
OUTER BILLIARDS WITH CONTRACTION

IN-JEE JEONG

Abstract. We study the dynamics of outer billiards with contraction outside polygons. The dynamics can be
either regular or chaotic, depending on the parameters.
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1. Introduction

The outer billiards map, popularized by Moser in his article [7], is a major example of a dynamical system.
It has been studied by various people and while [17], [19] are good references (the latter written primarily for
undergraduates), a few important results was obtained afterwards; for example, see [14, 13]. Look at the pictures
of the periodic tiles of the outer billiards map outside some regular polygons! These beautiful pictures (produced
by R. Schwartz) are enough motivation to study this system.

In this thesis, we modify the construction to get a contractive map which we call as “outer billiards with
contraction,” see Figure 2.1. The dynamical system is determined by a pair (P, λ) where P is a convex polygon
and λ is the contraction factor between 0 and 1. Let us list the main questions that we are interested in.

• Regarding periodic orbits: Is there exist a periodic orbit? Is the number of periodic orbits always finite?
• Regarding asymptotic behavior of points: Is every orbit asymptotic to a periodic orbit? If not, what are

possible asymptotic behaviors?
Experiments strongly suggest that for a randomly chosen pair (P, λ), there exist only finitely many periodic
orbits to which all other orbits are attracted. Indeed, it is expected from a “generic” piecewise contracting map
that the dynamics is “regular.” Two articles [2, 9] have established results of this kind. They also give several
motivation to study piecewise contractions. In [2], authors study a large class of piecewise contractions on the
plane and show that for almost every choice of parameters, any orbit is attracted to a periodic orbit. On the
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Figure 1.1. Dynamics of the outer billiards map outside regular 5, 8, and 12-gons (taken from
the website http://icerm.brown.edu/)

other hand, in [9], authors consider piecewise contractions on the interval and show that there are at most n
periodic orbits where n is the size of the partition. Moreover, when the map has n periodic orbits, every orbit is
attracted to a periodic one.

The goal of this thesis is to introduce a wide variety of phenomena occurring in this dynamical system. We
hope to convince you that the dynamics depends in subtle ways to the geometry of P . One can view this thesis as
a gallery where picture has an accompanying mathematical description. It is more fun to look at those pictures
if you know mathematical stories behind them.

The remainder of this thesis is divided into four sections. In Section 2, we discuss very basic properties of the
system. In Section 3, we will analyze the dynamics when the polygon is a square; the dynamics has a simple
description, but still quite interesting. Then Section 4 discusses various types of periodic orbits that we can
observe for specific families of polygons. Finally in Section 5, we show that for some polygons, an attracting
Cantor set exists; that is, the dynamics can be chaotic.

2. Definitions and Preliminary Results

To define our dynamical system rigorously, we fix a convex polygon P in the plane and a number 0 < λ < 1.
Given a point x outside of P , we draw the ray from x to a vertex y of P such that P lies on the left side of this
ray. Now we can find the unique point z on the other side of the ray with respect to x such that |xy| : |yz| = 1 : λ.
We denote this transformation x 7→ z by Tλ, suppressing the dependence of the map on P . Letter T will be
reserved for the standard outer billiards map.

Note that this map is well-defined except for a finite union of rays S which extends sides of P . Then we note
that away from a measure zero set (which is a countable union of rays), Tλ can be iterated infinitely many times.
Then we simply take out this measure zero set from our domain so that Tλ defines a dynamical system. That is,
the domain can be written as X := R2\

(
P ∪ (∪∞i=0T

−i
λ S)

)
.

In this section, we are going to prove:
(1) All regular periodic orbits are attracting, and no degenerate periodic orbit of odd period is attracting
(2) The explicit formula for the coordinates of the periodic orbit given a combinatorics
(3) All the asymptotic dynamics is happening in a bounded ball

We say that a point x ∈ X is periodic of period n if Tnλ (x) = x and Tmλ (x) 6= x for 1 < m < n. Corresponding
periodic orbits is O(x) = {x, ..., Tn−1λ x}. Often we call such an orbit regular periodic orbit to emphasize that
O(x) ⊂ X. We will see shortly that any regular periodic orbit is locally attracting; that is, there exists an open
set O ⊂ X such that for all a ∈ O, there exists m such that |Tm+nk

λ a − x| → 0 as k → ∞, if the periodic orbit
were generated by x. Next, we note that for points on the singular ray S, there are two natural choices for Tλ
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Figure 2.1. Outer billiards with contraction

that can make Tλ continuous at least from one side. Moreover, there is one natural choice for Tλ for points on
the sides of P .

Figure 2.2. An attracting degenerate periodic orbit

Then we say that a finite sequence of points {x1, ..., xn} ⊂ cl(R2\P ) is a degenerate periodic orbit if for
each 1 ≤ i ≤ n, Tλxi = xi+1 whenever Tλxi is well-defined and otherwise (that is, when xi is on S or on
the sides of P ), xi+1 should be one of natural choices of Tλ for xi. With this definition, there are plenty of
degenerate periodic orbits for any pair (P, λ); for an extreme example, each vertex of P is always a degenerate
fixed point. However, a degenerate periodic orbit is interesting only when some points in our domain X is
asymptotic to it. This phenomenon never happens in ordinary outer billiards (due to its piecewise isometric
nature). Here we give a concrete example of an attracting degenerate periodic orbit; see Figure 2.2. Take P to
be the “truncated square” with vertices (0, 0), (1, 0), (1, 0.5), (0.5, 1), and (0, 1), and λ = 0.5. Then the sequence
{(0, 1.4), (0, 0.8), (0,−0.4), (1.5, 0.2)} is a period-4 degenerate periodic orbit. Notice that a point lies on a side
of P . We claim that the whole domain X is asymptotic to this periodic orbit, fully justifying the necessity
of considering degenerate periodic orbits. We do not prove this claim as it can be done by a finite amount of
calculation.

It is a basic fact that the dynamics of outer billiards (with or without contraction) is invariant under affine
transformations. To be more precise, if there exists an affine transformation of the plane (which has the form
x 7→ Ax+ x0 where A is a 2× 2 matrix and x0 is a fixed vector) which sends a polygon P to another polygon Q,
then the dynamics for (P, λ) is conjugate to the dynamics for (Q,λ). We note that up to affine transformations,
there exists a unique triangle, a unique parallelogram, one parameter family of trapezoids, and two parameter
family of quadrilaterals.

