in
category theory. These concepts serve as groundwork for chapter 6. Readers
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who are comfortable in the topic of higher category theory should probably
skip this chapter.

Finally, in chapter 6, we develop our proposal for a new formalism: Func-
torial Causal Models (FCMs). We make clear that this formalism is a stronger,
if more cumbersome, formalism than the SCM approach. In particular, FCMs
satisfy all three requirements.

Chapters 2, 3, 4, and 5 are surveys of well-established literature. Chapter
6 takes abstract ideas from Evan Patterson’s foundational thesis [15], but the
definitions and theorems in this chapter are mostly original.
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2 Philosophical Theories of Causality

2.1 Hume’s Regularity Theory of Causation

In A Treatise of Human Nature, David Hume defines causation as

an object precedent and contiguous to another, and where all the
objects resembling the former are plac’d in like relations of priority
and contiguity to those objects, that resemble the latter. [7]

We may summarize the Humean theory of causation as follows:

Definition 2.1. (Humean Regularity Theory) An object A is a cause of another
object B if:

1. A precedes B in time; and

2. A is spatiotemporally contiguous to B, that is to say, there is a time-like
path connecting A to B; and

3. For any object A′ of the same type as (i.e. “resembling”) A, there is a
corresponding object B′ of the same type as B, which follows A′ temporally
and is spatiotemporally contiguous to A′. (This condition is called the
regularity condition).

Notice that, in HRT, there is no mention whatsoever of an underlying
mechanism through which regularity occurs: if causation exists, there need
not be an explanation for why this regularity occurs. Thus, regularity is not
“metaphysically thick”: it is only a statistical property of what happens to
obtain in the actual world, requiring no notion of necessity or explainability to
back it up.

There is a very good reason for Hume to insist on this independence from
metaphysical necessity. As an empiricist, Hume held that all ideas come strictly
from our sensory perception. But there can be no sensory perception of necessity:
if I observe that a billiard ball runs into another, and the second ball moves, I
have only perceived this chain of events, and not the necessity that the second
ball moves after the first ball runs into it.

The HRT has several advantages. First, it avoids any commitment to a meta-
physical account of necessity, or of any sort of underlying causal mechanism.
Second, it explains how we, as experimenters, can perceive causation. Indeed,
since temporal precedence and spatiotemporal contiguity are both easy to per-
ceive, to observe a case of Humean causation, one needs only to have the ability
to observe regularity. This is easier to defend than, say, a nativist account, where
we are born with certain notions of necessity or causal mechanisms.

However, the HRT has three serious defects. First, if the regularity condition
is to be well-defined, we must partition “objects” into “types”, or relations of
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“resemblance”. It is not immediately clear how we can do this without being
overly subjective.1

Second, our everyday notion of causation doesn’t seem to require regularity.
This can be seen in any case where, while there is clearly causation in the usual
sense in which we use the word, there cannot be any other event even remotely
resembling this particular occurrence. Take, for example, the claim that the big
bang caused the cosmic microwave background to be as it is. Many readers
will believe this claim. But they certainly will not expect to be able to observe
another occurrence resembling the big bang, and thereby verify that in that
occurrence, a cosmic microwave background resembling ours to appear.

Third, the HRT criteria don’t seem to be sufficient for our everyday notion
of causation.

Example 2.1. (Fork) Every time the needle on my barometer points to a lower-
than-usual number, it begins to rain in the next hour or so. Then the movement
of the needle temporally precedes the rain, is spatiotemporally contiguous to the
rain, and this relation obtains regularly. Should I conclude that the movement
of the needle causes rain?

It would certainly be absurd to say that the movement of the needle causes
rain. We know that it is a drop in atmospheric pressure which causes both the
barometer needle to drop, and the rain; it just happens to be the case that the
barometer reacts faster than the rain does. The HRT fails to exclude such cases
of spurious causation.

To sum up, the HRT presents us with three challenges: first, the problem
of partitioning particular events into “types” or relations of “resemblance”;
second, the problem that regularity is not necessary for causation; and third,
the problem that regularity is not sufficient for causation.

2.2 Counterfactual Theories of Causation

Counterfactual theories of causation (CTC) attempt to address some of the
problems faced by regularity theories. The main ingredient of these theories
is the idea of “counterfactual dependence”. In CTC, causation is defined in
terms of chains of counterfactual dependences. The bulk of the classical CTC
is developed by David Lewis [12].

Consider the following pairs of sentences, taken from the Lewis text [12]:

1. (a) If Oswald didn’t kill Kennedy, someone else did.

(b) If Oswald hadn’t killed Kennedy, someone else would have.

1John Stuart Mill refines HRT by defining such a partition using the notion of “laws of nature”.
According to Mill, a scientific proposition p is a law of nature if, for every deductive system S of
scientific facts that strikes an appropriate balance between simplicity and strength, p obtains as
either an axiom or a theorem of S [14]. Since types come prepackaged in the statement of a law
of nature, two objects have “resemblance” if and only if they are both instantiations of the same
type in a relevant law of nature. However, this theory itself has been criticized as being overly
mind-dependent, in virtue of its reliance on “appropriate balance”. See [1, 20, 2]
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2. (a) If Kangaroos don’t have tails, Kangaroos topple over when they hop.

(b) If Kangaroos didn’t have tails, Kangaroos would topple over when
they hop.

The sentence 1a is true as a matter of logic: Kennedy was, in fact, killed. So I
can make the logical deduction that someone, either Oswald or someone else,
killed Kennedy. But 1b is not merely a matter of logic. It contains some extra
information about the situation at the time just before Kennedy was killed, such
that one might infer from 1b that Kennedy was rather hated by a sufficiently
large group of people. The second pair of sentences extracts this distinction a
bit further. Sentence 2a is vacuously true. Because Kangaroos do in fact have
tails, the sentence “if Kangaroos don’t have tails, then P” is true for all P. But
sentence 2b is not vacuous at all. It is a biomechanical claim about the way in
which Kangaroos balance themselves when they hop, such that this balancing
is necessarily dependent on having a tail. We call sentences of the form 1b and
2b “counterfactual sentences”:

Definition 2.2. A counterfactual sentence is a sentence of the form “if it were
the case that A, then it would be the case that B”, where A and B are events. We
denote this relation by

A � B

Note, the event A need not be false for the counterfactual sentence to be
well-formed. That is, a counterfactual sentence need not be counter-factual.

Definition 2.3. An event B is said to counterfactually depend on A if

¬A � ¬B.

It is important to note here that counterfactual dependence is a counterfactual
sentence involving the negations of the events under question.

Example 2.2. The sentence “if kangaroos didn’t have tails, kangaroos would
topple over when they hop” is equivalent to “kangaroos’ ability to balance
themselves counterfactually depends on their having tails”.

How are we to provide semantics to this binary operation between events?
Consider sentence 2b again. One may reasonably think that this sentence means
something to the effect of “imagine a world where Kangaroos don’t have tails -
in that world, they would topple over when they hop”. But of course, this need
not hold true in every possible world where kangaroos don’t have tails. There
may well be a possible world where kangaroos use wings to balance themselves.
So, what we mean by sentence 2b is this: in a world where, although kangaroos
don’t have tails, other aspects of the world are suitably similar to our actual
world, kangaroos would topple over [12].

But we also cannot limit ourselves to the possible world where kangaroos
don’t have tails, but all else remain exactly the same. For example, are we to
imagine a possible world where kangaroos don’t have tails, but the trails left
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behind when they move about are the same? If so, then we must imagine some
other mechanism through which the trails are left behind, making that world
still dissimilar to our actual world. Thus, we want the sentence A � B to mean
this: among all possible worlds where A is true, the ones where B is also true
are the closest to the actual world. We formalize this notion in the following
definitions, which are my own representation of Lewis’ work:

Definition 2.4. A similarity-ordered-multiverse is a partially ordered set (Ω,≤)
with a unique minimal element ω∗. The minimal element is called the actual
world, and elements of Ω are called possible worlds. If ω1 ≤ ω2, we say ω1 is
more similar to the actual world than ω2 is.

The idea is that a counterfactual sentence A � B is true in the actual world
if and only if, among all the possible worlds where A is true, the closest ones
are the ones where B is also true:

Definition 2.5. (Lewis’ Semantics for Counterfactuals). Let (Ω,≤, ω∗) be a
similarity-ordered-multiverse. Let A and B be subsets of Ω. Then A � B is
true if and only if:

1. A is empty; or

2. There exists a subset D ⊂ A ∩ B such that, for any ω ∈ A ∩ Bc, there exists
some ω′ ∈ D such that ω′ < ω.

Example 2.3. If similarity could be measured in terms of real numbers - that is,
if Ω is given the structure of a metric space (and the partial order determined by
distance from the point ω∗), then A � B is true if and only if either A is empty,
or there exists some closed disk D = B(ω∗, r) around ω∗ such that D∩A∩B , ∅,
but D ∩ A ∩ Bc = ∅.

Now, one may be tempted to say that causality is equivalent to counter-
factual dependence in the above-defined sense. However, this can’t be right.
Consider the following example:

Example 2.4. (Early Pre-emption) Suppose Sarah throws a rock at a window.
Taro, who was about to do the same with a much bigger rock, sees this, and
gives up on throwing his rock. Sarah’s rock breaks the window. We would
certainly say that Sarah’s rock throwing caused the window to break. But if
Sarah hadn’t thrown the rock, Taro would have, and thus the window would
still break. So the breaking of the window does not counterfactually depend
on Sarah’s rock throwing.

So it would seem that counterfactual dependence is not a necessary condi-
tion for causation. Lewis proposes that causation should be defined as chains
of counterfactual dependence - that is, causation is the transitive closure of
counterfactual dependence relations. So, in example 2.4, we may add an inter-
mediate event - the event of Sarah’s rock flying in midair toward the window.
Now this event counterfactually depends on Sarah’s throwing. But also, by the
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time the rock is in midair, Taro had already decided not to throw his rock. So
the shattering of the window also counterfactually depends on the intermedi-
ate event. Thus, there is a chain of counterfactual dependencies from Sarah’s
throw to the shattering of the window.

The advantage of this account of causation is that it resolves many issues
found in the HRT. First, there is no longer any need to partition particular
occurrences in the actual world into “types” or “resemblances”, since the only
comparisons being made in the CTC are those between possible worlds in a
similarity-oriented-multiverse. Second, there is no difficulty for the CTC to
assert that the big bang caused the cosmic microwave background to be as it
is. Again, this is because the only comparisons being made are those between
possible worlds; and readers can imagine possible worlds where, say, the big
bang occurred but in a slightly different way. Third, the CTC successfully
excludes cases of fork from causation. Consider example 2.1. There is a chain
of counterfactual dependence from the drop in atmospheric pressure to the
movement of the barometer needle, but there is no such chain connecting the
movement of the needle to the rain.

However, the CTC in turn also suffers from two important issues. First is
the problem of transitivity. Since Lewis defines causation as chains of counter-
factual dependence, so causation must be transitive: if A causes B, and B causes
C, then A causes C. But many counterexamples to transitivity have been given
(Lewis himself gives a catalogue of these in [13]). Consider this classic scenario:

Example 2.5. (Non-Transitivity of Causation) A hiker is on her way up the
mountain. A boulder rolls down the mountain toward the hiker (call this event
B). Seeing the boulder, the hiker ducks to avoid the boulder (call this event
D). Having ducked successfully, the hiker is able to continue her hike (call this
event C). Further, suppose that the boulder was on a trajectory such that, if the
hiker had not ducked, she would have been struck and become incapacitated.
Then B causes D, and D causes C, but B certainly does not cause C: the boulder
rolling towards the hiker cannot possibly be a cause for the hiker’s ability to
continue the hike.

The second problem CTC suffers from is the problem of late pre-emption.
We have seen that, by defining causation as chains of counterfactual depen-
dence, rather than as counterfactual dependence itself, Lewis was able to resolve
the problem of early pre-emption. But consider a similar case of pre-emption,
which cannot be resolved by the chain modification:

Example 2.6. (Late Pre-Emption) Suppose Sarah and Taro both simultaneously
throw a rock at a window. Sarah’s rock reaches the window only a split-second
before Taro’s rock does. Sarah’s rock breaks the window, and Taro’s rock sails
through the broken window only a split-second after. We would certainly say
that Sarah’s rock throwing caused the window to break. But this time, we
cannot construct a chain of counterfactual dependence leading from Sarah’s
rock throwing to the window breaking, since there is no moment when Sarah’s
rock is in midair, and Taro’s rock has been laid down.
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So to sum up, the CTC addresses the main weaknesses of the HRT. However,
it suffers from the problem of non-transitivity, and the problem of late pre-
emption. As we will see in the concluding section of this thesis (section 7.2),
the mathematical viewpoint will provide us with something of an answer to
these two problems - but it is arguably an unsatisfactory one.

2.3 Towards a Mathematical Point of View

The most common statistical methods of modelling causation today are, in
many ways, direct descendants of the CTC. However, they differ from our
philosophical theories in a few key ways. In particular, there are a few key
notions central to the mathematical theory of causal models, which are not
present in the philosophical account of counterfactual causation. We introduce
these notions here, not only as prerequisites for the following chapters, but also
as philosophically interesting ideas in their own rights.

First, instead of reasoning about events, we will reason about a more gen-
eral notion, known as random variables. An event is an unknown true-or-false
value: it either occurs or it doesn’t. On the other hand, a random variable is an
unknown value of any number of possible outcomes (in particular, a random
variable whose range consists of two outcomes is mathematically indistin-
guishable from an event). I will not discuss the various equivalent definitions
of random variables. For a standard treatment, see Sheldon Ross’s book [18].

Second, we will be dealing with the class of statistical models known as
generative models. A generative model consists of a mathematical description
of some process which generates data. For example, the heliocentric model
places the sun at the center of the solar system, thereby describing the process
of motion of the sun and its planets, which in turn generates the patterns
of ecclesiastical motion that we can actually observe here on earth. Thus, a
generative model is concerned with more than description and categorization
of the data; it asks for the underlying process.

A generative model can, in principle, be computerized. That is to say, it
is in principle possible to write a computer program, such that outputs of this
program behave as the generative model specifies. For example, we can write
a computer simulation of the solar system, in accordance with the heliocentric
model. Outputs of this simulation will consist of time-series of positions for
the sun and its planets. From these outputs, we may then retrieve the patterns
of motion that would have been observed from earth, if the sun and planets
really do move as the outputs specify. If the model is good, we expect these
predicted patterns of motion to be similar to the patterns of motion that are
actually observed. Note, I say that this is possible in principle, because limi-
tations on computational capacity should not prevent a mathematical model
from being generative in nature, even though they may prevent the actual
programmatization of such a model.

A full mathematical description of such a generative model will be referred
to as the noumenal content of the model. This will stand in contrast to the
empirical content of the model. A generative model is empirically falsifiable
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when some (or all) of the random variables in the model are things that we
can measure in the real world. For example, the positions of planets relative
to earth can be measured in observatories, therefore making the heliocentric
model falsifiable. Something that makes a model empirically falsifiable is called
an empirical content of the model. In general, the empirical content of a model
supervenes on the noumenal content. Not all noumenal content is observable,
but certainly all observable components of a model are consequences of the
mathematical description of that model.

The empirical content of a causal model can be roughly divided into two
categories. First, causal models contain observational content. These are
things which can be measured and falsified just by observing the system that
this model is meant to represent. For example, the patterns of motion of planets
would be part of the observational content of the heliocentric model. Second,
causal models contain interventional content: a generative causal model tells
us what to expect when we, as experimenters, intervene and disrupt the causal
flow of things in a certain way. For example, suppose we had enough explosives
to blow Mars into pieces. The heliocentric model would tell us something about
how the solar system would behave, if we chose to do so. This is in principle
falsifiable: if we do choose to blow up Mars, and the solar system doesn’t
behave as the heliocentric model tells us it would, then we know the model is
wrong.

In the rest of this thesis, we will always describe causal models in the fol-
lowing order: 1) noumenal content, 2) observational content, 3) interventional
content.

The concept of counterfactual dependence in the CTC will be replaced by
a similar but subtly different notion of generative dependence. A random
variable B generatively depends on A in a model M if, in order to compute a
value for B in accordance with M, we required the value of A. For example, in
the heliocentric model, if B is the position of the earth at time t+1, then B would
generatively depend on the earth’s position and velocity at time t, as well as on
the position of the sun and every other planet at time t. Whenever a variable B
generatively depends on A, we say that A is a generative parent (or just parent
for short) of B. These generative dependence relations can then be composed
into chains and networks, echoing the transitivity of causal influence in the
CTC. A generative model, then, is a composite structure of these generative
dependence relations.

The task of finding a generative model that suits some given observational
data is quite difficult. Because a generative model is concerned with the un-
derlying process, and not just with a mere description of the data, so it is in
general impossible to “read off” a good model from the data itself. Instead, it
is necessary to instantiate candidate models, compute the consequences of the
models, and see whether the results fit our observational data. It is therefore
useful to keep track of the relations between all the different candidate mod-
els, so that progress can be made. In practice, of course, this can be done by
the exchange of prose between researchers who have personal expertise in the
subject matter being modelled. However, from a mathematical point of view,
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it is beneficial to also keep track of these relations in a formal manner, so that
definitions, conjectures, and proofs can be made about the relations between
models.

Thus, a good mathematical notion of causal models should satisfy three
requirements:

1. A causal model should specify, quantitatively, the generative dependence
between some cause-effect pairs of variables. As we will see in chapter
3, Markov kernels are good mathematical structures for specifying these
generative dependencies.

2. A causal model should specify a composite structure of generative de-
pendencies. It should tell us how, in the phenomenon being modelled,
generative dependencies come together to form chains and networks. As
we will see in chapter 4, directed acyclic graphs are the tools to use for
specifying these composite structures.

3. Differing causal models should admit some formal notion of relations
between them. As we will see in chapter 6, functors and natural transfor-
mations are good tools for thinking about these relations between causal
models.

Let us now dive into the mathematics of causal models, and see to what extent
these requirements can be met.
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3 Potential Outcome Models

Potential Outcome Causal Models, also known as Rubin Causal Models (RCM),
is in a sense the direct mathematical descendant of the counterfactual theory
of causation. This framework makes computationally rigorous the meaning of
a counterfactual/generative dependence of events, and provides fertile ground
for statistical estimation of causal effects. In this section, we will roughly follow
Imben’s treatment of this model [8], and Rubin’s own treatment [9].

Before we begin discussing this framework, let us look at the archetypal
situation in which the RCM would be useful. This example will continue to
run throughout this thesis, so it is very important that we get a good grasp of
it here.

Example 3.1. (Accupill) Suppose Amy, Bob, Carlos, and Dylon are sick from
COVID-19. Pfizer is testing a new pill, the Accupill, which is intended to help
patients recover from COVID-19. Amy and Bob are given the Accupill, while
Carlos and Dylon are given placebos. Amy, Bob, and Carlos recover within 5
days, while Dylon does not. However, we do not know whether Amy and Bob
would have recovered had they not been given the Accupill, nor do we know
whether Carlos and Dylon would have recovered had they been given the pill.
The situation is summarized in table 1.

Name Treatment Outcome if Accupill Outcome if Placebo
Amy Accupill Recovered ?
Bob Accupill Recovered ?

Carlos Placebo ? Recovered
Dylon Placebo ? Non Recovered

Table 1: RCM Table for the Accupill Example

Did Accupill help Amy recover? To answer this question, we must find out
what the outcome would have been, if Amy were given the Placebo instead.
So, the question of finding the causal effect of Accupill is essentially a missing
data problem.

3.1 Noumenal Content of Rubin Causal Models

We formalize the Accupill example (example 3.1) as follows:

Definition 3.1. (RCM) A Rubin Causal Model consists of the following data:

• A fixed integer N, known as the sample size;

• A fixed set T , known as the set of available treatments;

• For each i = 1, . . . ,N, a random variable Xi, known as the pre-treatment
features of the individual i;
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• A random variable T = (T1, . . . ,TN) whose range is T N, known as the
factual2 treatment regime, with each Ti ∈ T being the factual treatment
on individual i;

• For each t ∈ T N, a random variable Y(t) = (Y1(t), . . . ,YN(t)) whose range
isRN, known as the potential outcome if regime t were given, with each
Yi(t) ∈ R being the potential outcome for individual i.

In addition, we define the composite random variable Y := Y(T) = (Y1(T), . . . ,YN(T))
to be the factual outcome. In other words, the factual outcome is the same as
“the potential outcome, if the factual treatment were given”.

Example 3.2. In the Accupill example (example 3.1), we would have:

• N = 4, since there are 4 individuals;

• T = {0, 1}with 0 representing placebo, and 1 representing Accupill;

• The actualized value x1 of the random variable X1 represents Amy’s
clinical features; and likewise for x2, ..., x4.

• The actualized value t of T is (1, 1, 0, 0);

• The actualized value y(1, 1, 0, 0) of Y(1, 1, 0, 0) is y(1, 1, 0, 0) = (1, 1, 1, 0)
(where now 1 represents recovery and 0 represents non-recovery). This
is also the actualized value of the factual outcome Y(T). For all other
t′ , (1, 1, 0, 0), the random variable Y(t′) is not actualized.

In practice, quite a few additional key assumptions need to be made before
we can do statistics on an RCM. We now describe these assumptions.

Definition 3.2. (Single World Assumption) An RCM is said to satisfy the single
world assumption if the following sentence is true: if T is actualized to t ∈ T N,
then for every t′ , t, the random variable Y(t′) is not actualized. In other words,
an outcome that is actualized must be the factual outcome.

Definition 3.3. (Non-Interference Assumption) An RCM is said to satisfy
the non-interference assumption if the potential outcome for an individual i
depends only on the treatment received by individual i, and not those received
by anyone else. Symbolically, this is equivalent to the following requirement:

For each 1 ≤ i ≤ N and for each t, t′ ∈ TN, if ti = t′i , then Yi(t) = Yi(t′).

If the non-interference assumption is satisfied, then it makes sense to speak
of the potential outcome for individual i if treatment ti were given to her,
without regard to the treatment given to other individuals. So we will use Yi(ti)
to denote Yi(t). So in example 3.2, we can say Y1(1) = 1.

2It is crucial to distinguish between our use of the words “factual” and “actual”. Actualization
will always refer to the actualization of a random variable, and is opposed to “random”. But
“factual” refers only to the precise sense shown in this definition, opposed to “counterfactual”.
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Definition 3.4. (Homogeneity) Given that an RCM satisfies the non-interference
assumption, it is further said to be homogeneous if each individual is drawn
from the same population. Symbolically, this means that for each fixed treat-
ment t, the joint variable (Xi,Ti,Yi(t)) for i = 1, . . . ,N are i.i.d.

If homogeneity is satisfied, then for each t, we define (X,T,Y(t)) to be a
random variable drawn from the same distribution as each (Xi,Ti,Yi(t)). It then
makes sense to ask for the value

E[Y(t) | X = x]

for any pre-treatment feature x. This will be the crucial piece of information
needed for decision making: given this patient has characteristic x, which
treatment gives the best expected outcome?

Definition 3.5. (Weak Unconfoundedness) Given an RCM satisfying non-
interference, the RCM is furthered called weakly unconfounded if the informa-
tion contained in Xi “covers” all the confounding factors between the treatment
and the outcome on i. Symbolically, for all i = 1, . . . ,N and all ti ∈ T ,

Di(ti)

Π

Yi(ti) | Xi

where Di(ti) is the indicator variable

Di(ti) =

1 Ti = ti

0 otherwise.

These assumptions are common, although in empirical studies it will be
important for the researcher to actually check whether these assumptions are
reasonable ones.

3.2 Observational Content of Rubin Causal Models

Which variables in an RCM are observed? In general settings, the feature vec-
tors Xi, the factual treatment regime T, and the factual outcome Y are observed.
But the counterfactual outcomes Y(t) for t , T are not observed. Thus, the ob-
servational content of RCMs at least include X, T, and Y. However, it includes
a little more than that.

If an RCM satisfies non-interference, homogeneity, and weak unconfound-
edness, then expected values of counterfactual outcomes can be observationally
approximated by stratifying a large enough population, and observing the ac-
tualized treatments and outcomes there. Conversely, if observed treatments
and outcomes within a properly stratified population do not approximate the
causal effects indicated by an RCM, then the RCM is wrong. This is formalized
in the following theorem:

Theorem 3.1. If an RCM satisfies non-interference, homogeneity, and weak uncon-
foundedness, then for any treatment t∗ ∈ T and any feature vector x such that
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P{T = t∗,X = x} > 0:

1
|{i : Ti = t∗ and Xi = x}|

N∑
i=1

Yi · ITi=t∗ and Xi=x
a.s.
→ E[Y(t∗) | X = x]

as N → ∞. Here X and Y(t∗) are random variables instantiated to be i.i.d. with each
of Yi(t∗) and Xi.

Proof. This will be a direct consequence of the following two lemmas. �

Lemma 3.1. If an RCM satisfies non-interference and weak unconfoundedness, then
for each i, each treatment t∗ ∈ T , and each possible feature vector x,

E[Yi(t∗) | Xi = x] = E[Yi | Ti = t∗,Xi = x].

where Yi := Yi(Ti).

Proof.

E[Yi(t∗) | Xi = x] = E[Yi(t∗) | Ti = t∗,Xi = x] (weak unconfoundedness)
= E[Yi(Ti) | Ti = t∗,Xi = x]
= E[Yi | Ti = t∗,Xi = x].

�

Lemma 3.2. If an RCM satisfies non-interference and homogeneity, then for each i,
each treatment t∗ ∈ T , and each possible feature vector x, ifP{T = t∗,X = x} > 0, then

1
|{i : Ti = t∗ and Xi = x}|

N∑
i=1

Yi · ITi=t∗ and Xi=x
a.s.
→ E[Y | T = t∗,X = x]

as N→∞.

Proof. By homogeneity, for every t∗, (Xi,Ti,Yi(t∗))
i.i.d.
∼ (X,T,Y(t∗)). Since the

factual outcome is defined as Yi = Yi(Ti), so the observed factual variables will
satisfy (Xi,Ti,Yi)

i.i.d.
∼ (X,T,Y).

A direct application of the strong law of large numbers then yields the
statement of the lemma. �

3.3 Interventional Content of Rubin Causal Models

In some sense, the interventional content of RCMs is as simple as can be. The
variables Yi(ti) directly describe the outcome that we would observe if we, as
experimenters, intervened and gave the ith individual treatment ti. This is
empirically obtainable using randomized trials:
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Theorem 3.2. If an RCM satisfies non-interference and homogeneity, then for each
treatment t∗,

1
N

N∑
i=1

Yi(t∗)
a.s.
→ E[Y(t∗)]

as N→∞. Furthermore, for each possible feature vector x such that P{X = x} > 0,

1
|{i : Xi = x}|

N∑
i=1

Yi(t∗) · IXi=x
a.s.
→ E[Y(t∗) | X = x]

as N→∞.

Proof. Both statements are consequences of the strong law of large number,

given that (Xi,Ti,Yi(t∗))
i.i.d.
∼ (X,T,Y(t∗)). �

Notice that the convergence in theorem 3.2 occurs faster with respect to N
than does the convergence in theorem 3.1. This is because, when we perform
stratification in an observational study, the size of the sample within each strata
|{i : Xi = x and Ti = t}| becomes small, and thus the total sample size needs to
be large. On the other hand, when we perform a randomized trial, the size of
the sample is either N or |{i : Xi = x}|, which is larger. Hence the capacity to
perform randomized experiments is extremely useful.

3.4 Potential Outcomes as Markov Kernels

As part of our chapter on RCMs, I want to take a brief detour, in order to
develop the idea of a Markov kernel, which will become very useful in the next
chapters. Although this idea is not usually associated with RCMs, I believe that
the notation used to describe the noumenal content of RCMs is prototypical of
Markov Kernels.

In an RCM, for each treatment t ∈ T , the potential outcome is a random
variable Y(t). This evokes the idea that Y(−) is some kind of morphism: a
function which takes input in T , and which outputs random variables. Let’s
make this a little more concrete.

If, in a programming language like Python, we want to write a function
that takes a value t ∈ T and spits out a value y ∈ Y, where T and Y are sets,
it is possible that the computation of the function can involve some calls to
random number generators. In this case, the Python function would not, in
the mathematical sense, be a function: for each input t, we do not always get
the same output y. However, for each input t, we do always obtain output
y according to some probability distribution. The probability distribution is
completely determined by t. This randomness-involving function plays the
role of Y(−) in RCMs (although it has a few extra assumptions that RCMs in
general do not require). Such randomness-involving functions are known as
Markov Kernels, and are formalized in the following:
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Definition 3.6. (Markov Kernel) A Markov kernel M from T to Y, where (T,AT)
and (Y,AY) are measurable spaces, is a measurable function M : T → Prob(Y),
where Prob(Y) is the space of all possible probability measures on Y.

Alternatively, if you prefer a more bare-bones definition, the above can be
equivalently formulated as

Definition 3.7. (Markov Kernel, alternative definition) Given T,Y measurable
spaces equipped with σ-algebras AT,AY, a Markov kernel M from T to Y is a
function M : T ×AY → [0, 1], such that:

1. For each t ∈ T, the map M(t,−) : AY → [0, 1] is a probability measure;

2. For each event C ∈ AY, the map M(−,C) : T → [0, 1] is measurable with
respect to AT and the Borel σ-algebra on [0, 1].

That the above two definitions are equivalent is verified by the definition of
Prob(Y) as a measurable space.

Example 3.3. The family of normal distributionsN is a Markov kernel

N : R ×R>0 → R.

Given a mean µ ∈ R and a variance σ2
∈ R>0, we obtain a probability measure

N(µ, σ2) on R.

Example 3.4. Let I be the measurable space of a single point, and let X be any
measurable space. Then a Markov kernel I → X is nothing more or less than a
probability measure on X.

Example 3.5. In an RCM satisfying non-interference, if, for each t ∈ T , the
random variable Yi(t) has the same range Y , then Yi(−) is a Markov Kernel
from T to Y , where T is given the discrete σ-algebra. This is because a
random variable is nothing but a measurable space (its range) together with a
probability measure.

Going forward, we will usually denote a Markov kernel from a space T to a
space Y by the symbolPY|T, to emphasize that it is something which allows you
to retrieve a probability distribution on Y, given a value in T. The evaluation
of this Markov kernel at an event C ∈ AY and at a point t ∈ T will be denoted
PY|T(C | t).

Now, it is frequently convenient to work with probability density functions
rather than the probability measures themselves. We know that a probability
density function is defined by a probability measure with respect to some fixed
“intrinsic” measure on the underlying space (say, the Lebesgue measure on
Euclidean space). We develop the equivalent notion for Markov kernels:

Definition 3.8. Let PY|T : T→ Y be a Markov kernel, and let µ be a measure on
Y. A µ-conditional density function of PY|T is a function fY|T : Y × T → [0, 1]
such that, for all t ∈ T and all event E ∈ AY,∫

E
fY|T(y | t)µ(dy) = PY|T(E | t).
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The Lebesgue-Radon-Nikodym Theorem tells us that, when a µ-conditional
density function exists for PY|T, it is µ-almost-everywhere unique. So it makes
sense to talk about the µ-conditional density function of PY|T. In almost all
the cases in the subsequent chapters, µ will be either a counting measure on
a discrete space, or the Lebesgue measure on a Euclidean space. However,
example 3.6 shows that not all Markov kernels are absolutely continuous. To
obtain the capacity to work with Markov kernels that do not admit conditional
density functions, we will require the infrastructure developed in chapters 5
and 6.

Example 3.6. (A Markov Kernel without Density Function) Suppose PS|W is a
Markov kernel that models the number of walking steps a patient takes in any
given minute in a day. The domain of the kernel is W = {0, 1}, where 0 denotes
that the patient is asleep, and 1 denotes that the patient is awake. When the
patient is awake, the number of walking steps she takes is just given by an
exponential distribution E. So PS|W(− | 1) = E. On the other hand, when the
patient is asleep, she is either completely motionless, or she is sleep walking.
So PS|W(− | 0) = (1− p)δ0 + pE where 0 ≤ p ≤ 1 is the probability that the patient
is sleepwalking, and δ0 is the Dirac distribution at 0. So if p , 1, then the kernel
PS|W does not have a density function with respect to the Lebesgue measure on
R≥0.