We recall a very well-known lemma from analysis. We say that a point p is asymptotic to a fixed point y if
|Tnp− y| → 0 as n→∞.
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Lemma (Contraction Lemma). Let Y be a complete metric space and f : Y → Y be a contraction. Then there
exists a unique fixed point that every point in Y is asymptotic to.

The following is just an analogous statement to the fact that in any piecewise isometric system (in Euclidean
spaces), when we have a periodic orbit, there exists a periodic polygonal open set around the orbit (which is
often called a tile).

Lemma 1. Any regular periodic orbit is attracting, while a degenerate periodic orbit of odd period is never
attracting.

Proof. To prove the first statement, fix a point x inside the periodic orbit and assume its period is n. Let the
sequence of vertices of P that x hits via iteration of Tλ be {v1, ..., vn}. Let Y be the subset of R2\P such that
Tλ is well-defined at least until n iterations and hits the same sequence of vertices with x. It is easy to see that
Y is an open convex polygon (as it is an intersection of finite half-planes) and that x is contained in Y . Since x
is a fixed point of Tnλ , and T

2n
λ is also orientation-preserving, we know that T 2n

λ (Y ) ⊂ Y , defining a contraction
on a complete metric space Y . Therefore, we are done by the contraction lemma.

For the second statement, let O be a degenerate periodic orbit of odd period n, and its easy to see that there
always exists a point x ∈ O ∩ S. Assume on the contrary that there exists a open set U that is asymptotic to
this periodic orbit. We can assume that the closure of U contains x. We first observe that the singular ray S
cuts any small open ball containing x into two half-open balls and that U should be necessarily contained in one
of two sides. But on U , at least for a.e. points, iterations of Tλ are well-defined. However, a composition of odd
number of orientation-reversing maps is orientation-reversing, so Tnλ U is always contained on the other side of
U with respect to S. Since the rule for Tλ is completely different on the other side, Tn+1

λ U * TλU , which is a
contradiction. �

We note that some degenerate periodic orbits of even period are attracting, while some are not. It depends
on how the orbit wraps around P . We already gave an example of an attracting degenerate periodic orbit, and
we will see non attracting degenerate periodic orbits of even period in Section 3.

Given a point x ∈ X, we can look at the sequence of vertices {v1, v2, ...} it hits when we iterate Tλ. Such a
sequence will be often called the combinatorics of x. Any sequence of vertices will be also called a combinatorics.
This sequence being periodic forces x to be a periodic point via the contraction lemma. On the other hand,
given a finite combinatorics {v1, ..., vn}, we are curious if there is a periodic point x (regular or not) realizing this
combinatorics. The next lemma gives an answer, and since for any N there are only finitely many combinatorics
of length N , it is theoretically possible to locate all periodic orbits of period less than N .

Lemma 2. For any P and any finite combinatorics {vi}n−1i=0 , there exists at most one periodic point realizing it,
whose coordinates (if exists) are determined by the formula

(2.1) q(λ) =
1− (−λ)

1− (−λ)n
(
n−1∑
i=0

(−λ)n−1−ivi).

Proof. Consider the map Φ = Tn−1◦Tn−2◦...◦T0, where Ti is the reflection with respect to the vertex vi composed
with contraction by λ. Then clearly, Φ is a contraction of the form p 7→ (−λ)np+ (1 + λ)(

∑n−1
i=0 (−λ)n−1−ivi). If

we assume that a periodic point exists, it must be a fixed point of this contraction which is unique. By letting
p = Φp, we get the desired formula. �

Therefore, a combinatorics is realized if and only if each point in the sequence {q(λ), Tλq(λ), ..., Tn−1λ q(λ)} is
located “correctly” on R2\P with respect to the partition by S. The formula for q(λ) itself will be used repeatedly
in the following sections.

Now we show that all the interesting dynamics happens in a bounded ball. This shows a striking contrast
with standard outer billiards, in which boundedness question is wide open for a generic P . Intuitively, if x ∈ X
is very far (in terms of the size of P and λ) away from P , it is conceivable that d(Tλx, P ) < µd(x, P ) for some
uniform factor λ < µ < 1.

Lemma 3. Given (P, λ), there exists a ball B of radius not exceeding 1+λ
1−λ maxi |vi| such that Tλ(B ∩ X) ⊂ B

and for any x ∈ X, there exists N > 0 such that TNλ x ∈ B.
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Proof. A simple computation. �

Finally, we can conclude that a (regular) periodic orbit is not destroyed under small perturbation of the
polygon or λ. If P is an n-gon, we assume that the vertices are cyclically ordered and regard it as a point in
R2n. Then we can talk about the distance between two (ordered) n-gons. In the following lemma, P and P ′ will
need to have the same number of vertices.

Lemma 4 (Stability of periodic orbits). Let O be a periodic orbit for (P, λ). Then there exists ε > 0 depending
on O, P, λ such that if the pair (P ′, λ′) is ε-close to (P, λ), then there exists a periodic orbit O′ for (P ′, λ′) which
has the same combinatorics with O.
Proof. We only need to observe that the Equation 2.1 and the continuity regions for Tλ vary continuously in
vertices of the polygon and the contraction factor. �

3. Dynamics Outside the Square

In this section, we analyze the dynamics when P is a square (or equivalently, a parallelogram) and conclude
that the dynamics is nicest possible. For now, just note from Figure 3.3 that for different value of λ, there exists
different number of periodic orbits (each color corresponds to the basin of attraction for a periodic orbit).

Let us outline the proof of the Theorem 6. Recall that without contraction, the outer billiards map outside a
square just permutes the open squares of the same label in Figure 3.1, and every point inside a square of index k
is periodic with period 4k. Then now with contraction, define the index of a point to be the index of the square
that the point belongs to. When the point is adjacent to two or more squares, we can set the index to be the
minimum. Then we note that under the dynamics Tλ, the index of a point never increases. In particular, it
must stabilize to some k, and after it stabilizes, it should follow the combinatorics of the standard outer billiards
map. Therefore, with the Equation 2.1, we can explicitly compute the coordinates of the asymptotic limit, and
we argue that the kth Tλ-periodic orbit exists if and only if this limit point lies in the “right” region (namely in
the interior of a square of index k). We will conclude that it exists precisely when λ ∈ (λk, 1) for some number
λk.
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Figure 3.1.

For concreteness, we arrange that the four vertices of our square have coordinates (±1,±1). We first prove a
simple algebraic lemma.