This concludes our brief detour on the topic of Markov kernels. This topic
will become central in the subsequent chapters of this thesis, so readers may
find it helpful to refer back to this section as you read the following chapters.

3.5 Concluding Remarks

As our discussion in this chapter has shown, RCMs are extremely versatile
in cases where one causal pair (one treatment, one effect) is being examined.
Plenty of statistics can be done because of the relatively small number of vari-
ables in the model, and because of the well-developed set of assumptions that
can frequently be made. However, recall from section 2.2 that causal effects
should, more often than not, be composable. A main philosophical difficulty
with RCMs is that they don’t teach us how to deal with chains and networks
of causal effects. Complex systems such as the ecosystem and the stock market
have many causes and many effects linked to each other, and the study of sys-
tems like these will require what is known as structural causal models, which
we will discuss in chapter 4.
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4 Structural Causal Models

Structural Causal Models address the core weakness of Rubin Causal Models:
with SCMs, we will be able to model chains and networks causal effects. In other
words, SCMs will incorporate the element of Lewis’s Counterfactual Theory of
Causation that RCMs fail to incorporate: the compositionality of causation.

In this chapter, we begin in section 4.1 by laying out the necessary graph-
theoretical knowledge about directed acyclic graphs. Then, in section 4.2, we
define the noumenal content of structural causal models, in accordance with
Judea Pearl’s treatment in [6]. In section 4.3, we continue to follow Pearl’s theory
and describe the observational content of SCMs, and in particular, we describe
d-separation as the purely structural component of that observational content.
Finally, in section 4.4, we describe the interventional content of SCMs via the
operation known as the Single World Intervention Graph (SWIG), following
Richardson et. al. [16]. Pearl has an equally powerful formulation of the
interventional content of SCMs; however, the SWIG formulation lends easier
into the category theoretic formulation that we will develop in chapter 6, and
therefore we have chosen to introduce it over Pearl’s formulation.

4.1 Directed Acyclic Graphs

Directed Acyclic Graphs, often referred to as DAGs, are used to represent all
kinds of computational relations, whether these relations are causal or other-
wise. The idea is simple: a directed acyclic graph is a graph (i.e. a set of
vertices and edges connecting those vertices), where the edges have directions
(they point from one vertex to another), and where, if one were to walk along
the edges, one could never go in a circle.

But to reason with such structures, we need to develop some formal lan-
guage. Let’s begin by defining a directed graph.

Definition 4.1. A directed graph G consists of sets V(G) and E(G), together
with functions

E(G)
s
⇒

t
V(G)

The set V(G) is called the set of vertices (thought of as dots), and the set E(G) is
called the set of edges. The function s picks out the source of an edge, and the
function t picks out the target. So an edge e ∈ E(G) is thought of as an arrow
pointing from its source s(e) to its target t(e). Indeed, if s(e) = v and t(e) = w, we
will use the phrase e : v→ w as a shorthand for the assertion that “s(e) = v and
t(e) = w”.

Definition 4.2. Given a graph G, a (directed) path γ in G is a sequence of edges
{ei}

n
i=1 such that each ei+1 begins where ei ends:

s(ei+1) = t(ei)

for each i = 1, . . . ,n−1. The number n is called the length of the path γ, denoted
|γ|.

20



We say the source of γ is s(γ) := s(e1), and the target of γ is t(γ) := t(en). We
can also say γ is a path from s(γ) to t(γ), and denote γ : s(γ)→ t(γ).

For any pair of vertices v,w ∈ V(G), we denote the set of directed paths from
v to w as Γ(v,w), and we denote the set of all directed paths in the graph G as

Γ(G) :=
⋃

v,w∈V(G)

Γ(v,w).

Definition 4.3. Given a graph G, an (undirected) path λ in G is a sequence of
n + 1 vertices {vi}

n
i=0 together with a sequence of n edges {ei}

n
i=1, such that for

each i = 1, ...,n, s(ei) = vi−1

t(ei) = vi
or

s(ei) = vi

t(ei) = vi−1

The number n is called the length of the path λ, denoted |λ|.
We say λ is an undirected path between v0 and vn. For any pair of vertices

v,w ∈ V(G), we denote the set of undirected paths between v and w as Λ(v,w).
Note that Λ(v,w) = Λ(w, v). As before, we overload the notation, denoting the
set of all undirected paths in the graph G as

Λ(G) :=
⋃

v,w∈V(G)

Λ(v,w).

Definition 4.4. A (directed) cycle is a directed path γ whose source and target
coincide: s(γ) = t(γ). The set of cycles starting and ending at vertex v is denoted

κ(v) := Γ(v, v)

and the set of all cycles in the graph G is denoted

κ(G) :=
⋃

v∈V(G)

κ(v).

Example 4.1. Consider the directed graph G:

A

B C

D

E

This graph has five vertices, and six edges. Consider the vertices A,D ∈ V(G).
The set of directed paths Γ(A,D) consists of two paths: one through B and one
through C. The path going C → D → E → C is a directed cycle in G. The
undirected path A,B,D,C,A is an “undirected cycle”, but not a directed cycle.
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Definition 4.5. A directed acyclic graph (DAG) is a directed graph G that has
no cycles: κ(G) = ∅.

Definition 4.6. Let G be a DAG, and let v be a vertex in G. We say the set of
parents of v is

pa(v) := {w ∈ V : ∃e : w→ v ∈ E},

the set of children of v is

ch(v) := {w ∈ V : ∃e : v→ w ∈ E},

the set of ancestors of v is

anc(v) := {w ∈ V : Γ(w, v) , ∅}

and the set of descendants of v is

des(v) := {w ∈ V : Γ(v,w) , ∅}.

A vertex v is called a root vertex if pa(v) = ∅, and a leaf vertex if ch(v) = ∅.

At this point, we can answer the question: why is DAG an appropriate tool
for thinking about computational relations? The answer is this: by having no
directed cycles, it becomes possible to “compute” (whatever that means in any
given context) each relevant variable, such that no variable is ever computed
before any of its parents. One can clearly see the importance of this condition
in any computational scenario. This fact is formalized as follows:

Theorem 4.1. (Topological Sorting of DAGs) Let G be a DAG where V(G) is finite
with size n. Then there exists an ordering {vi}

n
i=1 of all the vertices in G, such that for

each i,
pa(vi) ⊂ {v1, . . . , vi−1}.

Proof. This fact is well known and is proven by Kahn in [10] �

4.2 Noumenal Content of Structural Causal Models

The rough idea of SCMs is that each generative dependence relation, i.e. each
node in relation to its parents, behaves “like an RCM”, in that its core causal con-
tent is expressed by a Markov kernel. This idea is formalized in the following
definition:

Definition 4.7. A Structural Causal Model (SCM) G = (G,X∗,P∗|pa(∗)) consists
of the following data:

1. A directed acyclic graph G;

2. For each vertex v in G, an assigned measurable space Xv, equipped with
σ-algebra Av;
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3. For each vertex v in G, an assigned Markov kernel

Pv|pa(v) :
∏

w∈pa(v)

Xw → Xv.

The Markov kernel Pv|pa(v) is called the “structural kernel” for Xv.

We take the empty product of measurable spaces to be I, the singleton space.
So for an exogenous variable, its structural kernel will have domain I, and so is
simply a probability measure.

Example 4.2. Consider again examples 3.1 and 3.2. There is a treatment, Accu-
pill, represented by the random variable T. This treatment is hypothesized to
have a causal effect on the outcome Y. There is also a variable X, representing
the pre-treatment features of a patient, which causally influences both the like-
lihood of this patient obtaining treatment (T), and the likelihood of recovery
(Y). This situation is represented by the following SCM displayed in figure 1.

Figure 1: Structural Causal Model for the Accupill Example

There will be three structural kernels in this SCM. First, a kernel I→ X gives
a probability distribution over X. Second, a kernel X → T gives a probability
distribution on T for every value of x. Finally, a kernel X × T→ Y

Example 4.3. Suppose that Pfizer now develops a new type of treatment for
COVID, and its clinical trial proceeds in the following steps:

1. The patient is given either a placebo or Accupill (T).

2. A viral test is performed on the patient, and the result of the test is
recorded (Y).

3. A second treatment, whose content depends on the result of the viral test,
is given to the patient (S).

4. The patient either recovers or does not recover (Z).

Suppose there is also a confounding factor H between the viral test result and the
content of the second treatment. This situation is represented by the following
SCM:
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Figure 2: Structural Causal Model for Two-Stage Treatment

There will be five structural kernels in this SCM:

1. The kernel PT : I→ T gives a probability distribution over T;

2. The kernel PH : I→ H gives a probability distribution over H;

3. The kernel PY|T,H : T ×H→ Y gives a distribution over Y for each pair of
values t ∈ T, h ∈ H;

4. The kernel PS|Y,H : Y ×H → S gives a distribution over S for each pair of
values y ∈ Y, h ∈ H;

5. The kernel PZ|Y,S : Y × S → Z gives a distribution over Z for each pair of
values y ∈ Y, s ∈ S.

4.3 Observational Content of Structural Causal Models

What is the correspondence between SCMs and observational data? We can
take observational data to be presented in terms of empirical distributions
on random variables. Let G = (G,X∗,P∗|pa(∗)) be an SCM. Then a probability
distribution P over the product measure space X =

∏
v Xv is said to satisfy G if

it is “built out of” the structural kernels Pv|pa(v). The precise meaning of this can
only be developed in chapter 6, after the development of more infrastructure
around Markov categories.

However, in the garden-variety case where the measurable spaces Xv come
with their own intrinsic measures µv, and where the probability measure P
on the product space X has a density function f with respect to the product
measure µ =

⊗
v µv, then we can give a simple definition for satisfaction:

Definition 4.8. Let G = (G,X∗,P∗|pa(∗)) be an SCM. For each Xv, let µv be a
measure. Let P be a probability measure on the product space X =

∏
v Xv with

a density function f with respect to the product measure µ =
⊗

v µv. Then P
is said to satisfy G if each structural kernel Pv|pa(v) has a µv-conditional density
function3 fv|pa(v), and

f (x) =
∏

v∈V(G)

fv|pa(v)(xv | xpa(v)).

3in the sense of definition 3.8
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The above definition is also known as the “product decomposition rule”.
We will see in section 6.2 that the product decomposition rule is equivalent to
the more general definition of satisfaction, which will work even when density
functions don’t exist. For the rest of this chapter, we will always work with the
case where density functions exist.

Like any graphical model of probabilistic processes, the crucial observa-
tional content of SCMs consists of independence relations between variables.
Importantly, there is a set of independence relations that arise purely as a con-
sequence of the topology of the DAGs underlying the SCMs, so that any two
SCMs with the same underlying DAG will both have these independence re-
lations. In this sense, such independence relations form the purely structural
component of the observational content of SCMs. We begin by examining
three elementary topological structures: the chain, the fork, and the collider.
These elementary structures will allow us to retrieve all the purely structural
independence relations.

Definition 4.9. (chain) A chain is a graph isomorphic to the following:

v→ w→ u

Lemma 4.1. If G = (G,X∗,P∗|pa(∗)) is a structural causal model, P satisfies G, and G
is a chain v → w → u, then Xu

Π

Xv |Xw, where Xu,Xv,Xw are given the marginal
distributions according to P.

Proof. Since P satisfies G, so if f is the density function associated with P, then
for any xv ∈ Xv, xw ∈ Xw, and xu ∈ Xu:

f (xv, xw, xu) = fv(xv) fw|v(xw | xv) fu|w(xu | xw).

Therefore

fv,u|w(xv, xu | xw) =
f (xv, xw, xu)

fw(xw)

=
fv(xv) fw|v(xw | xv)

fw(xw)
fu|w(xu | xw)

= fv|w(xv | xw) fu|w(xu | xw).

�

Definition 4.10. (fork) A fork is a graph isomorphic to the following:

v← w→ u

Lemma 4.2. If G = (G,X∗,P∗|pa(∗)) is a structural causal model, P satisfies G, and G
is a fork v ← w → u, then Xv

Π

Xu | Xw, where Xu,Xv,Xw are given the marginal
distributions according to P.
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Proof. Since P satisfies G, so if f is the density function associated with P, then
for any xv ∈ Xv, xw ∈ Xw, and xu ∈ Xu:

f (xv, xw, xu) = fw(xw) fv|w(xv | xw) fu|w(xu | xw).

Therefore

fv,u|w(xv, xu | xw) =
f (xv, xw, xu)

fw(xw)
= fv|w(xv | xw) fu|w(xu | xw).

�

Definition 4.11. (collider) A collider is a graph isomorphic to the following:

v→ w← u

Lemma 4.3. IfG = (G,X∗,P∗|pa(∗)) is a structural causal model,P satisfiesG, and G is
a collider v→ w← u, then Xv

Π

Xu unconditionally; but in general, it is not the case
that Xv

Π

Xu | Xw, where Xu,Xv,Xw are given the marginal distributions according to
P.

Proof. Since P satisfies G, so if f is the density function associated with P, then
for any xv ∈ Xv, xw ∈ Xw, and xu ∈ Xu:

f (xv, xw, xu) = fv(xv) fu(xu) fw|v,u(xw | xv, xu).

Marginalizing over Xw, we obtain

fv,u(xv, xu) =

∫
fv(xv) fu(xu) fw|v,u(xw | xv, xu) dxw

= fv(xv) fu(xu)
∫

fw|v,u(xw | xv, xu) dxw

= fv(xv) fu(xu).

So the unconditional independence obtains. Now, to see that the conditional
independence does not hold in general, consider the case where Xv and Xu are
both standard normal, and Xw = Xv + Xu. In this case, conditional on Xv = xv
and Xw = xw, the random variable Xu has only one possible value, namely
xw − xv. So the conditional independence Xu

Π

Xv | Xw does not hold. �

We now extend these three independence lemmas to full generality.

Definition 4.12. (blocking) Suppose λ is an undirected path in G. Let Z be a
set of vertices in G. We say that λ is blocked by Z if and only if

1. λ contains a chain v→ w→ u or a fork v← w→ u such that the middle
node w is contained in Z; or
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2. λ contains a collider v→ w← u such that w < Z, and no descendent of w
is in Z either.

Definition 4.13. (d-separation) Let u, v be vertices in a DAG G, and let Z be a
set of vertices in G. We say that u and v are d-separated by Z if every undirected
path between u and v are blocked by Z. If A,B are sets of vertices in G, we say
that A and B are d-separated by Z if for every pair of vertices a ∈ A and b ∈ B, a
and b are d-separated by Z.

Theorem 4.2. If G = (G,X∗,P∗|pa(∗)) is a structural causal model, P satisfies G, and
u, v ∈ V(G) are d-separated by Z ⊂ V(G), then Xu

Π

Xv | XZ, where Xu,Xv,XZ are
given the marginal distributions according to P.

Theorem 4.3. If G is a DAG and u, v ∈ V(G) are not d-separated by Z ⊂ V(G),
then there exists an SCM G = (G,X∗,P∗|pa(∗)) with G as the underlying graph, and a
distribution P on X, such that Xu is not independent on Xv conditional on XZ.

Proof. Both theorems 4.2 and 4.3 are proven in [5]. �

In this sense, we see that d-separation is a sound and complete test for
conditional independence in SCMs. The topological feature of d-separation
in a DAG picks out the full set of conditional independence relations satisfied
by every SCM over this DAG. However, two different DAGs might have the
same set of d-separations, and therefore imply the same set of independence
relations. This is captured in the following definition:

Definition 4.14. (Markov equivalence) Let G and G′ be DAGs. They are said
to be Markov equivalence if:

1. There exists a bijection i : V(G)→ V(G′); and

2. For all u, v ∈ V(G) and Z ⊂ V(G), Z d-separates u, v in G if and only if i(Z)
d-separates i(u), i(v) in G′.

This relation between DAGs is an equivalence relation. The class of all DAGs
that are Markov equivalent to G is called the Markov equivalence class of G.