Lemma 5. For k ≥ 1, the polynomial pk(λ) = 1− λk−1 − λk + λ2k has a unique root in [0, 1) which we denote
by λk. Then he sequence {λk}k≥1 is strictly increasing with limit 1.
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Proof. When k = 1, pk(λ) = −λ + λ2 and λ1 = 0. Now assume k ≥ 2. Since pk(0) = 1 and pk(1) = 0, it is
enough to prove that there exists a point ak such that pk is decreasing in the interval (0, ak) and increasing in
the interval (ak, 1). The derivative p′k(λ) has the form −λk−2qk(λ), so let us show qk(λ) has a unique root bk
in the interval (0, 1) such that qk(λ) > 0 when 0 < λ < bk and qk(λ) < 0 when bk < λ < 1. The derivative
q′k(λ) = k−2k(k+1)λk is monotonic and has a unique root in (0, 1). Since qk(0) = k−1 > 0 and qk(1) = −1 < 0,
we are done.

To prove λk < λk+1, since pk(λ) < 0 only when λ > λk in the interval (0, 1), it is enough to check pk(λk+1) < 0,
which is elementary. Because λk < 1 for all k and λk is increasing, the limit of λk exists, which we denote by
l ≤ 1. From the equation

1 = lim
k→∞

lk−1(1 + l − lim
k→∞

lk+1),

one sees that l = 1. �

Theorem 6. For all λk < λ ≤ λk+1, there exists exactly k Tλ-periodic orbits to which all other orbits are
attracted.

Proof. Notice that with any 0 < λ < 1, Tλ never increases the index of the square that the orbit of a point p
lies on. Since the index cannot decrease indefinitely, we can assume that it stabilizes at some k. Notice that
once it stabilizes, for each point in a k-square, there is a unique k-square that it can be mapped to. Moreover,
it is possible to get from any k-square to any other one. Hence, pick an integer N such that TNλ p lies on Sk, the
(open) k-square with center (−2k, 0). Now, the combinatorics of TNλ p is fixed, which means that the iteration
T 4k
λ is a fixed contraction, and therefore p must converge to the unique fixed point qk(λ) of T 4k

λ whose formula
is given by Equation 2.1.

If, for some λ, it turns out that the formula for qk does not give a point in cl(Sk) (qk can on the boundary
of Sk and still define an attracting periodic orbit), it means that for this value of λ, 4k Tλ-periodic orbit cannot
exist. In the next two lemmas, we show the following statements. First, there exists a number λk which happens
to be the root of pk(λ) in [0, 1), such that qk ∈ cl(Sk) if and only if λ ∈ [λk, 1). When qk ∈ Sk, it defines a
regular periodic orbit, and when qk ∈ ∂Sk, it defines a degenerate periodic orbit which is non attracting. Hence,
the proof is complete. �
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Figure 3.2. The third T0.95-periodic orbit
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Lemma 7. For all 0 < λ ≤ 1, coordinates of the point qk(λ) = (x(λ), y(λ)) has the following explicit formula:

x(λ) =
−(1 + λ)(1− λ2k)

(1− λ)(1 + λ2k)
y(λ) =

(1 + λ)(1− λk)2

(1− λ)(1 + λ2k)
.

Proof. Since each vertex vi of the square has coordinates ±1, we can encode the combinatorics of each coordinate
by a sequence of + and −. Then we have x(λ) = (

∑
λ4k−1−i(−1)i−1vx,i)(1 + λ)/(1 − λ4k) where vx,i is either

+1 or −1. The sign of vx,i alternates, except for precisely two cases when the orbit goes through a horizontal
square. Since our point p is in a horizontal square, {vx,i} has the form −+−...+ +...−+−, where by symmetry
two consecutive + occurs at the 2k and 2k + 1 positions. By multiplying this sequence with (−1)i−1, we have a
simple pattern where 2k pluses are followed by 2k minuses. Therefore, we have the sum

∑
λ4k−1−i(−1)i−1vx,i =∑2k−1

j=0 λ2kλj −∑2k−1
j=0 λj which gives us the formula for x(λ). Similarly, vy,i has the alternating combinatorics

except for two spots where the orbit goes through a vertical square. Multiplying it with (−1)i−1, we get the
sequence where we have k pluses at both ends surrounding 2k minuses. For an example, we have ++−−−−++
when k = 2. Explicitly adding the geometric series gives us the formula for y(λ). These formulas are easily seen
to be convergent when λ→ 1. �

Lemma 8. The limit curve qk(λ) defines a 4k-periodic point under Tλ if and only if λ > λk.

Proof. This lemma will show that for λk < λ ≤ λk+1, there are exactly k periodic orbits.
Given the point qk(λ) := H0 for a fixed λ, we construct other 4k − 1 points. We rotate H0 with respect to

the origin O by π/2, π, 3π/2 to obtain points E0, F0, and G0. (Figure 3.2) On the segment H0E0, we pick
points Ek−1, Ek−2, ..., E1 so that the lengths of sides Ej+1Ej satisfy |Ej+1Ej |/|EjEj−1| = λ for all 1 ≤ j ≤ k− 1
(Ek = H0). Then we construct points Fj , Gj , Hj similarly that 4k points have π/2-rotational symmetry with
respect to the origin.

Let us proceed to show that if λ ≥ λk, these 4k points form a periodic orbit. First we show that the points
Ek−1, ..., E0 gets reflected on the vertex D. (which is enough by rotational symmetry) Since they are collinear,
it is enough to show that the y coordinate of Ek−1 is less than or equal to −1 and the x coordinate of E0 is less
than or equal to 1. We use the formulas from Lemma 7. It is apparent that the y-coordinate of H0 is positive,
so the x coordinate of E0 is indeed less than 0 (stronger than what we need) by symmetry. Next, it is a simple
computation to show that the y coordinate of Ek−1 equals the convex combination

ŷ(λ) =
1− λk−1
1− λk y(λ) +

λk−1 − λk
1− λk x(λ)

and we solve for the condition ŷ ≤ −1. It turns out that it holds if and only if 1 − λk−1 − λk + λ2k ≤ 0 which
happens precisely in the interval [λk, 1). Therefore, if λ < λk, there cannot exists a periodic orbit in kth squares.