Example 4.4. Let G be the graph u → v, and G′ be the graph u ← v. Then G
and G′ are Markov equivalent (both having no d-separation relations at all),
and {G,G′} forms a Markov equivalence class.

4.4 Interventional Content of Structural Causal Models

The interventional content of SCMs is defined by a specific operation on SCMs,
known as the Single World Intervention Graph (SWIG) [16]. The crucial idea
of this section is that there is an operation SWIG, which takes in an SCMG, and
returns a different SCM G′, such that the interventional content of G is nothing
more or less than the observational content of G′. We begin by developing some
intuition via the Accupill example (example 4.2) once again.
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Example 4.5. Suppose Pfizer is testing their new pill, Accupill, intended to help
patients recover from COVID. Henry is a patient. Under normal circumstances,
if the pill was just available over the counter, Henry would not have chosen
to take the pill (that is to say, his pre-treatment features X are such that he
would choose not to take the pill). However, today Henry is participating in
a randomized trial, and the experimenter simply makes it the case that Henry
will take the pill, regardless of Henry’s own preferences.

The intervention by the experimenters can be seen essentially as the de-
coupling of two things: the treatment Henry would have decided to undergo
under normal circumstances, and the treatment Henry actually takes under the
intervention. The situation can be modelled by the operation taking the SCM
in figure 3a to the SCM in figure 3b.

(a) Before Intervention  (b) After Intervention

Figure 3: SWIG operation on Accupill SCM.

In the new SCM in figure 3b, the node T no longer represents the treatment
that Henry receives. Instead, it represents the treatment Henry would have
received, if there were no experimental intervention. The constant node t
(colored red to indicate that it is a constant node) represents the treatment
experimentally assigned to Henry. Note that there is no path between T and
t. Thus, Y(t) and T are independent conditional on X, reflecting the weak
unconfoundedness assumption.

Many reader might find the previous example sufficient for understanding
what the SWIG operation does. Nevertheless, for the sake of rigour, we provide
a procedural definition of the operation:

Definition 4.15. (The SWIG Operation) Let G = (G,X∗,P∗|pa(∗)) be an SCM. Let
T ⊂ V(G) (think of this as the set of variables on which we will intervene as
experimenters). Let t = (tv)v∈T be a value in the product measurable space XT
(recall that for T ⊂ V(G), XT denotes the product measurable space

∏
v∈T Xv).

The SWIG operation then constructs an SCM (G′,X′∗,P′∗|pa(∗)), which we shall
denote as G(do T = t), as follows:

• (Node Splitting) Each v ∈ T ⊂ V(G) is split into two nodes v′1, v
′

2 ∈ V(G′),
such that v′1 inherits the edges pointing into v, and v′2 inherits the edges
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pointing out of v. All other parts of G′ are the same as G. In other words,
G′ is a graph (unique up to isomorphism) admitting a surjective graph
homomorphism

φ : G′ → G

such that φ is bijective on edges, and locally isomorphic at every vertex
v < T, and the preimage φ−1(v) for each v ∈ T consists of exactly two
vertices v′1, v

′

2 ∈ G′, such that v′1 has only edges flowing into it, and v′2
has only edges flowing out of it. The set of edges flowing into v′1 is
precisely φ−1

{e : w→ v | w ∈ G}, and the set of edges flowing out of v′2 is
φ−1
{e : v→ w | w ∈ G}.

• (Assigning Measurable Spaces) For v ∈ V(G), and for each v′ ∈ φ−1(v) (as
said above, there is either one such v′ or two such v′s), the measurable
space X′v′ is set to the same space as Xv.

• (Assigning Structural Kernels)

– For v < T, let v′ be the unique node in V(G′) corresponding to v.
Then pa(v) � pa(v′) as a set, and Xpa(v) � Xpa(v′) as measurable spaces,
by the foregoing constructions. We declare

P′v|pa(v′) := Pv|pa(v).

– For v ∈ T, let v′1, v
′

2 be the two corresponding nodes in V(G′). Then
pa(v′1) � pa(v) as sets and Xpa(v′1) � Xpa(v) as measurable spaces; but
pa(v′2) = ∅ because v′2 only has outgoing edges. We declare

P′v′1 |pa(v′1) = Pv|pa(v)

P′v′2
= δtv

where δtv is the Dirac measure at the point tv ∈ Xv � X′v′2
.

Note here: the above construction fully defines the SWIG operation as
an operation on SCMs: for each SCM G, and each possible treatment t ∈
XT, the above constructions gives us the unique SCM G(T = t). However,
it is convenient, when we visualize G(T = t) as a graph, to know what to
name each vertex in the resulting graph. For example, in example 4.5, we
had named the vertices in the resulting graph X,T, t and Y(t). This is not only
convenient notationally, but underlines the intimate relation between SCMs
and RCMs, where, you will recall, the notation Y(t) was used to denote the
potential outcome variable under a given treatment t. We specify here what
exactly this notational convention is:

• For v < T, let v′ be the unique corresponding node in G′. The measurable
space X′v′ is labelled Xv(Xu1 = tu1 ,Xu2 = tu2 , . . . ), where {u1,u2, . . . } is the
intersection T ∩ anc(v). In other words, we label a node with brackets
containing all the treatments that are ancestors of the node.
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• For v ∈ T, let v′1, v
′

2 be the two corresponding nodes in G′. X′v′1
is labelled

exactly the same as in the previous case as Xv(Xu1 = tu1 ,Xu2 = tu2 , . . . ),
where {u1,u2, . . . } = T∩anc(v). On the other hand, X′v′2

is simply labelled tv,
in lower case, to emphasize that this is a fixed node, with the intervention
Xv = tv.

Example 4.6. Consider again the two-stage treatment described in example 4.3.
The SCM of the situation is given by figure 4.

Figure 4: Structural Causal Model for Two-Stage Treatment

Suppose we now perform a clinical trial on a patient, such that the stage-one
treatment T is determined by an experimenter, whereas the stage-two treatment
S is determined, as before, by Y and the confounding factor H. Then the SWIG
operation on the above SCM yields an SCM given by figure 5.

Figure 5: SWIG for Two-Stage Treatment with Intervention on Stage-One

On the other hand, suppose now we perform a clinical trial, in which both
the stage-one and the stage-two treatments T,S are determined by an experi-
menter. Then the SWIG operation on the above SCM yields an SCM given by
figure 6.

With the SWIG operation defined, let us retrieve what we said earlier about
the interventional content of SCMs. Let G = (G,X∗,P∗|pa(∗)) be an SCM. The
interventional content of G says precisely this:

Let T ⊂ V(G), and t ∈ XT. Let G(do T = t) = (G′,X′∗,P′∗|pa(∗)) be the SWIG on
G with respect to T. If we were to intervene as experimenters on the aspects
of this world corresponding to T, by forcing them to have values t, then the
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Figure 6: SWIG for Two-Stage Treatment with Intervention on Both Stages

observed outcomes on X′ =
∏

v∈V(G′) X′v should have a distributionP′ satisfying
G(do T = t). In this sense, the interventional content of G is nothing more or less
than the observational content of G(do T = t).

4.5 Concluding Remarks

Our discussion of SCMs in this chapter has shown that SCMs are more powerful
than RCMs: they can model any finite network of causal relations, and each
parent-child relation in an SCM has the same mathematical structure as an
RCM. The price, of course, is that SCMs are harder to work with in empirical
settings. It is harder to determine, in general, whether an SCM is accurate,
and harder still to come up with an accurate SCM for some observed data. This
is easy to see: the task of determining the accuracy of an SCM involves, as a
subtask, that of determining the accuracy of its parent-child relations, which is
the same as determining the accuracy of some RCMs.

A second difficulty is that we do not yet have an adequate understanding
of SCMs where the Markov kernels do not admit conditional density functions.
This will be resolved by the formalism introduced in chapters 5 and 6.

Finally, a philosophical worry is that, since it is very difficult to come up with
good SCMs in empirical settings, there is not enough formalism to keep track of
the meaningful relations between differing SCMs. If one researcher proposes a
model M meant to model some phenomenon, and a second researcher improves
upon this model to make M′ for the same phenomenon, then there is some
meaningful relation between M and M′ that needs to be recorded. But we do not
yet have an adequate notion of morphisms between SCMs, and so these relations
can only be shared among researchers in the form of prose and expertise. We
contend that our work in chapter 6 also makes improvements along these lines.
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5 Category Theory for Causal Modelling

We now take a detour, and study the aspects of category theory which will
become necessary in developing the last type of causal models in this thesis.
Readers that are comfortable with higher category theory should probably
skip this chapter. We begin, in section 5.1, by defining categories, functors,
and natural transformations. These will provide us with the infrastructure to
understand causal models, not just as stand-alone constructs, but as constructs
that bear significant relations to each other. We then go on, in section 5.2,
to study symmetric monoidal categories. This will give us a kind of “tensor
product” with which we can combine random variables in a causal model. In
both sections 5.1 and 5.2, we follow the presentation given by Riehl in [17].

In sections 5.3 and 5.4, we study monads and their corresponding Kleisli
categories, which is the most natural way to interact with Markov kernels in
a purely synthetic way. Finally, in section 5.5, we study the special class of
categories called Markov categories. These will allow us to make sense of the
fact that, in any generative model (causal or otherwise), data can be both copied
and deleted. In these three sections, we follow the presentation given by Fritz
in [4], supplemented with the statistical viewpoint given by Patterson in [15].

5.1 Categories, Functors, Natural Transformations

Definition 5.1. (Category) A category C is the following data:

• A collection Ob C of objects in C (this need not be a set);

• For each pair of objects X,Y, a set Hom(X,Y) called the morphisms from
X to Y; where, for each f ∈ Hom(X,Y), we say X is the domain of f and
Y is the codomain of f ; denoted f : X→ Y;

• For each object X, a specified morphism 1X ∈ Hom(X,X) called the iden-
tity morphism at X;

• For each triplet of objects X,Y,Z, a function

Hom(X,Y) ×Hom(Y,Z)→ Hom(X,Z)

called the composition; where the composition of f ∈ Hom(X,Y) with
g ∈ Hom(Y,Z) is denoted g ◦ f or simply g f ;

Such that the following axioms are satisfied:

1. (Unitality) For any pair of objects X,Y, and any morphism f ∈ Hom(X,Y),
we have that f ◦ 1X = 1Y ◦ f = f ; and

2. (Associativity) For any quadruplet of objects X,Y,Z,W, and any triplet of
morphisms

X
f
→ Y

g
→ Z h

→W

we have that (h ◦ g) ◦ f = h ◦ (g ◦ f ).
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Example 5.1. (Some Categories Relevant To Causal Modelling)

• The category Set consists of all sets as objects, and functions as morphisms.

• The category Top consists of all topological spaces as objects, and contin-
uous functions as morphisms.

• The category Meas consists of measurable spaces as objects, and measur-
able functions as morphisms.

• The category DirGraph consists of directed graphs as objects, and directed
graph homomorphisms as morphisms.

• The category Poset consists of partially ordered sets as objects, and mono-
tone maps as morphisms.

• Let R be a ring. The category MatR consists of all positive integers as
objects. A morphism from n to m in this category is any m × n matrix
whose entries are in R. Composition of morphisms is given by matrix
multiplication, and identity morphisms are identity matrices.

• The category EssMeas consists of measure spaces as objects, and equiv-
alence classes of measurable functions as morphisms. Two measurable
functions f , g : (X,M , µ)→ (Y,N , ν) are equivalent if f − g = 0 µ-almost
everywhere.

Definition 5.2. (Isomorphism) In a category C , a morphism f : X→ Y is called
an isomorphism if there exists a morphism g : Y → X that acts as a two-sided
inverse for f : g ◦ f = 1X and f ◦ g = 1Y.

Example 5.2. (Isomorphisms in Useful Categories)

• In Set, an isomorphism is a bijection.

• In Top, an isomorphism is a homeomorphism.

• In Meas, an isomorphism is a measurable bijection whose set-theoretic
inverse is also measurable.

• In DirGraph, an isomorphism is a graph isomorphism.

• In Poset, an isomorphism is an order-preserving bijection.

• In MatR, an isomorphism is an invertible matrix.

• In EssMeas, an isomorphism is the equivalence class of a measurable
bijections whose set-theoretic inverse is also measurable.

Readers may have noticed that some of the above categories are huge - in
the sense that the collection of objects is too large to form a set. For example,
there is a category consisting of all sets as objects, but there is no set containing
all sets. Indeed, it is important to distinguish these huge categories from small
ones:
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Definition 5.3. (Small Category) A category C is called small if its collection
of objects forms a set.

Now that we know what categories are, we must talk about the relations
between them. After all, the spirit of category theory is to never talk about a
mathematical construct without talking about the relations between them!

Definition 5.4. (Functor) A functor F from a category C to a category D consists
of the following data:

• For each object X in C , a specified object F(X) in D ;

• For each morphism f : X → Y in C , a specified morphism F( f ) : F(X) →
F(Y) in D ;

Satisfying the following functoriality axioms:

1. For any object X in C , we have that F(1X) = 1F(X);

2. For any triplet of objects X,Y,Z in C , and morphisms

X
f
→ Y

g
→ Z

in C , we have that F(g ◦ f ) = F(g) ◦ F( f ) in D .

Example 5.3. (Identity Functors) For any category C , there is an identity functor
1C : C → C which sends every object X to X itself, and every morphism f to f
itself.

Example 5.4. (Forgetful Functors) Many categories are defined with its objects
being some kind of structured sets, and its morphisms being the structure-
preserving functions (the categories Set, Top, Meas, DirGraph, Poset satisfy this
description). In such a situation, there is a forgetful functor U : C → Set
sending each object in C to its underlying set, and each morphism in C to
its underlying set-theoretic function. A category that admits such a forgetful
functor is called a concrete category.

Example 5.5. There is a functor Poset→ DirGraph sending a poset (X,≤) to the
directed graph whose vertices are the elements of X, and an edge runs from x
to y if and only if x ≤ y. Monotone maps then get mapped to the corresponding
graph homomorphisms.

Example 5.6. There is a functor Meas → EssMeas sending a measurable space
to itself, and a measurable function to its equivalence class.

Definition 5.5. (Natural Transformation) Let F,G be functors C → D . A
natural transformation α : F→ G consists of the following data:

• For each object X in C , a morphism αX : F(X) → G(X) in D , called the
component of α at X.
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such that for each morphism f : X → Y in C , the following diagram in D
commutes:

F(X) G(X)

F(Y) G(Y)

αX

F( f ) G( f )

αY

A natural transformation α is called a natural isomorphism if each component
αX for each object X in C is an isomorphism in D .

5.2 Symmetric Monoidal Categories

There are so many things in life that can be recorded in the language of string
diagrams. Consider the following (perhaps, over-simplified?) recipe for scram-
bled eggs:

Mix

Heat

whiskeggspan

mixed eggs

dirty pan scrambled eggs

the strings in the diagram represent items in the kitchen, and the nodes (which
I have drawn as boxes) represent actions. We begin with a pan, some eggs, and
a whisk. We end with a dirty pan, some scrambled eggs, and a whisk.

Let’s look at a more mathematical example. Suppose I told you the follow-
ing: let x = 1 + 2; compute x2x. What do you actually do? I’d bet it’s something
like this:
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+

2−

×

1 2

x

x

x

2x

x2x

Diagrams like these are called string diagrams, and they naturally live in a
special kind of categories called Monoidal Categories.

Consider the tensor products of rings and modules. They enabled us to
rigorously talk about maps of modules with multiple inputs, without being
too restrictive. Since, in the everyday string diagrams displayed above, most
“morphisms” have multiple inputs and outputs, we would like a general notion
of “tensor products”. Loosely speaking, we are after a categorical construction
that would allow us to juxtapose both objects and morphisms “in parallel” via
some associative and functorial binary operation. Such a binary operation will
be called a monoidal product.

Definition 5.6. (Monoidal Category). A monoidal category (C,⊗, I) is a category
C together with a functor ⊗ : C×C → C, called the monoidal product, and a fixed
object I ∈ C called the monoidal unit, subject to the interchange laws

1. For all objects x, y ∈ C,
1x⊗y = 1x ⊗ 1y

where 1 denotes the identity morphism;

2. For all morphisms u
f
→ v h

→ w and x
g
→ y k

→ z in C,

(h ⊗ k) ◦ ( f ⊗ g) = (h ◦ f ) ⊗ (k ◦ g).