It remains to show that these 4k points are Tλ-invariant. Indeed, we claim that it is enough to check that
TλH0 = F1. Consider two triangle4H0H1A and4F1F2A. SinceH0, A, F1 are shown to be collinear and segments
H0G0 and E0F0 are parallel, ∠H1H0A = ∠F2F1A. Moreover, we have ratios |H0A|/|F1A| = |H0H1|/|F1F2| = λ
from our construction. Therefore, these triangles are similar, and TλH1 = F2. Likewise, TλHj = Fj+1 for
j = 1...k − 1, where Fk = E0. By rotational symmetry, Tλ is indeed an orbit. Next, a direct computation
establishes that TλH0 = F1.

Finally, we need to show that the degenerate periodic orbit formed by qk when λ = λk is non attracting.
It is enough to show that no points inside two lattice squares adjacent to the singular point Ek−1 converge to
Ek−1. No points from the square above Ek−1 certainly cannot converge to Ek−1 since it reflects on A in the
beginning. Next, we may assume that a small open set inside the lattice square below Ek−1, after 2k iterates of
Tλk

, becomes an open set touching the singular point Gk−1 because otherwise we are done. However, since 2k is
even, the latter open set lies below Gk−1 and reflects on C rather than on B. �

Remark 9. Notice from Equation 7 that the limit curve converges to the center of the square, (−2k, 0) as λ→ 1.
This phenomenon also happens for periodic domains of regular 3, 5, 6, 8-gons and will be obtained as a collorary
of Theorem 13 later.

We have λ2 = 0.755..., λ3 = 0.890.... In Figure 3.3, the dynamics is drawn for three values of λ, 0.7, 0.8, and
0.9. In each picture, one notices that the domain is divided into many rectangles; each rectangle is the set of
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Figure 3.3. “Bird’s eye view” of dynamics outside the square for λ = 0.7, 0.8, 0.9 (from left to right)

points with the same combinatorics, and their boundaries are precisely the bad set we have taken out from our
domain. First, 0.7 < λ2 so in the leftmost picture, we have one periodic orbit which attracts everything. Next,
λ2 < 0.8 < λ3, so we see two periodic orbits in the second picture. The green region corresponds to the set of
points that converge to the second periodic orbit. In the rightmost picture, we see the partition of the plane into
three sets, corresponding to three periodic orbits. Notice that the proportion of the green region has increased
compared to the second picture.

Figure 3.4. Outer billiards outside the equilateral triangle

We claim that similar analysis can be done for the triangle (unique up to affine transformation) and for the
regular hexagon. For each of them, there exists a “graded” tiling of the plane enjoying the same properties.
However, the analysis is more involved as there are two types of periodic orbits, hexagonal and triangular. See
Figure 3.4 which is taken from Moser’s popular article [7]. Second, notice that when analyzing the periodic orbits
for the square, we made a strong use of the fact that a whole periodic orbit lies on a square.

However, the conclusion is the same: each periodic domain for the outer billiards yields a Tλ-periodic domain
if and only if λ exceeds a certain threshold. Therefore, it only remains to compute these thresholds to get the
exact number of periodic orbits for given λ. We state the result when P is the triangle and omit its proof. One
surprise is that the thresholds for hexagonal periodic orbits coincide with the odd threshold values λ2k−1 from
the square case.
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Claim 10. Indexed from inside, the kth hexagonal periodic domain has threshold λ2k−1 and the kth triangular
periodic domain has threshold µk: for each k ≥ 1, the polynomial (x6k − 1)(1 − x2k) + (x4k−1)(1 − x) has a
unique real root µk in the interval (0, 1) which is strictly increasing and converges to 1 as k → ∞. From this,
we deduce taht for any λ, there exists only finitely many periodic orbits (each coming from a periodic orbit from
the standard outer billiards) to which all other orbits are attracted.

Let us summarize the common properties that dynamics outside three regular polygons have:
(1) For any λ, there exists only finitely many periodic orbits to which every other orbits are attracted
(2) For all λ, any periodic orbit comes from a T -periodic orbit
(3) For each T -periodic orbit of P , there exists a threshold value λ∗ < 1 such that this orbit gives a regular

periodic orbit for (P, λ) precisely when λ∗ < λ < 1.
We end this section by briefly mentioning the case when P is a regular pentagon. Without contraction, dynamics
of the outer billiards map yields a beautiful fractal picture and is well-studied ([16, 8]). An extensive experiment
with a computer program suggests the following conjecture:
Conjecture 11. For the regular pentagon, all of the properties 1, 2, and 3 hold.

It seems like that the 5-fold rotational symmetry of the regular pentagon forces Tλ-periodic orbits to be
symmetric as well. In Figure 3.5, we have drawn the periodic domains outside the regular pentagon for some
values of λ. If you look carefully, in first two pictures you see three periodic domains, while in the third one you
see a tiny periodic domain (colored in red) appearing.

Figure 3.5. Dynamics outside the regular pentagon, when λ = 0.89, 0.91, and 0.95 (from left to right)

4. Types of Periodic Orbits

The aim of this section is to describe various types of periodic orbits for Tλ and study their properties; material
in this section was primarily motivated to prove existence of periodic orbits for all (P, λ). As a brief overview,
we will describe and study four types of periodic orbits: (which will be defined in corresponding subsections)

(1) Fagnano-type
(2) Stable (under variations on λ)
(3) Stable degenerate
(4) Star shaped
(5) Winding number 1

We briefly comment on the significance of each types of orbits. The first one exists for any polygon for sufficiently
small λ (depending on the polygon) and provides a counterexample that all periodic orbits for (P, λ) come from
periodic orbits without contraction. The stable periodic orbits enable us to conclude for some polygons that
as λ → 1−, the number of periodic orbits diverges, as we have seen for three regular polygons. Moreover, the
existence of non-stable periodic orbit points at the complexity of the outer billiards map outside the regular
septagon. The third category of periodic orbits is not only interesting by its mere existence but we have observed
(without proof) that for certain polygons (namely, lattice trapezoids), any periodic orbit (as λ varies from 0 to
1) is either type 1, 2, or 3. The fourth one is a family of special periodic orbits for regular polygons. Finally,
studying periodic orbits of winding number 1 is an attempt to prove that for any pair (P, λ), there exists a
periodic orbit. Interestingly, this analysis was a stepping stone of the proof of the nonexistence of periodic orbits
for certain pairs (P, λ) which we discuss in Section 5.
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4.1. Fagnano-type Periodic Orbits. In [18], Tabachnikov studies periodic orbits of outer billiards that hits
each vertex of P exactly once in cyclic order. Following his terminology, we will call such a periodic orbit as
Fagnano orbit. We also require this periodic orbit to be regular. We begin with an observation that if such an
orbit exists, it should be unique, simply because the coordinates of its points should be given by Equation 2.1.
Moreover, if P is a regular polygon, then the (familiar) Fagnano orbit exists for all 0 < λ < 1.

F. Bozgan first observed and proved that for any P , for small enough λ there exists a Fagnano orbit. We will
state his theorem and provide a short proof.

P

v1 = q(0)

v2

v3

v4

v5

q(λ)

Figure 4.1. Proof of the Fagnano orbit theorem

Theorem 12 (F. Bozgan). For any P , there exist two threshold values 0 < λ′ and 0 < λ′′ ≤ λ′ such that for
λ ∈ (0, λ′), the (regular) Fagnano orbit exists and for λ ∈ (0, λ′′), every orbit is attracted to the Fagnano orbit.

Proof. We first prove the existence statement. Given P , we label the vertices counterclockwisely from a vertex
v1, ..., vn, and we are looking for a periodic orbit with periodic combinatorics {v1, ..., vn}. It exists if and only
if q(λ), Tλq(λ),..., Tn−1λ q(λ) lies on the interior of respective continuity regions. Therefore, it will be enough to
prove that for λ sufficiently close to 0, the rational curve q(λ) lies on the continuity region for v1 as illustrated in
Figure 4.1. From elementary geometry, it is enough to establish the following: (assuming v1 = 0 for simplicity)

• q′(0) = v1 − v2 = −v2
• d

dλ |λ=0{(v1 − v2)× (q(λ)− v1)} = − d
dλ |λ=0(v2 × q(λ)) = −v2 × v2 < 0

And one can check both facts explicitly. Next, we prove the second statement. Notice from the formula for the
invariant ball (Lemma 3) that if a ball B is invariant for (P, λ) then it is also invariant for all λ′ < λ. Therefore,
we take a ball that works for λ = 1/2, for example. This ball cuts the domain into n pieces as shown in Figure
4.1. It is trivial that for λ′ small enough, the Tλ′ -image of each piece gets contained in the next piece. Since any
orbit eventually gets into this ball, and once it gets into its combinatorics is fixed, we conclude that any orbit is
asymptotic to the Fagnano orbit. �

Note that the second step alone is not sufficient to prove that the Fagnano orbit is regular; some estimates on
q(λ) are essential. The trapezoid with the ratio of two bases equal to 2 does not have a Fagnano orbit without
contraction. Therefore, it is not true that all periodic orbits for (P, λ) comes from a T -periodic orbit.
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Figure 4.2. A non-stable T -periodic orbit for the regular heptagon

4.2. Stable Periodic Orbits. Let us letO be a T -periodic orbit outside a polygon P . We say thatO is stable (to
be precise, we should say λ-stable) if for λ sufficiently close to 1, the combinatorics of O gives a Tλ-periodic orbit
outside P . It might seem like that every T -periodic orbit is stable, so we start with a possible counterexample.
Figure 4.2 shows some portion of the tiling of the plane by T -periodic tiles outside the regular septagon (which
is not shown). We see a series of green pentagons of period 57848 which are indeed extremely small compared
to the regular septagon P . These pentagons, along with many exotic periodic tiles outside the regular septagon
were revealed by the computer program developed by R. Schwartz. Computer calculations suggest that these
green pentagons is not stable under variations on λ.

Let us introduce the criterion we have used in this situation. Pick any of 57848 pentagons, and look at its
combinatorics, which is just some sequence of vertices of the regular septagon of length 57848. If there were a
Tλ-periodic orbit with this combinatorics, the corresponding point q(λ) should be given by Equation 2.1. And if
this green pentagon were stable, limλ→1− q(λ) should be contained in the green pentagon we have picked. The
computation shows that this limit was quite far away from the pentagon, so we are quite confident that this is
non-stable (an exact arithmetic will verify this rigorously).

Although this is a necessary and sufficient condition, it does not explain the seemingly natural fact that when
P is a square, limλ→1− q(λ) was the center of each square. Computer experiments showed the same phenomenon
obviously for the triangle but also for the regular pentagon.

This can be explained by passing to the dual picture of the outer billiards map, which is introduced and is
strongly utilized in [16]. In this dual picture, we reflect the polygon P at the vertex of tangency rather than
reflecting the point. Therefore, the point is held fixed and we look at the sequence of reflected polygons. Figure
4.3 illustrates this. We can easily go back and forth to the dual and come back to the original picture by applying
appropriate translations.

In the dual picture, a point is periodic if and only if P comes back to its original position after a finite number
of reflections. For a concrete example, see Figure 4.4.

Theorem 13. Let Q be a periodic domain with respect to polygon P. Then we look at the dual picture where
we reflect P instead of points in Q. Pick any point p in P and consider the images of p under these series of
reflections, p = p0, p1, ..., pn = p0, where n is the period of Q which we can assume to be even. Then Q is stable
under small variation on λ near 1 if and only if the barycenter

∑
pi/n lies in the interior of Q.
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w0 = v0
w1 = −v1

w2 wn−1

Q

P
p0

p1p2

Figure 4.3. The dual picture: periodic domain Q is “looking at” P and its reflected images

Proof. We consider the periodic combinatorics {vi} of the domain Q, and given λ, we have the hypothetical
periodic point in Q given by the formula

q(λ) =
1− (−λ)

1− (−λ)n
(

n−1∑
i=0

(−λ)n−1−ivi)

where the choice of the origin is arbitrary and vi are really the vectors from the origin pointing to the ith vertex
of reflection. What we want to conclude is that limλ→1 q(λ) ∈ intQ, because then by continuity we know there
exists some ε > 0 such that for λ > 1− ε, all the iterates T jq(λ) (0 ≤ j < n) are contained respectively in T jQ,
which means that these n points constitute a honest Tλ-periodic orbit. We go to the dual picture as in figure ,
and pick a point p0 in the interior of P which we consider as the origin. Then the vector starting from p0 and
ending at the first vertex of reflection is precisely v0. In general, if we set wi to be the vector starting from the
point pi and ending at the i+ 1th vertex of reflection then wi = (−1)ivi. Since Q is a periodic domain we have∑n−1
i=0 wi = 0 or