Moreover, there needs to be natural isomorphisms

1. (Unitors) For any object x ∈ C, natural isomorphisms λx : I ⊗ x → x and
ρx : x ⊗ I→ x;

2. (Associators) for any objects x, y, z ∈ C, a natural isomorphism

αx,y,z : (x ⊗ y) ⊗ z→ x ⊗ (y ⊗ z)
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subject to the following coherence axioms:

1. (The Triangle Equation) The following diagram commutes:

(x ⊗ I) ⊗ y x ⊗ (I ⊗ y)

x ⊗ y

αx,I,y

ρx⊗1y 1x⊗λy

2. (The Pentagon Equation) The following diagram commutes:

(w ⊗ x) ⊗ (y ⊗ z)

((w ⊗ x) ⊗ y) ⊗ z w ⊗ (x ⊗ (y ⊗ z))

(w ⊗ (x ⊗ y)) ⊗ z w ⊗ ((x ⊗ y) ⊗ z)

αw,x,y⊗zαw⊗x,y,z

αw,x,y⊗1z

αw,x⊗y,z

1w⊗αx,y,z

If all the unitor and associator isomorphisms are identities, then the monoidal
category is said to be strict.

Example 5.7. Here are some examples of monoidal categories where the monoidal
product resembles a set-theoretic product or coproduct.

1. (Set,×, 1) is a monoidal category, where the monoidal product is the carte-
sian product, and the monoidal unit is the singleton set 1 = {∗}.

2. (Set,+, 0) is a monoidal category, where the monoidal product is disjoint
union, and the unit 0 is the empty set ∅.

3. For any field k, (Vectk,⊗, k) is a monoidal category, where the monoidal
product is the tensor product, and the unit is the field itself viewed as a
vector space.

4. For any ring R, (ModR,⊗,R) is a monoidal category, where the monoidal
product is the tensor product of modules, and the unit is the ring itself
viewed as a module.

5. The category (Meas,×, {∗}) is a monoidal category, where the monoidal
product is the usual product of measurable spaces and measurable func-
tions’ and the monoidal unit is the singleton measurable space.

6. Let (Z≥0,+, 0) be the monoidal category whose objects are nonnegative
integers. There is exactly one morphism n→ m if n ≤ m as integers; and
no morphisms n → m otherwise. The monoidal product is summation,
and the monoidal unit is 0. This is a strict monoidal category.
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Example 5.8. However, note that a monoidal product might not resemble a set-
theoretic product or coproduct at all! Fix a categoryC, there is a category End(C)
of endofunctors C → C. The objects in this category are functors F : C → C,
and the morphisms in this category are natural transformations α : F⇒ G.

In the category End(C), arrows α : F ⇒ G and β : G ⇒ H can be composed
by

C C C C

α

β◦α

F

H

G

β

F

H

While objects F : C → C and G : C → C can be juxtaposed via functor com-
position G ⊗ F = G ◦ F. Now if there was an arrow α : F → H and another
arrow β : G→ K, we can find an arrow β ⊗ α : G ⊗ F→ K ⊗H by “horizontal”
composition of natural transformations:

C C C C C

F

H

α

G

K

β

G◦F

K◦H

α ⊗ β

So the category End(C) is a monoidal category, with monoidal product defined
by composition on objects and horizontal composition on arrows, and with
monoidal unit the identity functor 1C.

Now we can build the graphical language of string diagrams. Let (C,⊗, I)
be a monoidal category. Then a morphism f : x → y can be represented by a
box (or if you prefer, “node”) labelled “f”, with an incoming wire labeled “x”,
and an outgoing wire labeled “y”.

x

y

f

The composition g ◦ f of morphisms f : x→ y and g : y→ z is represented by
juxtaposition in series:
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x

f

y

g

z

The monoidal product f ⊗ g : x ⊗ w → y ⊗ z of morphisms f : x → y and
g : w→ z is represented by juxtaposition in parallel:

x w

y z

f g

Identity morphisms 1x : x → x should be understood as the wires themselves,
and the monoidal unit I is not drawn at all - it simple “permeates” the whole
surface. Notice that the associativity laws and unitality laws (of both arrow
composition and monoidal products), as well as the interchange laws, are
implicit in the graphical syntax. If these laws did not hold, the graphical
language would not be well-defined.

Often in a monoidal category, the monoidal products x⊗ y and y⊗ x are not
“literally” equal, but contain the same information. For example, in Sets, the
set A × B is not literally the same as the set B × A, but they are isomorphic as
sets. This is captured in the following definition:

Definition 5.7. (Symmetric Monoidal Category) A monoidal category (C,⊗, I)
is said to be symmetric if there is a natural isomorphism σx,y : x ⊗ y → y ⊗ x,
which we call braidings or symmetries, and depicted as crossed wires:

=

x y

σx,y

y x

x y

satisfying the involutivity axiom σ−1
x,y = σy,x:
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=

x y x y

and two coherence axioms:

=

x y z

σx, y ⊗ z

x y z

=

x y z

σx ⊗ y, z

x y z

Example 5.9. The monoidal categories (Sets,×, 1), (Sets,+, 0), (Vectk,⊗, k), (ModR,⊗,R),
and (Meas,×, {∗}) are all symmetric.

Example 5.10. However, the category End(C) is not symmetric. In general,
function composition is not commutative up to natural isomorphism.

Now that we have the structure of symmetric monoidal categories, and a
good graphical language of them, we need to examine the proper relations
between such categories. In particular, what are the functors that respect the
symmetric monoidal structure?

Definition 5.8. (Lax Symmetric Monoidal Functors) Let C ,D be symmetric
monoidal categories. A lax symmetric monoidal functor F : C → D consists of
the following data:

1. A functor F : C → D ;

2. A morphism ε : ID → F(IC );

3. A natural transformation µx,y : F(x) ⊗D F(y)→ F(x ⊗C y) for x, y ∈ C ;

such that the following conditions hold:

1. (Associativity) For all objects x, y, z ∈ C , the following diagram commutes:

(F(x) ⊗D F(y)) ⊗D F(z) F(x) ⊗D (F(y) ⊗D F(z))

F(x ⊗C y) ⊗D F(z) F(x) ⊗D F(y ⊗C z)

F((x ⊗C y) ⊗C z) F(x ⊗C (y ⊗C z))

αD
F(x),F(y),F(z)

µx,y⊗idF(z) idF(x)⊗µy,z

µx⊗C y,z µx,y⊗C z

F(αC
x,y,z)
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where αC , αD denote the associators of the categories C ,D respectively,
and

2. (Unitality) For all x ∈ C the following diagrams commute:

ID ⊗D F(x) F(IC ) ⊗D F(x)

F(x) F(IC ⊗C x)

λD
F(x)

ε⊗idF(x)

µIC ,x

F(λC
x )

F(x) ⊗D ID F(x) ⊗D F(IC )

F(x) F(x ⊗C IC )

ρD
F(x)

idF(x)⊗ε

µx,IC

F(ρC
x )

3. (Symmetry) For all x, y ∈ C the following diagram commutes:

F(x) ⊗D F(y) F(y) ⊗D F(x)

F(x ⊗C y) F(y ⊗C x)

σD
F(x),F(y)

µx,y µy,x

F(σC
x,y)

If the morphisms ε and µx,y are isomorphisms, then F is called a strong
symmetric monoidal functor. If, further, ε and µx,y are identity morphisms,
then F is called a strict symmetric monoidal functor.

Note: In the rest of this paper, unless otherwise specified, all symmetric
monoidal functors are assumed to be strict.

Example 5.11. Here are some examples of strict symmetric monoidal functors:

1. Identity functors on symmetric monoidal categories are strict symmetric
monoidal functors.

2. The forgetful functor (Meas,×, {∗}) → (Set,×, {∗}) is a strict symmetric
monoidal functor.

3. The quotient functor (Meas,×, {∗}) → (EssMeas,×, {∗}), sending a measur-
able space to itself, and a measurable function to its equivalence class, is
a strict symmetric monoidal functor.

5.3 Monads and Kleisli Categories

We now need to develop the formalism that will allow us to understand how
the notion of markov kernels naturally arises from the category of measurable
spaces. This is the formalism of monads, which we now define. Intuitively, a
monad is an endofunctor, which behaves like an algebraic monoid. Here is the
rigorous definition:

Definition 5.9. (Monad) Let C be a category. A monad on C consists of the
following data:
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• A functor T : C → C ;

• A unit natural transformation η : idC → T where idC is the identity
functor;

• A multiplication natural transformation µ : T2
→ T where T2 is the

functor T ◦ T,

satisfying the following commutative diagrams:

T3 T2 T T2 T

T2 T T

T◦µ

µ◦T µ

η◦T

1T

µ

T◦η

1T

µ

Example 5.12. (The Probability Monad, otherwise known as the Giry monad)
Let Prob be the functor Meas→Meas defined as follows:

• If X is a measurable space, Prob(X) is the measurable space consisting
of all probability measures P on X, equipped with the coarsest σ-algebra
such that for all measurable set A ⊂ X, the evaluation map

P 7→ P(A)

is a measurable function Prob(X)→ [0, 1];

• If f : X → Y is a measurable function, Prob( f ) : Prob(X) → Prob(Y) is the
push-forward map

P 7→ P ◦ f−1

which is well-defined because for every measurable B ⊂ Y, the inverse
image f−1(B) is measurable in X.

Then Prob can be made into a monad by specifying:

• The unit transformation η : idMeas → Prob is defined by setting each
component ηX : X → Prob(X) as the map x 7→ δx, where δx is the point-
mass distribution at x;

• The multiplication transformation µ : Prob2
→ Prob is defined by the

disintegration operation: for each measurable space X, µX : Prob2(X) →
Prob(X) sends Q ∈ Prob2(X) to the measure µX(Q) defined by

µX(Q)(A) =

∫
P∈Prob(X)

P(A) dQ(P)

for measurable A ⊂ X.

A monad allows us to make brand-new categories out of existing ones. This
is done via the construction of the Kleisli category, which we now define:
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Definition 5.10. (Kleisli Category) Let C be a category, and T be a monad on
C . The Kleisly Category CT is defined as follows:

• An object in CT is the same as an object in C ;

• A morphism X→ Y in CT is a morphism X→ T(Y) in C ;

• For each object X in CT, the identity 1X ∈ CT(X,X) is the component of the
unit transformation ηX : X→ T(X) in C ;

• For each sequence of morphisms

X
f
→ Y

g
→ Z,

in CT, which corresponds to morphisms X
f
→ T(Y) and Y

g
→ T(Z) in C ,

the composition g ◦ f in CT is defined as the morphism µZ ◦ T(g) ◦ f in C :

X
f
→ T(Y)

T(g)
→ T2(Z)

µZ
→ T(Z)

viewed as a morphism X→ Z in CT.

Example 5.13. (Category of Markov Kernels) The Kleisli category MeasProb,
which we shall denote as Markov, has:

• Measurable spaces as objects;

• Measurable functions X→ Prob(Y) (that is to say, markov kernels X→ Y),
as morphisms.

However, from this construction alone, the structure of this category still re-
mains somewhat opaque to us. We will explicitly work out the structure of this
category in section 5.4. For now, a bit more background.

Definition 5.11. (Symmetric Monoidal Monad) Let C be a symmetric monoidal
category. A symmetric monoidal monad on C is a monad T, which, as a functor,
is lax symmetric monoidal.

Example 5.14. The probability monad Prob is a symmetric monoidal monad
on Meas. The product transformation ∇X,Y : Prob(X) × Prob(Y) → Prob(X × Y)
is given by (P,Q) 7→ P ⊗ Q, where P is any probability measure on X, Q is any
probability measure on Y, and P ⊗ Q is the independent product of the two
measures.

Explicitly, this means that for “rectangles” A×B ⊂ X×Y, where A measurable
in X and B measurable in Y, we define

P ⊗Q(A × B) = P(A) ·Q(B).

Since these “rectangles” form an elementary family generating the σ-algebra
on the product space X × Y, so the above equation fully specifies our measure
P ⊗Q = ∇X,Y(P,Q).
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Lemma 5.1. If T is a symmetric monoidal monad on C , then the Kleisli category CT
inherits the symmetric monoidal structure on C , with monoidal products on morphisms
defined as follows: if f : X → Y and g : Z → W are morphisms in CT, then f ⊗CT g
corresponds to the following morphism in C :

X ⊗ Z T(Y) ⊗ T(W) T(Y ⊗W)
f⊗C g ∇Y,W

Proof. This is a standard result. See proposition 1.2.2 in [19]. �

Example 5.15. Thus, the category Markov = MeasProb is a symmetric monoidal
category. In the following section, we will make explicit the structure of this
category.

5.4 The Category of Markov Kernels

In section 5.3, the most important running example was that of Markov, obtained
by taking the Kleisli category of the monad Prob over the symmetric monoidal
category Meas. In this section, we will explicitly describe the structure of
Markov.

We have encountered markov kernels twice already: once in sections 3.4 and
4.2, where they were defined explicitly in terms of “conditional” probability
distributions corresponding to randomness-involving functions; and once in
section 5.3, where they were defined as morphisms in the Kleisli category
MeasProb. That these markov kernels form a category was not surprising: we
would expect that Markov Kernels can be composed. After all, if I write a
randomness-involving function in Python that takes a value in X and spits out
a value in Y, and then write another randomness-involving function that takes
value in Y and spits out a value in Z, then I ought to be able to call these two
functions one after another. But what exactly is the resulting composite markov
kernel?

Lemma 5.2. If M : X→ Y and N : Y→ Z are markov kernels, then their composition
N ◦M in Markov is defined by

(N ◦M)(C |x) =

∫
Y

N(C | y) dM(y | x)

for any measurable C ⊂ Z, and any point x ∈ X.

Proof. By definition of the Kleisli category, N ◦M is the measurable function
defined by

µZ ◦ Prob(N) ◦M : X→ Prob(Z)

Now, by the push-forward definition,

(Prob(N) ◦M)(B | x) = M(N−1(B) | x).
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for any measurable B ⊂ Prob(Z). Let Q be the measure M(N−1(−) | x) on Prob(Z).
Then by definition of µZ, we have that

(µZ ◦ Prob(N) ◦M)(C | x) =

∫
Prob(Z)

P(C) dQ(P).

But since Q(B) = M(N−1(B) | x), for any B disjoint from the image of N : Y →
Prob(Z), we have Q(B) = 0. So we may restrict our domain of integration from
Prob(Z) to im N:

(µZ ◦ Prob(N) ◦M)(C | x) =

∫
im N

P(C) dQ(P).

Now we perform a change of variable by P = N(− | y), so that dQ(P) = dM(y | x),
to obtain

(µZ ◦ Prob(N) ◦M)(C | x) =

∫
Y

N(C | y) dM(y | x).

�

In other words, we retrieve the Chapman-Kolmogorov equations for the
composition of stochastic maps. If we consider the above in terms of concrete
Python functions, it is not mysterious at all. How can it happen that the final
output z is in some subset C ⊂ Z? Well, the intermediate value y, which is the
output by the first function M and also the input for the second function N,
could have been any value in Y. For a given y, we know that the probability
that the final output is in C is N(C | y). So, overall, the probability that the
final output is in C becomes the integral of that value over the values in Y, with
respect to the measure M(− | x).

Now that we understand the composition of markov kernels, let’s discuss
the monoidal structure on Markov. As discussed in lemma 5.1, the monoidal
product on objects in Markov will be the same as the monoidal product on
objects in Meas: the product of measure spaces.

On the other hand, pick markov kernels M : X → Y and N : Z→ W. Since
lemma 5.1 gave the monoidal product on morphisms in Kleisli categories as

X ⊗ Z Prob(Y) ⊗ Prob(W) Prob(Y ⊗W)
M ⊗

Meas
N

∇Y,W

and since the transformation ∇Y,W sends a pair of probability measures to their
independent product, so the monoidal product of markov kernels M⊗N is the
“conditional version” of independent product: for any measurable sets A ⊂ Y
and B ⊂W, and for any input points x ∈ X, z ∈ Z:

M ⊗N(A × B | x, z) = M(A | x) ·N(B | y),

which fully specifies the markov kernel M⊗N, since the set of rectangles of the
form A × B generates the σ-algebra on Y ×W.
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We emphasize the fact that this monoidal product reflects an independence
condition on the stochastic maps M : X → Y and N : Z → W. In our python
analogy, if M and N are both randomness-involving functions, then M ⊗ N
corresponds to the computation of calling M and N on separate computers
simultaneously, and taking their outputs together.