∑n−1
i=0 (−1)n−1−ivi = 0. Hence we can use L’Hospital’s rule to obtain

lim
λ→1

q(λ) =
2

−n (

n−1∑
i=0

(n− 1− i)(−1)(−1)n−ivi) =
2

n
(
∑
i

(n− 1− i)wi)

since n is even. That is, we are asking whether 2
n (
∑
i(n−1−i)wi) ∈ intQ. If we put the origin somewhere else, the

point p0 is now seen as a vector and we are asking whether V 0 = p0+ 2
n (
∑
i(n−1− i)wi) ∈ intQ or not. We could

have started from the T -translates of Q; then we will be asking whether Vj = pj + 2
n (
∑
i(n− 1− i)wi+j) ∈ intQ

because the combinatorics will also shift by j. We claim that this destination point is independent on j. We have

V1 − V0 = p1 − p0 +
2

n
(
∑
i

(n− 1− i)wi −
∑
i

(n− 1− i)wi+1) = p1 − p0 +
2

n
(

n−1∑
i=1

wi − (n− 1)w0)

but since
∑
i wi = 0, this difference is equal to

p1 − p0 +
2

n
(−nw0) = p1 − p0 − 2w0 = 0.

This argument works for other j as well; now we set

V =
1

n

∑
Vj =

1

n
(
∑
j

pj +
∑
j

∑
i

2

n
(n− 1− i)wi+j)

and by interchanging the summation, we finally obtain

V =
1

n
(
∑
j

pj +
∑
i

2

n
((n− 1− i)(

∑
j

wi+j)) =
1

n
(
∑
j

pj).

�
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We say that a periodic domain Q is symmetric if there exists some affine transformation such that the necklace
formed by P and its reflected images according to the combinatorics of Q around Q has a m-fold rotational
symmetry around some point in the plane.

Then it turns out that this point of symmetry is contained in the interior of Q, proving Q is stable. Since
periodic domains with odd period has 2-fold rotational symmetry, they are also stable. We summarize it as a
corollary.

Corollary 14. All odd periodic domains and symmetric domains are stable.

Proof. In the dual picture, pick a point q in the interior of Q. Apply 2π/m rotations m − 1 times which would
leave the P -necklace invariant. The point q draws a regular m-gon, which is completely contained in Q by
symmetry. Therefore, the center of this regular m-gon which equals the barycenter

∑
pi/n is contained in the

interior of Q. �

Corollary 15. For n = 3, 4, 5, 6, and 8, all T -periodic domains outside the regular n-gon are stable.

Proof. We have already seen this phenomenon for n = 3, 4, and 6. For n = 5, it is implicit in Tabachnikov’s
work [16] that the union of all the T -iterates of a periodic tile have a 5-fold rotational symmetry. Regarding the
regular octagon, we refer to [14]. �

Figure 4.4. Dual picture for the 30 periodic orbit outside the regular pentagon; notice how
small the periodic tile is relative to P

Above corollary makes it possible for us to conclude that when n is one of above five numbers, then the number
of periodic orbits for Tλ outside the regular n-gon diverges as λ → 1−. If would be nice if we could conclude
this for all polygons P . With respect to the standard outer billiards, there is Culter’s theorem which states that
there exist infinitely many periodic orbits outside any polygon [20]. We couldn’t find an easy reason why Culter’s
periodic orbits should be stable. At the very least, we can prove the following:

Corollary 16. When P is either a regular polygon or centrally symmetric, the number of Tλ-periodic orbits
diverges as λ→ 1−.
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Proof. When P is centrally symmetric, Culter’s periodic orbits have 2-fold symmetry. Moreover, a regular ‘n-gon
for n even is centrally symmetric. Finally, a regular n-gon for n odd has infinitely many periodic orbits of odd
period formed by regular 2n-gons (easy exercise). �

Figure 4.5. Dynamics of the outer billiards map outside the trapezoid P (1/2)

4.3. Stable Degenerate Periodic Orbits in Trapezoids. In this subsection, we study an interesting class
of Tλ-periodic orbits which we call stable degenerate periodic orbits (SDPs) and we show that infinitely many
of them exist in trapezoids as λ→ 1−. It is the geometry of the trapezoid that makes it possible to admit such
periodic orbits. We call a degenerate T -periodic orbit stable if and only if for λ close enough to 1, it gives rise to
an attracting Tλ-periodic orbit (regular or degenerate).

Dynamics of the outer billiards map outside a trapezoid is not too hard to analyze, and it was a part of D.
Genin’s thesis [4] under S. Tabachnikov. Our analysis will be similar to his, but also similar to what R. Schwartz
had named “pinwheel dynamics” in [15].

Studying stability of degenerate T -periodic orbits is somewhat similar in spirit to Schwartz’s analysis for 2-3-6
triangle [12]. To show that a near 2-3-6 triangle does not have a short periodic orbit, he analyzes degenerate
periodic orbits of the 2-3-6 triangle and show their unstability under perturbation of angles.

Here is the main result of this subsection, from which we can deduce divergence of the number of periodic
orbits without knowing the stability of Culter’s periodic orbits.

Theorem 17. Any trapezoid has infinitely many stable degenerate periodic orbits (SDPs).

Corollary 18. For any trapezoid, the number of Tλ-periodic orbits diverges as λ→ 1−.

We expect that an analogue of Theorem 17 to be true for a large class of polygons, especially for polygons
having parallel sides.

Up to affine transformations of the plane and renaming the vertices cyclically, the set of all quadrilaterals are
parametrized by a single variable with range 0 < α < 1. We use the notation P (α) to describe the quadrilateral
with vertices D = (1/2,−1/2), C = (1/2, α/2), B = (−1/2, α/2), and A = (−1/2,−1/2). Therefore, P (α) is
lattice if and only if α is rational. And it is well-known that (first proved in [6]) if a polygon is lattice, every point
is T -periodic. See Figure 4.5 which verifies this. Among all trapezoids, the one with α = 1/2 is the simplest,
since it is either described as a half-regular hexagon or a union of three equilateral triangles. We would like to
introduce an ambitious conjecture to motivate the interested readers.

Conjecture 19 (3-5-7 Conjecture). All Tλ-periodic orbits for P (1/2), for 0 < λ < 1, fall into one of three
categories:
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i) The unique Fagnano periodic orbit (period 4)
ii) Regular T -periodic orbits (period multiples of 10)
iii) Stable degenerate T -periodic orbits, whose periods bijectively correspond with the set of all positive natural

numbers congruent to 3, 5, or 7 mod 10.

Figure 4.6. 13, 15, 17 periodic orbits for the trapezoid P (1/2)

This conjecture has finiteness (with very explicit numbers) of Tλ-periodic orbits for all 0 < λ < 1 as a corollary
for P (1/2), simply because with any contraction, we have only finitely many of type ii) and iii) periodic orbits
in a bounded ball. Interestingly, for each number ending with either 3, 5, or 7, there exists a unique SDP having
that number as its period. This existence is not hard, and will be proved shortly. Analogues of this conjecture
exist for all other lattice trapezoids.

Let q be a point lying on the singular rays S in some degenerate periodic orbit. The ray S divides the neighbor
into two regions, say U and V . When we define Tq using the rule of T on U , let us say that q follows U .

Proposition 20 (Stability Criterion). Let O = {qi}1≤i≤k be a degenerate T -periodic orbit. Then O to be stable
if and only if for each q ∈ O ∩ S, the vector −q′(1) (negative of the derivative of the limit curve at λ = 1) points
toward the continuity region that it follows.

We illustrate this by an example. In Figure 4.7, three points P , Q, and R form a degenerate periodic orbit.
Since P is the only point in S, to show that this orbit is stable we only need to show that the derivative of
the limit curve for P points upward at λ = 1. In this special case this is clear since this periodic orbit is the
Fagnano orbit around the triangle ADC. When we slightly decrease λ, three points rotate clockwisely around
the affine-center of the triangle ADC.

D

CB

A

PQ

R
Figure 4.7. An example of SDP

4.3.1. Case Study of P (1/2). In this section, we focus on the special trapezoid P (1/2). All the essential ingredi-
ents in the proof of Theorem 17 is contained in this case study, so that a reader can skip the proof for the general
case.

Proposition 21 (3-5-7 Conjecture, weak form). For any positive integer congruent to either 3, 5, or 7 (mod
10), there exists a SDP with that number as its period. Moreover, there are no more SDPs.
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U

V

W

I

J

D

CB

AI ′

J ′

Figure 4.8. Continuity regions for T 2

Proof. We consider the map T 2 rather than T itself. Then depending on in which region you are in (regions are
drawn in Figure 4.8), the map T 2 is just the addition by an appropriate vector. To be more specific, inside the
region U , T 2 is addition by the vector 2 · −→CA = u, and inside the regions V and W it is addition by vectors
2 · −−→DA = v and 2 · −−→DB = w respectively.

A degenerate periodic orbit must contain a point on S. Let us assume that it contains a point on the singular
ray extending the edge BC. We ignore a short initial segment and consider the ray I as in Figure 4.8 so that
below I, T 2 is addition of v. On I, we make an artificial choice of following the rules of U . (We prove later
that the other choice will not give stable periodic orbits) Then it is easy to see that any point starting on I goes
to a point in J under some iterates of T 2, because the vectors u, v, w change the y−coordinate by +2, 0,−2.
Compose this map Ψ : I → J with rotation of J by π with respect to the point D to obtain a self-map Φ : I → I.
Note that Φ is an interval exchange transform except it flips each interval, because the map I → J is a bijective
piecewise translation. Apparently, Φ is not defined on a discrete set of points.

We claim that a fixed point of Φ gives a SDP with odd period. Assume x ∈ I is a fixed point. Then under
T 2k for k ≥ 1, we have T 2kx ∈ J such that T (T 2kx) = x. So x gives a periodic orbit with period 2k + 1, and we
defer the proof of stability.

I1

J1

D

CB

A

I3 I4 I5

J3J4J5
Figure 4.9. An interval exchange transform

Figure 4.9 shows the map Φ. In this figure, Ik denote the segment in I that is mapped to Jk under T 2k. Our
convention was that A = (−1/2,−1/2), D = (1/2,−1/2) so that |AD| = 1 and with this scale, the map I → J
has period 4, so that we only need to look at intervals I1, I3, I4, and I5 whose lengths add up to 4. We also defer
the proof of periodicity. So clearly, Φ has precisely two fixed points in this region, one in I1 and the other in I3.
They give rise to periodic orbits of period 3 and 7, respectively.

It is easy to check that if we go for one period of Φ, the index k increases by 5 so that we obtain periodic
orbits of T whose period is larger by 10 than the corresponding previous one. Therefore, we obtain 10t+ 3 and
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10t+ 7 SDPs for all t ≥ 0. We can repeat the same analysis for another pair of singular rays I ′ and J ′ to obtain
10t+ 5 SDPs for t ≥ 0.

We only sketch the proof of the second statement, because it is tedious. It is enough to show that all SDPs
come from fixed points of Φ or Φ′ : I ′ → I ′. We need to deal with three things: first is what happens when
we make the other choice on I (or on I ′). It will be shown later that no matter what choice we make on I,
under slight decrease on λ, the limit curve will flow downwards, contradicting the stability. In the same way,
we can show that on J, we really have a unique choice of T 2 for the degenerate periodic orbit to be stable.
Next, assume x is a periodic point of Φ. Then it repeats the same combinatorics several times depending on
its Φ-period. This cannot be a combinatorics for a regular Tλ-periodic orbit because with contraction, we never
have “periodic” combinatorics. Finally, we prove by explicit computation that the other two pairs of singular
rays (ones extending segments CD and AB) do not give rise to SDPs. We also need to deal with ignored initial
segments of I and I ′. This concludes the proof. �

4.3.2. General Trapezoids. We do not prove the following lemma (used in the proof of Proposition 21) as it was
covered in [5].

Lemma 22. For α = p/q, the map Φ has period 2q.

Therefore, for any lattice trapezoid we have an analogue of Proposition 21: SDPs come in families such that
the periods of each family forms an arithmetic progression. The size of the gap in these arithmetic progressions
are the same for a given lattice trapezoid, and the formula for the size should have a simple expression in terms
of p and q. For For example, one can deduce that in the trapezoid P (1/n), we get arithmetic progressions of gap
2(2n+ 1).

Now we proceed to prove the stability lemma.

Lemma 23. For all trapezoids, any degenerate periodic orbit coming from a fixed point of Φ (or Φ′) is stable.

Proof. Recall the formula for the limit curve for the combinatorics {vi}n−1i=0 :

q(λ) =

∑n−1
i=0 (−λ)ivi∑n−1
i=0 (−λ)i

.