5.5 Markov Categories

It is nice that the category Markov exists, and has the structure of a symmetric
monoidal category. But in fact, Markov is even nicer! It is a category that comes
with morphisms corresponding to the operations of “copying” and “deleting”
information. In this section, we define precisely what it means for a category to
have these nice properties. In fact, symmetric monoidal categories that come
with “copying” and “deleting” morphisms are called “Markov categories”,
because these are the essential features of the category Markov.

Definition 5.12. (Supply of Commutative Comonoids) For a symmetric monoidal
category (C,⊗, I), a supply of commutative comonoids on C is the following
data: for each object X ∈ C,

• A copying morphism ∆X : X→ X ⊗ X;

• A deleting morphism ∇X : X→ I;

which are respectively depicted in the string diagram language as

x

x x

x

and which must satisfy the following equations:

X Y

X Y X Y

∆X⊗Y

X Y

X Y X Y

=
∇X⊗Y

X Y X Y

=

for every pair of objects X,Y ∈ C.

Example 5.16. In the symmetric monoidal category (Sets,⊗, 1), there is a supply
of commutative comonoids where the copying morphisms are the functions
X→ X⊗X defined by x 7→ (x, x); and the deleting morphisms are the functions
X→ 1 where everything in X is sent to the single point in 1.

Example 5.17. In the symmetric monoidal category Markov, there is a supply
of commutative comonoids given as follows:
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• The copying morphisms are the kernels ∆X : X → X × X, where, for
each input x ∈ X, the resulting distribution ∆X(− | x) is the distribution
assigning all the weight to the single point (x, x), i.e.

∆X(C | x) =

1 (x, x) ∈ C
0 (x, x) < C

for all C ∈ ΣX ⊗ ΣX;

• The deleting morphisms are the kernels ∇X : X → I sending everything
to the only possible probability distribution on the one-point space I.

As you can see, the copying and deleting morphisms are not automatically
required to be “natural”. That is to say, they are not required to commute with
the other morphisms in the symmetric monoidal category. They may commute
with some morphisms, and this is captured in the following definition:

Definition 5.13. (Supply Homomorphism) If a symmetric monoidal category
(C,⊗, I) has a supply of commutative comonoids, then a morphism f : X → Y
in C is a supply homomorphism if f ◦ ∆X = ∆Y ◦ f and ∇X = ∇Y ◦ f , i.e. the
following equations hold:

X

f

Y

Y Y

X

X X
f f

Y Y

=

X X

f
= Y

Example 5.18. In the symmetric monoidal category (Sets,×, 1), every morphism
is a homomorphism with respect to the supply of commutative comonoids.

Example 5.19. In the category Markov, every morphism M : X → Y commutes
with the deleting morphism ∇Y ◦M = ∇X. However, the only morphisms that
commute with the copying morphism are precisely those that are deterministic;
i.e. those Markov kernels M : X → Y such that, for every x ∈ X, the distribution
M(− | x) has all the density concentrated at one point inY.

We are now ready to define Markov Categories in general:

Definition 5.14. (Markov Categories) A Markov category is a symmetric monoidal
category that supplies commutative comonoids.

Definition 5.15. (Functor of Markov Categories) A functor of Markov cate-
gories F : C → D is a functor that preserves the symmetric monoidal structure
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and the supply of commutative comonoids of C and D. Concretely, this is a
symmetric monoidal functor F : C → D such that

F
(
∆CX

)
= ∆DF(X)

F
(
∇
C

X

)
= ∇DF(X)

for every object X ∈ C.

Definition 5.16. (Cartesian Categories) If a Markov category has the additional
property that every morphism is a supply homomorphism, then it is called a
Cartesian category.
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6 Functorial Causal Models

We now develop a new formalism for causal modelling, which is in many
ways a natural extension of the Structural Causal Models developed in chapter
4. This new formalism, which we call Functorial Causal Models (FCM), is a
combination of the ideas in SCM theory, and the ideas in Categorical Logic. The
field of Categorical Logic was first launched by Lawvere in his thesis Functorial
Semantics of Algebraic Theories [11], and was first applied to statistical problems
by Patterson in his thesis The Algebra and Machine Representation of Statistical
Models [15].

I build upon these works to develop the notion of a functorial causal model,
which amounts to an account of functorial semantics for causal theories. My
account will be self-contained (given the previous chapters in this thesis), but
may seem out-of-the-blue at points, because I do not think it is appropriate to
cover a full review of the field of Categorical Logic. Interested readers may find
it helpful to review the works by Lawvere and Patterson [11, 15].

It will take two section to develop the noumenal content of functorial causal
models. In section 6.1, we develop the notion of causal theories corresponding
to DAGs. In section 6.2, we develop the functorial semantics of these theories,
which will allow us to build FCMs. Then, in section 6.3, we describe the obser-
vational content of FCMs; and in section 6.4, we describe their interventional
content.

6.1 Causal Theories Generated by DAGs

We first make the observation that the noumenal content of an SCM M =
(G,X∗,P∗|pa(∗)) can be viewed as consisting of two parts. On the one hand, the
graph G is purely algebraic (or structural, or formal, however you prefer to
think of it). It encodes structures without telling us what these structures have
to do with the real world. On the other hand, the measurable spaces X∗ and the
structural kernels P∗|pa(∗) actually have something to do with the real world: they
can refer to possible outcomes of real experiments and the statistical relations
between these outcomes.

So, we will define causal theories in terms of directed acyclic graphs alone.
In the sections following this one, we will then encode the data of X∗,P∗|pa(∗) in
the form of functorial semantics.

Definition 6.1. (Causal Theory Generated by a DAG) Let G be a directed acyclic
graph. The causal theoryTG generated by G is the small Markov category freely
generated by G. More specifically:

1. The set of objects of TG is the commutative monoid freely generated by
the set of vertices V(G). (Note, the monoidal product in TG will, as is
usual in category theory, be denoted by the tensor product ⊗).
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2. For each vertex v ∈ V(G), there is a morphism

pv|pa(v) :
⊗

u∈pa(v)

u→ v

in the category TG. This morphism is known as the structural morphism
at v.

3. When combined with the structure of Markov categories (namely: com-
position, monoidal product, braidings morphisms, copying morphisms,
and deleting morphisms), the structural morphisms specified in the above
items freely generate the set of all morphisms in TG.

So, we have the notion of a causal theory generated by a DAG: it is a small
Markov category, which comes with special morphisms, called the structural
morphisms, at each of its generating objects. With this understanding, we
can now define causal theories in their full generality, without referring to a
particular DAG.

Definition 6.2. (Causal Theory) A causal theory is a small Markov category T
such that:

1. The monoid of objects Ob(T ) is a free finite-ranked commutative monoid.
Its unique set of free generators is called the set of variables of the theory,
denoted V(T ). The set of variables has a specified ordering V(T ) =
{v1, v2, . . . }, called the generative order of the variables of theory T .

2. For each variable vi ∈ V(T ), there is a specified set of variables pa(vi) ⊂
{v1, . . . , vi−1} called the parent variables of vi, and a specified morphism ‘

pvi |pa(vi) :
⊗

u∈pa(vi)

u→ vi

called the structural morphism at vi.

Notation. For a subset of variables U ⊂ V(T ), it can get cumbersome to rewrite
the expression ⊗

u∈U

u

every time we want to talk about the object in TG containing exactly one copy
of each vertex in U. So, we will abuse notation a little, and talk about the object

U :=
⊗
u∈U

u

in the theory TG.
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Notation. Let T be a causal theory, and suppose v ∈ V(T ), and pa(v) = ∅. Then
we say v is an exogenous variable of T , and the structural morphism at v is a
morphism

pv : I→ v.

In order to emphasize that this morphism has the unit I as its domain, we will
conventionally depict it as a triangle, rather than a rectangle, as follows:

v

pv

Now, if G is a DAG, then the causal theory TG generated by G has the
vertices V(G) as its variables, a topological ordering of V(G) as its generative
order, and the parent variables of each variable vi corresponds to the graph-
theoretical parents of vi in the DAG G. So we know how to get from DAGs to
causal theories. Can we go the other way? That is, given a causal theory, is
it always generated by a DAG? The answer is no: not every causal theory is
generated by a DAG, because not every causal theory is free. However, every
causal theory does come associated with a DAG:

Definition 6.3. (DAG Associated to a Causal Theory) Let T be a causal theory.
The DAG associated to it is the DAG G where the vertices are the variables
V(T ), and where there is an edge u→ v if and only if u ∈ pa(v) in the theory T .

Warning Many different causal theories T can be associated with the same
DAG. In general, if T is a causal theory, and G is the DAG associated with it,
T , TG where TG is the theory generated by G.

The most important thing about causal theories is that they provide a definite
structure with which a “generating” or “sampling” of value can take place. We
now define that structure:

Definition 6.4. (Sampling Morphism) LetT be a causal theory, and let G be the
DAG associated to it. The sampling morphism of T is the morphism

p : I→
⊗

v∈V(T )

v

whose string diagram “dualizes” G. Precisely: it is the morphism represented
by the string diagram defined by the following procedure (this procedure was
developed by Fong in [3]). Although this procedure, as presented here, is a bit
obtuse on first reading, we believe that example 6.1 will serve to clarify it.

1. Let v1, . . . , vn be the generative ordering of the variables V(T ).

2. Initialize the string diagram D to be empty. That is, initialize it to the
string diagram representing the identity morphism of the unit object I.
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3. Let codom(d) denote the collection of outgoing strings in the diagram d.
At the beginning of this procedure, codom(d) = ∅. At the end of this
procedure, codom(d) will hold the value V(T ). Notice: codom(d) is a
collection, because it can have repeated elements.

4. For i = 1, . . . ,n:

(a) The set codom(d) will already contain at least one copy of each of
w ∈ pa(vi). Take one copy of each of w ∈ pa(vi). Onto these, attach
the morphism pvi |pa(vi). By doing so, we have added exactly one copy
of vi to codom(d); while decreasing the number of copies in codom(d)
of each w ∈ pa(vi) by one.

(b) Take the single copy of vi in codom(d). Onto it, attach the morphism
(∆vi )

k : vi → (vi)⊗k+1, where k is the number of edges in G that have vi
as its source. By doing so, we have made it so that codom(d) contains
k + 1 copies of vi.

5. Once the loop terminates, it is easily verified that codom(d) = V(T ). Fur-
ther, we have not added any ingoing strings to d. So d now represents a
morphism p : I→ V(T ) in the categoryT . This morphism is the sampling
morphism of T .

Example 6.1. Suppose that G is the DAG

Figure 7: A DAG consisting of four nodes.

To find the sampling morphism of the causal theory T generated by G, we
start by fixing a topological sorting of the vertices. Take a, b, c, d. The loop will
run four times. On the first run, the structural morphism for a is appended
to the diagram, together with a copying of a into three copies (since two other
vertices requires a as a parent). At the end of the first run, D becomes:

pa

a
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On the second run, the structural morphism for b is appended, together with a
copying of b into two copies (since one other vertex requires b as a parent). At
the end of the second run, D becomes:

pa

a
pb

b

On the third run, the structural morphism for c is appended, together with a
copying of c into two copies (since one other vertex requires c as a parent). At
the end of the third run, D becomes:

pa

a
pb

b

c

pc|a,b

Finally, on the fourth run, the structural morphism for d is appended. There is
no need to copy d, since no other vertex requires d as a parent. At the end of
the fourth run, D becomes:

pa

a
pb

b

c

pc|a,b

pd|a,c

a d c b

The morphism represented by the above diagram is then the sampling mor-
phism p for the causal theory T .

Sometimes, among all the variables V(T ) in a causal theoryT , only a subset
W ⊂ V(T ) are of interest to an observer. In these cases, we require also a
morphism I → W, rather than the sampling morphism I → V(T ). This is
constructed quite easily with our formalism, and bears an evocative name:

Definition 6.5. (Marginal Sampling Morphism) Let T be a causal theory, with
sampling morphism p. Let W ⊂ V(T ) be any subset of variables, and denote
Wc := V(T ) \ W. The marginal sampling morphism pW is defined by the
composition

I
p
−→ V(T ) � W ⊗Wc idW⊗∇Wc

−→ W
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where the middle isomorphism is a braiding isomorphism, and the right mor-
phism is built out of the deletion morphism ∇Wc : Wc

→ I.

One of the most important strengths of the category-theoretical view of
causal models is that we can make explicit the meaningful relations between
different causal models. Some of these relations are made explicit in terms of
morphisms between causal theories. Therefore, we introduce here the notion
of a morphism between causal theories. Other relations are made explicit in
terms of morphisms between causal models. These will be discussed in section
6.2.

Definition 6.6. (Lax and Colax Causal Theory Morphism) Roughly, lax and
colax causal theory morphisms are Markov functors from a theory T1 to an-
other theory T2, such that the structural morphisms pv|pa(v) are preserved up to
morphisms. Precisely: A lax causal theory morphism from theory T1 to theory
T2 consists of the following data:

1. A Markov functor F : T1 → T2;

2. For each v ∈ V(T1), morphisms fv and gv such that

F(pa(v)) F(v)
⊗

w∈V(T2)
w⊗mw

⊗
w∈V(T2)

pa(w)⊗mw
⊗

w∈V(T2)
w⊗mw

F(pv|pa(v))

fv gv

⊗
w∈V(T2)

p⊗mw
w|pa(w)

where
F(v) =

⊗
w∈V(T2)

w⊗mw

is the unique decomposition of F(v) into variables w in T2.

For a colax causal theory morphism, the directions of the morphisms fv and
gv are reversed. A colax causal theory morphism consists of

1. A Markov functor F : T1 → T2;

2. For each v ∈ V(T1), morphisms fv and gv such that

F(pa(v)) F(v)
⊗

w∈V(T2)
w⊗mw

⊗
w∈V(T2)

pa(w)⊗mw
⊗

w∈V(T2)
w⊗mw

F(pv|pa(v))

⊗
w∈V(T2)

p⊗mw
w|pa(w)

fv gv
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where
F(v) =

⊗
w∈V(T2)

w⊗mw

is the unique decomposition of F(v) into variables w in T2.

Moreover, if fv and gv are isomorphisms for every v, then F is called a
strong causal theory morphism, and if fv and gv are identity morphisms for
every v ∈ V(T1), then F is called a strict causal theory morphism.

Definition 6.7. (The Category of Causal Theories) The category CauseTh con-
sists of all causal theories as objects, and all lax and colax causal theory mor-
phisms as morphisms.

Here are two basic but important examples of causal theory morphisms:

Theorem 6.1. Let T be a causal theory. Let G be the DAG associated with T . Let
TG be the causal theory generated by G. Then there is a strict causal theory morphism
TG → T .

Proof. The monoids of objects Ob(T ) and Ob(TG) are the same: they are both
generated by V(T ) = V(G). So let F : TG → T act as identity on objects.

Then, for all v ∈ V(G), there is an edge u→ v in G if and only if u ∈ pa(F(v)).
So pa(F(v)) = F(pa(v)). So we can define F to also act as identity on structural
morphisms. Extend F to all morphisms inTG so that it preserves the symmetric
monoidal structure and the supply of commutative comonoids. Then F is a
strict causal theory morphism. �

Notice: this is an extra-nice case of a strict causal theory morphism, because
if p is the sampling morphism inTG, then F(p) is the sampling morphisms inT .

Theorem 6.2. Let G1,G2 be DAGs, and let φ : G1 → G2 be a graph homomorphism.
Let T1,T2 be the causal theories generated by G1,G2 respectively. Then there is a lax
causal theory morphism F : T1 → T2 induced by φ.

Proof. we can construct a lax causal theory morphism F : T1 → T2 as follows.
On objects, F just acts as φ, so that F(v) = φ(v) for every variable v ∈ V(T1).

Because φ is a graph homomorphism, so every parent of v is sent by φ to some
parent of φ(v) in G2. That is, φ(pa(v)) ⊂ pa(φ(v)) for all v ∈ V(G1). Define xv to
be the object

xv = pa(φ(v)) \ φ(pa(v))

This way, in the theory T2, we have pa(F(v)) = F(pa(v)) ⊗ xv.
Let qxv be the marginal sampling morphism for xv inT2, and let qF(v)|pa(F(v)) be

the structural morphism at the variable F(v) in T2. We then declare F to act on
morphisms by sending the structural morphism pv|pa(v) in T1 to the following
morphism:
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F(pa(v))

F(pa(v)) ⊗ xv

pa(F(v)) F(v)

F(pv|pa(v))

id⊗qxv

qF(v)|pa(F(v))

This makes F a lax causal theory morphism T1 → T2. �

Corollary 6.2.1. The mapping G 7→ TG sending a graph G to the causal theory
generated by it is therefore a functor DirGraph→ CauseTh.

6.2 Functorial Semantics for Causal Theories

We now develop the functorial semantics of causal theories. Roughly, we will
take the category Markov as the semantics for our causal theories. When we take
theories and semantics together as a whole, we obtain the notion of a functorial
causal model.

Definition 6.8. (FCM) A functorial causal model is a causal theory T , together
with a functor of Markov categories M : T →Markov.

Notice here that we require M to be a functor of Markov categories. In
other words, it must (strictly) preserve the symmetric monoidal structure of T ,
and it also must take copying and deleting morphisms to copying and deleting
morphisms.

Example 6.2. (Accupill FCM) We are back again with our old friend, the Accu-
pill example (see examples 3.2 and 4.2 for previous mentions of this example
as RCM and SCM). There is a treatment, Accupill, which has been developed
for curing COVID. It is hypothesized that T - whether or not a patient is ad-
ministered accupill - has a causal effect on Y - whether or not she recovers.
There is also a variable X, representing the pre-treatment features of a patient,
which causally influences both T and Y. The causal theory T representing this
situation has the following morphism as its sampling morphism:

px

x

pt|x

x t

t
x

py|t,x

y
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The causal model representing this situation is a functor M : T →Markov:

• The functor M acts on the objects in T as follows:

– M(I) = I is the monoidal unit in the category Markov.

– M(x) = X is the measurable space of all possible pre-treatment fea-
tures of all possible patients.

– M(t) = T is the discrete measurable space T = {0, 1}, where 0 is inter-
preted as “no treatment”, and 1 is interpreted as “yes treatment”.

– M(y) = Y is the discrete measurable space Y = {0, 1}, where 0 is
interpreted as “does not recover”, and 1 is interpreted as “does
recover”.

• The functor M acts on morphisms as follows:

– M(px) = PX is the population distribution of pre-treatment features.

– M(pt|x) = PT|X is the Markov kernel, wherein each pre-treatment
feature determines a probability that the patient will take accupill.

– M(py|t,x) = PY|T,X is the Markov kernel, wherein for each treatment
and each pre-treatment feature, there is a determined probability
that the patient will recover.

– Copying, deleting, and braiding morphisms are taken to the respec-
tive copying, deleting, and braiding morphisms. Composition and
monoidal product of morphisms are preserved.

Thus, we see that an FCM has a close correspondence with an SCM. Roughly,
the action of the functor M on objects corresponds to the assignment of measur-
able spaces to vertices in an SCM; and the action of M on structural morphisms
corresponds to the assignment of structural kernels in an SCM. Indeed, this is
formalized in the following definitions:

Definition 6.9. (FCM generated by an SCM) Let (G,X∗,P∗|pa(∗)) be an SCM. The
FCM generated by it is the Markov functor M : T →Markov such that

• T is the causal theory generated by G;

• For each v ∈ V(T ), M(v) = Xv;

• For each v ∈ V(T ), M(pv|pa(v)) = Pv|pa(v).

Definition 6.10. (SCM underlying an FCM) Let M : T → Markov be an FCM.
The SCM underlying it is (G,X∗,P∗|pa(∗)), where

• G is the DAG underlying the causal theory T ;

• For each v ∈ V(T ), Xv = M(v);

• For each v ∈ V(T ), Pv|pa(v) = M(pv|pa(v)).
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Note, every SCM generates a unique FCM, but in general, there are many
FCMs whose underlying SCM is the same.

Now, although the noumenal content of the functor M is determined by
what it does on generating objects and structural morphisms, we would like
to keep track also of what M does to the sampling morphism p of the theory
T . Indeed, this will become crucial to our understanding of the observational
content of FCMs. So we adopt the following definition, with a suggestive name:

Definition 6.11. (Sampling Distribution) Suppose M : T → Markov is a causal
model, and p is the sampling morphism ofT . Then M(p) is called the sampling
distribution of M, and is denoted P.

Notice, this is indeed a distribution, since P = M(p) is a Markov kernel
I→M(V): in other words, a probability distribution over the product space

M(V) =
∏
v∈V

M(v)

where V is the set of variables of T
We also note here that, because the sampling distribution depends only on

the structural kernels of a model, so two FCMs with the same underlying SCM
will share the same sampling distribution.

Multiple models can exist for the same causal theory T . This is not a mere
collection of different functors, but in fact it forms a category. Here is what I
mean:

Definition 6.12. (Morphism of Causal Models) Let M1 : T →Markov and M2 :
T → Markov be FCMs with the same underlying causal theory. A morphism
M1 →M2 is a monoidal natural transformation α : M1 →M2 of the functors.

Thus, the collection of all possible causal models for a theory T forms a
category itself, and we denote this by Mod(T ). This operation T 7→ Mod(T ) is
a “contravariant” operation, in the following sense:

Definition 6.13. (Pullback of Causal Models) Let T1,T2 be causal theories,
and let F : T1 → T2 be a morphism of causal theories. Then there is a functor
F∗ : Mod(T2)→Mod(T1), given by pullback along F. That is, if M : T2 →Markov
is a model of T2, then F∗M : T1 → Markov is the model making the following
diagram commute:

T1

T2 Markov

F
F∗M

M

Thus, making use of both the concept of causal theory morphisms and
the concept of model morphisms, we can make sense of meaningful relations
between causal models in a purely formal way, instead of relying on prosaic
and expert descriptions of these relations.
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6.3 Observational Content of Functorial Causal Models

The observational content of an FCM is completely described by its sampling
distribution. Let M : T →Markov be an FCM. Let p be the sampling morphism
of T , and let V be the set of variables. The sampling distribution P = M(p) is a
Markov kernel

P : I→M(V).

In other words, it is a joint distribution on the measurable spaces M(v) for v ∈ V.
This joint distribution fully specifies the observational content of M.

Definition 6.14. (Satisfaction Condition of FCM) Let M : T → Markov be
an FCM, and let V be its set of variables, and let P = M(p) be its sampling
distribution. Let X be a random variable whose range is the measurable space
M(V). Then X is said to satisfy the model M if its distribution is P.

In particular, consider the string diagram that we built in definition 6.4.
Take its image under M in Markov. This is a string diagram that represents
the sampling distribution P. We think of this string diagram as describing a
data-generating process, through which the variables M(V) end up having the
joint distribution P.

The picture to have in mind is this. Consider again the Accupill example.
Refer to diagrams in example 6.2. We imagine building a computer simulation.
This simulation first samples a value x in the range of X according to the
distribution PX = M(px). Then, it samples a value t in the range of T according
to the distribution PT|X(− | x). Then, it samples a value y in the range of Y
according to the distribution PY|T,X(− | t, x). Finally, it returns the triplet (x, t, y).
Thus, when we run this simulation many times, the values returned over the
many iterations will have an empirical distribution approximately equal to the
sampling distribution P.

The above definition gives the following theorem via the strong law of large
numbers:

Corollary 6.2.2. Let M : T → Markov be an FCM, and let X be a random variable
satisfying M. Let f : X → R be any real-valued function. Let X1, . . . ,XN be i.i.d.
samples of X. Then

1
N

N∑
k=1

f (Xk) a.s.
→ EP( f )

as N→∞, where P is the sampling distribution of the FCM M.

This then has obvious empirical implications. If a model M : T →Markov is
intended to represent some real-world process, and f is an observable property
of this process, then over many iterations, f should average to approximately
its expected value under the sampling distribution P. If it does not, then we
have good reason to doubt the correctness of the model M.

Notice, in this definition of satisfaction of an FCM, we did not rely on the
existence of any kind of density functions. This represents a major advantage
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over definition 4.8. Indeed, we can recover the product-decomposition rule in
definition 4.8 via the following theorem:

Theorem 6.3. Let M : T → Markov be an FCM with variables v1, . . . , vn. For each
j, let µ j be a measure on the space M(v j). If each structural kernel Pv j |pa(v j) in M has a
conditional density function fv j |pa(v j) with respect to the measure µ j, then the sampling
distribution P of M has a density function f with respect to the product measure
µ =

⊗
j µ j, and

f (x1, . . . , xn) =

n∏
j=1

fv j |pa(v j)(x j | pa(x j))

Proof. Since the sampling distribution of M depends only on the structural
morphisms of M, which in turn only depends on the underlying SCM, so we
may assume without loss of generality that M is an FCM generated by an SCM.

We prove the theorem by induction on the number of variables n. In the
base case, suppose that M has only one variable v1. Then v1 is necessarily
exogenous, and its structural kernel Pv1 : I → M(v1) has a density function fv1 .
The sampling distribution, then, is just Pv1 itself. So the desired equality is
trivially true:

f (x1) = fv1 (x1).

Now, for the inductive step, let M′ : V′ → Markov be the submodel of M
generated by the SCM with all the same structural kernels and variables, except
vn is removed. Then M′ is a model with n−1 variables. Suppose, for induction,
that the theorem is true on M′.

Then, partition V(M′) = v1 ⊗ · · · ⊗ vn−1 into U ⊗W, where U = pa(vn), and
W = V(M′)\pa(vn). Thus, U⊗W = v1⊗· · ·⊗vn−1. Then the sampling distribution
P for M can be represented as

P′

Pvn |pa(vn)

M(W) M(U) M(vn)

M(U)

where P′ is the sampling distribution for M′. Now, let Q : M(U)→M(U)⊗M(vn)
be the Markov kernel corresponding to the “right branch” of the above diagram.
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In other words,
Q = (idM(U) ⊗ Pvn |pa(vn)) ◦ ∆M(U).

Then the above string diagram says that

P = (idM(W) ⊗Q) ◦ P′.

In order to compute a density function for P, let’s pick measurable sets
EW ,EU,En in the spaces M(W),M(U),M(vn) respectively. Then we can easily
compute

Q(EU × En | xU) =

∫
U

idM(U)

(
EU | x

(1)
U

)
Pvn |pa(vn)

(
En | x

(2)
u

)
d∆n

(
x(1)

U , x
(2)
U | xU

)
= idM(U)(EU | xU)Pvn |pa(vn)(En | xU)

= IxU∈EU

∫
En

fvn |pa(vn)(xn | xU) dxn

and therefore

P(EW × EU × En) = (idW ⊗Q) ◦ P′(EW × EU × En)

=

∫
W

∫
U

idW(EW | xW)Q(EU × En | xU, xn) dP′(xW , xU)

=

∫
W

∫
U
IxW∈EW

[
IxU∈EU

∫
En

fvn |pa(vn)(xn | xU) dxn

]
dP′(xW , xU)

=

∫
EW

∫
EU

∫
En

fvn |pa(vn)(xn | xU) dxn dP′(xW , xU)

Now, by the inductive hypothesis, we know that

dP′(xW , xU) =

n−1∏
j=1

fv j |pa(v j)(x j | pa(x j)) dx1 . . . dxn−1

where x1, . . . , xn−1 are the corresponding components of xW and xU under the
correspondence U ⊗W = v1 ⊗ · · · ⊗ vn−1. Thus, we obtain that

P(EW × EU × En) =

∫
EW

∫
EU

[∫
En

fvn |pa(vn)(xn | xU) dxn

] n−1∏
j=1

fv j |pa(v j)(x j | pa(x j)) dx1 . . . dxn−1

=

∫
EW

∫
EU

∫
En

n∏
j=1

fv j |pa(v j)(x j | pa(x j)) dx1 . . . dxn

Thus, the conditional density function of P is

f (x1, . . . , xn) =

n∏
j=1

fv j |pa(v j)(x j | pa(x j)),

as required. �
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6.4 Interventional Content of Functorial Causal Models

Recall, in section 4.4, we defined the Single World Intervention Graph operation
on SCMs. For each SCM M = (G,X∗,P∗|pa(∗)), and each possible intervention
t ∈ XT, the SWIG operation yields another SCM M(do T = t). The interventional
content of the SCM M is then nothing more or less than the statement that
the world would behave according to the observational content of the SCM
M(do T = t), if the intervention T = t were applied. We will now develop the
interventional content of FCMs in a parallel way.

Definition 6.15. (SWIT for Theories Generated by DAGs) Let T be a causal
theory generated by a DAG G, and let T ⊂ V(G) be the set of variables that we
will intervene upon. Let G′ be the DAG obtain via the SWIG operation on T.
The single-world intervention theoryT (do T) is the causal theory generated by
G′, with an additional isomorphism v1 � v2 for each v ∈ T.

Example 6.3. (Accupill SWIT) Recall from example 6.2 that the causal theory
T representing the accupill scenario has sampling morphism as follows:

px

x

pt|x

x t

t
x

py|t,x

y

The SWIT operation onT on the set T = {t}will yield a causal theoryT (do t),
which contains four variables x, t1, t2, y, and the sampling morphism will be

px

x

pt1 |x

x t1

t1

x
py|t2,x

y

pt2

t2

t2

The theory T (do t) will also have an isomorphism t1 � t2, reflecting the fact
that the range of treatment options for the patient is the same as the range of
treatment options that the experimenter can select from.

The theoriesT andT (do T) are obviously intimately connected. There exist
natural morphisms going in both direction, which we shall describe now. We
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will first show their existence, and then delve into the intuitive meaning behind
these functors.

Theorem 6.4. Let G be a DAG, and let T be the causal theory generated by G. Let
T ⊂ V(G) be any set of variables. Then there is a lax causal theory morphism

F : T (do T)→ T

such that for v ∈ Tc, F sends the single variable corresponding to v back to v, and for
t ∈ T, the variables t1, t2 are both sent to t.

Proof. Let G′ be the DAG obtained by the SWIG operation on G. So there is a
graph homomorphism φ : G′ → G which is locally isomophic at every vertex
outside of T, bijective on the set of edges, and which satisfies φ−1(t) = {t1, t2} for
t ∈ T.

Now, G′ is the DAG associated to T (do T). However, T (do T) is not the
theory generated by G′, because it contains an extra isomorphism t1 � t2 for
each t ∈ T.

Let TG′ be the causal theory generated by G′. Then there is a lax causal
theory morphism

Fφ : TG′ → T

induced by the graph homomorphism φ, as described in theorem 6.2.
Because G′ is the DAG associated to T (do T), there is also a strict causal

theory morphism
i : TG′ → T (do T)

as described in theorem 6.1.
Now, because for every t ∈ T, Fφ sends t1, t2 to t, so Fφ has an extension

along i, defined by sending the extra isomorphisms t1 � t2 to the identity maps
t = t. This extension is our desired morphism F.

T (do T)

TG′ T

F

Fφ

i

�

Theorem 6.5. Let G be a DAG, and T be the causal theory generated by G. Let
T ⊂ V(G) be any set of variables. Then there is a lax causal theory morphism

H : T → T (do T)

such that for t ∈ T, the variable t gets sent to t2 (that is, the corresponding variable
in T (do T) with no parents), and for v ∈ Tc, v just gets sent to the single variable
corresponding to it in T (do T).
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Proof. The action of H on objects has been given. We just need to specify the
action of H on morphisms. Since T is the causal theory generated by G, so it
suffices to specify the action of H on structural morphisms.

Pick variable v. The set of parents pa(v) may contain variables from both T
and Tc. Let U = pa(v) ∩ T, and W = pa(v) ∩ Tc. Then as objects,

pa(v) = U ⊗W.

Let U2 = {t2 : t ∈ U} be the set of variables in T (do T) corresponding to U, with
no parents. Then,

H(pa(v)) = U2 ⊗W

Suppose v < T. Then H(v) = v′, where v′ is the single variable corresponding
to v inT (do T). So pa(H(v)) = U2⊗W = H(pa(v)) inT (do T). So we may declare
H(pv|pa(v)) to be the structural morphism qv′ |pa(v′) at v′ in T (do T). So at non-
treated variables v < T, H is “locally” strict.

On the other hand, suppose v ∈ T. Then H(v) = v2, where v2 is the corre-
sponding variable in T (do T) with no parents. So declare H(pv|pa(v)) to be the
morphism

U2 ⊗W

qv1 |pa(v1)

v1

�

v2

where v1 is the corresponding variable inT (do T) with no children, and qv1 |pa(v1)
is the structural morphism of T (do T) at v1, and the isomorphism v1 � v2 is the
one given in the construction of the theory T (do T).

Then, if g : v2 → v2 is the “forget-and-regenerate” morphism

∇v2

qv2

v2

v2

where qv2 : I→ v2 is the structural morphism ofT (do T) at v2, then the following
diagram commutes:

H(pa(v)) H(v) v2

I v2

H(pv|pa(v))

∇H(pa(v)) g

qv2
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Thus, H : T → T (do T) is a lax causal theory morphism. �

What is the intuitive meaning behind the two causal theory morphisms
described in the above theorems? We use the Accupill example once again.

Example 6.4. Recall that, in the accupill example, we originally gave a causal
theory T whose sampling morphism was

px

x

pt|x

x t

t
x

py|t,x

y

We then performed the SWIT operation on T , and obtained a causal theory
T (do t) whose sampling morphism was

px

x

pt1 |x

x t1

t1

x
py|t2,x

y

pt2

t2

t2

Now, consider the morphisms

T T (do t)

H

F

Then F sends the sampling morphism p in T (do t) to the following morphism
in T :
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px

x

pt|x

x t

t
x

py|t,x

y

t

px

x

pt|x

t

In other words, F gives the experimenter a behavior that is exactly like any
patient. The experimenter will have features x drawn from the same population
as the patient, and the experimenter will choose the treatment t for the patient
as if she were choosing the treatment for herself.

On the other hand, H sends the sampling morphism q in T to the following
morphism in T (do t):

px

x

pt1 |x

x

t1

x

py|t2,x

y

�
t2

t2

In other words, H interprets the patient as both the patient and the experimenter:
the experimenter just happens to act precisely according to the patient’s will in
every case.

If we consider the pullback functors associated with the theory morphisms
F and H, the situation becomes even clearer. There are functors between models
of T and T (do t) via pullback along F and H:

Mod(T ) Mod(T (do t))

F∗

H∗

If M is a model of T , then F∗M is the model of T (do t) defined by

T (do t) F
−→ T

M
−→Markov

So in this model, the structural distribution PT2 is just the same distribution as
the marginal sampling distribution for T1. So F∗M models the experimenter as
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behaving exactly like any patient, with features drawn from the same popula-
tion, and with decision making process just like the patient.

On the other hand, if M′ is any model of T (do t), then H∗M′ is the model of
T defined by

T
H
−→ T (do t) M′

−→Markov

So in this model, the structural kernel PT|X is the kernel X → T2 that can be
constructed in the image of M′. So H∗M′ is simply the model of what would have
happened if, contrary to what M′ states, the experimenter simply reproduced
the patient’s will exactly.

Now that we have constructed the SWIT operation on causal theories gen-
erated by DAGs, we are still missing a piece of data: the SWIT operation
T 7→ T (do T) does not record the information of how the experimenters will
pick a treatment for the patient. It only records which variables the experi-
menters will intervene on. This further piece of information, of course, is not
part of the syntax of causal theories, but rather is part of the semantics of causal
models. So we define:

Definition 6.16. (SWIFT for Causal Models) Let M : T → Markov be an FCM,
where T is a causal theory generated by a DAG. Let T = {T1,T2, . . . } be the set
of variables we will intervene upon. Let τ = (τ1, τ2, . . . ) be a point in the space
M(T). Then the SWIFT operation defined on the model M gives a new FCM

M(do T = τ) : T (do T)→Markov

where:

1. For variables v ∈ V(T (do T)), let v′ be the unique variable in V(T ) corre-
sponding to v. Then

M(do T = τ)(v) := M(v′)

2. For structural morphisms pv|pa(v) in T (do T):

(a) If v corresponds to a variable v′ < T, then

M(do T = τ)(pv|pa(v)) := M(qv′ |pa(v′))

where qv′ |pa(v′) is the structural morphism at v′ in T . Note that this
is well defined, because by the previous item, we have M(pa(v)) �
M(pa(v′)).

(b) Pick any variable t ∈ T. Suppose v is the variable in T (do T)
corresponding to t with no children. Then by the previous item,
M(pa(v)) � M(pa(t)), and so we let

M(do T = τ)(pv|pa(t)) := M(qt|pa(t))

where qt|pa(t) is the structural morphism at t in T .
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(c) If v is the variable inT (do T) corresponding to t ∈ T with no parents,
then let

M(do T = τ)(pv) := δτi

where δτi : I→M(t) is the distribution that assigns probability mass
1 to the point τi ∈M(t).

3. For the extra isomorphisms v1 � v2 in the theory T (do T), M(do T = τ)
sends them to the identity maps M(do T = τ)(v1) = M(do T = τ)(v2).

Example 6.5. (Accupill SWIFT) Recall from example 6.2 that we gave a causal
model M to the accupill causal theory T . I will not reiterate the content of that
model here.

Now, suppose that an experimenter comes along, and assigns the treatment
τ to the patient, with certainty. The patient no longer gets to choose what
treatment they take. We know that the causal theory representing this situation
is T (do t). That theory has sampling morphism

px

x

pt1 |x

x t1

t1

x
py|t2,x

y

pt2

t2

t2

We now also know the causal model representing this situation. It is the functor

M(do t = τ) : T (do t)→Markov

1. The functor M(do t = τ) acts on objects in T (do t) as follows:

(a) M(do t = τ)(x) is the measurable space of all possible pre-treatment
features of the patient.

(b) M(do t = τ)(t1) = M(do t = τ)(t2) are both the discrete space consist-
ing of two points: a point representing “accupill received”, and a
point representing “accupill not received”.

(c) M(do t = τ)(y) is the measurable space of all possible outcomes
(recovered, not recovered).

2. The functor M(do t = τ) acts on morphisms in T (do t) as follows:

(a) Px = M(do t = τ)(px) is the population distribution of the pre-
treatment features from which the patient is drawn.
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(b) Pt1 |x = M(do t = τ)(pt1 |x) is the Markov kernel where, given a patient’s
pre-treatment feature, there is a probability that the patient would
wish to receive accupill.

(c) Pt2 = M(do t = τ)(pt2 ) = δτ is the distribution assigning probability
1 to the treatment τ. This is, in other words, the distribution of the
treatment received by the patient (possibly contrary to her wishes).

(d) Py|t2,x = M(do t = τ)(py|t2,x) is the Markov kernel where, given the
treatment actually received, and given the patient’s pre-treatment
feature, there is a definite probability for every possible outcome.

(e) M(do t = τ) sends the additional isomorphism α : t1 → t2 in T (do t)
to the identity map of the space M(t1) = M(t2).

Theorem 6.6. Let M : T → Markov be a causal model generated by a DAG. Let
M(do T = t) be the SWIFT of M with respect to the intervention T = t. Let H : T →
T (do T) be the causal theory morphism described in theorem 6.5. Then

M = H∗M(do T = t).

Proof. SinceT is a causal theory generated by a DAG, so it suffices to show that
M and H∗M(do T = t) agree on all structural morphisms.

First, suppose v < T is a non-treated variable. Let pv|pa(v) be the structural
morphism at v in T . Then H : T → T (do T) sends pv|pa(v) to the structural
morphism qv′ |pa(v′) in T (do T), where v′ is the unique variable in T (do T) corre-
sponding to v. So

H∗M(do T = t)(pv|pa(v)) = M(do T = t)(H(pv|pa(v)))
= M(do T = t)(qv′ |pa(v′))
= M(pv|pa(v))

as required.
Next, suppose v ∈ T is a treated variable. Then H sends pv|pa(v) to the

morphism α ◦ qv1 |pa(v1), where v1 is the variable corresponding to v that has no
children, and α : v1 → v2 is the isomorphism. Then

H∗M(do T = t)(pv|pa(v)) = M(do T = t)(H(pv|pa(v)))
= M(do T = t)(α ◦ qv1 |pa(v1))
= M(do T = t)(α) ◦M(do T = t)(qv1 |pa(v1))
= idM(v) ◦M(pv|pa(v))
= M(pv|pa(v))

as required.
Thus, M = H∗M(do T = t). �

Now that we have an account of the SWIFT operation of models of causal
theories generated by DAGs, we know the interventional content of those
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models. However, it is natural at this point to ask: can we generalize this
account to all causal theories, including those not generated by DAGs?

To do that, we require the following conjecture.

Conjecture 6.1. Let T be a causal theory, and G be the DAG associated with it. Let
TG be the causal theory generated by G. Let TG(do T) be the SWIT of T with respect
to the set of variables T. Then there is a push-out in the category of causal theories

TG T

TG(do T) T
′

i

H

where i is the strict causal theory morphism defined in theorem 6.1, and H is the lax
causal theory morphism defined in theorem 6.5.

We shall call this pushout T ′ the SWIT of T with respect to the set of variables T,
and denote it T (do T).

Proving this conjecture, and extending the SWIFT operation to general
causal theories, will be beyond the scope of this thesis. We leave this to be
addressed in a further work.

6.5 Concluding Remarks

This new formalism of FCMs retains the important properties of the SCM
formalism: it articulates the generative dependencies between variables as
Markov kernels, and it specifies the composite structure built out of these
generative dependencies. However, it extends it. An FCM contains more data
than an SCM does. Indeed, as we have seen, every SCM can be represented as
an FCM, but the converse is not true.

This extra data allows us to do several things. First, it allows us to do
away with the requirement that all Markov kernels admit conditional density
functions. There are, as we’ve mentioned, important examples where Markov
kernels fail to be absolutely continuous, because they are discrete over some
parts of the domain, and continuous over other parts (think of example 3.6).
The FCM formalism gives a fully rigorous language for dealing with the com-
positionality of such Markov kernels.

Second, it allows us to articulate relations between FCMs in a formal way.
We developed two such relations: morphisms between causal theories, and
morphisms between models of the same theory. We have also seen that this
notion can be applied to make rigorous the relations between a model and its
SWIFT.

However, because FCMs are more complex data structures than SCMs, they
have become even more burdensome to work with. It is more difficult to
visualize, interact with, or discover good FCMs. In addition to this, several
further difficulties remain, including the fact that conjecture 6.1 has yet to be
proven. These difficulties are discussed in detail in section 7.2.
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7 Conclusion

7.1 Summary

We began with a philosophical survey of the concept of causation, which gave
us three normative insights about mathematical causal models:

1. A good causal model should not only describe the world as it is observed,
but it should also describe what would happen, if we were to intervene
in this world as agents. In other words, it must encode the generative
dependencies between variables, and not just the correlational regularities.

2. A good causal model should not be a black box, but should have internal
structure. In other words, it must tell us how various generative depen-
dencies come together to form a chain or network, and how this overall
structure generates consequences that we can, in principle, observe.

3. Differing causal models should not be viewed as stand-alone ideas, but
should bear meaningful relations to each other.

We then surveyed three different approaches to the mathematical modelling
of causation:

1. Potential outcome models, or RCMs, are very powerful in clinical settings,
in which exactly one cause-effect pair is being modelled. This framework
articulated for us the notion of a Markov kernel, which allowed us to
fulfill requirement number 1 from above. However, it does not allow for
the composing of causal structure, nor does it formalize any notion of
relations between causal models.

2. Structural causal models, or SCMs, extended the RCM framework by
articulating the compositionality of Markov kernels, at least in the case
where these kernels admit conditional density functions. They are pow-
erful in situations where many variables come together to form a system
of causal effects. However, it still does not formalize any meaningful
relations between differing models.

3. Functorial causal models, or FCMs, extend the SCM framework. It re-
interprets causal models as models (in the logical sense of model) of causal
theories. By doing so, it endows both causal theories and causal models
with categorical structures, and therefore naturally yields a formalism for
the meaningful relations between models.

Thus, the three normative insights are gradually fulfilled by the three different
formalisms presented in this thesis.

However, the price we paid is complexity. With each more powerful for-
malism came a more burdensome set of machinery. The more burdensome
the machinery, the more difficult it becomes to visualize, interact with, and
discover good causal models. Thus, a balancing act is required.
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7.2 Limitations and Future Work

We will now discuss some directions for future work in regards to FCMs,
starting from the most concrete, towards the more abstract directions.

First, as noted in section 6.4, the interventional content for those causal
theories not generated by DAGs still remains to be developed. This work will
have to start with a proof (or an adjustment) of the statement in conjecture 6.1.

Second, as we observed in section 6.1, the structure of a causal theory is quite
a lot more cumbersome than that of a simple DAG. Of course, it is precisely
this structure that allowed us to articulate the meaningful relations between
causal theories. Nevertheless, it is necessary to develop the graphical calculus
of causal models further, so that one can interact with them more easily. We
believe that the language of the sampling morphism and the marginal sampling
morphisms goes a long way to simplifying the understanding of causal theories,
but more work must be done here.

Third, the notion of a lax causal theory morphism is, as defined in section
6.1, very permissive. It does not place any constraints on the transitioning mor-
phisms fv and gv, as they figure in definition 6.6. It only requires that there exist
such morphisms, and that such morphisms are included in the data of a lax
causal theory morphism. Although strong and strict causal theory morphisms
serve as less permissive notions, it would be helpful to develop some inter-
mediate notion, less permissive than a lax causal theory morphism, and more
permissive than a strong causal theory morphism, by imposing some relevant
naturality condition on the transitioning morphisms. A correct articulation of
these naturality conditions requires further inquiry.

Fourth, we must take a look at whether the problematic cases encountered
in chapter 2 have really been addressed. I claim that they have not all been
addressed satisfactorily. The problem of early pre-emption (see example 2.4)
is successfully addressed by SCMs and FCMs alike, because both of these for-
malisms allow for causation to be transitive. However, this feature also makes
these formalisms vulnerable to the problem of non-transitivity (see example
2.5). In both SCMs and FCMs, if a variable A is a parent of variable B, and B is
a parent of C, then A is an ancestor of C, and therefore C must be generatively
dependent on A. Does that mean that the boulder rolling towards the hiker
is a cause for the hiker’s ability to continue the hike? In a sense, SCMs and
FCMs bite the bullet: yes, they say, because once we know of the possibility of
a boulder rolling towards the hiker, we cannot compute the probability that the
hiker can continue the hike, without first knowing whether the boulder does
roll towards the hiker!

Both SCMs and FCMs provide a sort of dodgy answer to the problem of late
pre-emption (see example 2.6). They say, in response to that problem, that both
Sarah’s and Taro’s rock throwing are causes of the breaking of the window,
even though Taro’s rock did not even touch the window. This is because any
successful causal model of the situation must encode the fact that, if we were
to intervene in the situation, and stop Sarah from throwing the rock, then
Taro’s rock would have broken the window. Thus, any successful causal model
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will necessarily make both Sarah’s rock throwing, and Taro’s rock throwing,
parents of the variable encoding the breaking of the window. The breaking of
the window, in other words, is generatively dependent on the joint behaviour
of the two.

Notice that the failure to adequately answer the problem of non-transitivity
and the problem of late pre-emption yield a common consequence: if a notion
of causation can be modelled by SCMs and FCMs, then that notion of causation
is inadequate for the assignment of blame and praise in a moral context. It
is unreasonable to bite the bullet and say that the boulder is praiseworthy for
causing the hiker to continue on her journey, and it is unreasonable to say that
Sarah and Taro are equally blameworthy for the breaking of the window. Thus,
much further inquiry in both philosophy and mathematics needs to be made
before these problems can be fully addressed.
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