What we only need to show is that p′(λ) has positive y-component, because it implies that if we decrease λ
slightly from 1, the limit curve is contained in the interior of U , thereby giving a regular Tλ-periodic orbit.

By an explicit computation, one can show that

(4.1) q′(λ) =
1

K2

n−1∑
i=0

(−1)i(k − i)vi

where K =
∑n−1
i=0 (−λ)i.

Let x be a fixed point for Φ. If we inspect the “itinerary” of x under T , it has the form au + bv + (a − 1)w
followed by the reflection with respect to the vertex D, where a ≥ 1 and b ≥ 0 are integers. Vectors u, v, w
correspond to combinatorics CA, DA, and DB, respectively. Therefore, from this information we can compute
the sum in Equation 4.1 explicitly to obtain

q′(λ) =
1

K2
{(a2 + ab)(C −D) + (ab− b+ a2 − a)(B −A)}.

For any a and b, coefficients for C −D and B − A are positive, so we are done. Notice that above formula is a
projective invariant (and it should be), a fact not clear from Equation 4.1. �

Remark 24. Consider the aforementioned case where we make the other choice on the singular ray I to obtain
a modified combinatorics û + (a − 1)u + bv + (a − 1)w (followed by a reflection on D). We immediately see
from above calculation that the derivative of the limit curve still point upward, showing that this choice is never
stable.

Now we have all the ingredients to conclude Theorem 17.
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Proof of Theorem 17. Let Q be the initial point of the ray J , and let P be the preimage of Q under T 2. If we
forget about the flip in the orientation, the map Φ is the left shift by 1. Consider the decomposition of the ray I
starting from the point P by disjoint union of intervals Ik where the interior of Ik has T 2-period of k to get to J .
Since Φ is a shift composed with piecewise flips on Ik, the interval Ik will contain a fixed point of Φ if |Ik| > 1.

Let K and L be rays separating regions U and V , V and W , respectively. Then discontinuities of Φ come
precisely from intersections of K and L with a family of horizontal lines y = −2t− 3/2, t ≥ 0. So when we pick
a point H on I having distance d � 1 from P , we see that the number of discontinuity points contained in the
segment PH is asymptotically d, but it never exceeds d.

In the case where α is rational, we can explicitly see that the interval I3 containing P as its left endpoint has
length greater than 1, so by periodicity we have infinitely many intervals of length greater than 1, concluding
the proof. In the irrational case, the lengths of intervals Ik for k ≥ N can never be all the same for any N , so we
have infinitely many intervals of length greater than 1. �

4.4. Star Shaped Periodic Orbits in Regular Polygons. Recall that regular polygons have the following
nice property: For all 0 < λ < 1, there exists a regular periodic orbit (namely, the Fagnano orbit) which attracts
the whole domain for λ small. In this subsection, we figure out what is the precise threshold value of λ such
that the Fagnano orbit is the unique attracting periodic orbit. Let us call this λ2, as this is precisely when the
second periodic orbit appears. It will follow that for all regular polygons, this second periodic orbit will exist for
all λ2 < λ < 1 and so we can define λ3 to be the threshold value of λ when the third periodic orbit appears as
well.

It turns out that the second periodic orbit, for n ≥ 5, is rotationally symmetric and skips every other vertex
(Figure 4.12). Therefore, for n ≥ 5 and odd, it will have period n and otherwise it will have period n/2. Let us
label the vertices of the regular n-gon by v1, ..., vn counterclockwise. Then we say a Tλ-periodic orbit O is star
shaped (with gap k) if its combinatorics has the form {v1, v1+k, v1+2k, ..., v1}. The star shaped periodic orbit of
gap k (unique up to rotation around the center) exists if and only if n ≥ 2k + 1. Apparently, these orbits all
come from T -periodic orbits, and once they start to exist for some λ, it persists as λ increases to 1.

Figure 4.10. In the regular nonagon, one sees four star shaped orbits

We have tabulated some values of λ2 and λ3 below, up to three decimal points. Note that for the regular
pentagon, λ2 equals the golden ratio. It is a fun exercise to prove this by hand.
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Figure 4.11. Appearance of the third (or the fourth, depending on how you count multiplicities)
periodic orbit for the regular hexagon near λ = 0.878

n 3 4 5 6 7 ... n ≥ 7

λ2 0.890 0.755 0.618 0.500 (a pair) 0.445 ... 1/(1 + 2 cos(2π/n))
λ3 0.918 0.890 0.794 0.878 0.802 ... 1/2 cos(2π/n)(conjectural)

This fact is a special case of the following result.

P

Figure 4.12. The star shaped orbit of gap 2 is “revealing” the Fagnano orbit

Theorem 25 (with F. Bozgan). For regular n-gons (n ≥ 5), the first threshold λ2 equals 1/(1 + 2 cos(2π/n)).

Proof. See Appendix A. For now, we only mention that while it is easy to establish λ2 ≤ 1/(1 + 2 cos(2π/n))
(Figure 4.12 almost contains a proof), the other direction is painful. �

The following is straightforward again:

Proposition 26. For n ≥ 2k + 1, we have

λk ≤
sin((k − 1)π/n)

sin((k + 1)π/n)

where λk is kth threshold for the regular n-gon.
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Here is an extension of Theorem 25. The intuition behind this conjecture is that the star shaped periodic
orbits are more “stable” than other ones.

Conjecture 27. For n ≥ 2k + 1, we have

λk =
sin((k − 1)π/n)

sin((k + 1)π/n)
.

When k = 2, we recover the previous proposition. Figure 4.13 is the illustration of this conjecture for k = 3.
Notice that there exist precisely two periodic orbits, both of which are star shaped. More importantly, notice
that two basins of attractions are “tangent” to each other so that if we increase λ slightly, the third periodic orbit
comes to life in each case.

Figure 4.13. Illustrations of the higher conjecture k = 3

We are quite confident that we can resolve this conjecture, at least for the case k = 3, in a finite amount of
time. If this conjecture were true, we have limn→∞ λk = (k − 1)/(k + 1) which approaches 1 as k →∞.

4.5. Periodic Orbits of Winding Number 1 in Quadrilaterals. In this subsection, we restrict our attention
to quadrilaterals, and look at periodic orbits of winding number 1. Given a periodic point p (either with respect
to T or Tλ), we can define its winding number by the number of times p has wrapped around P until it returns
to its position. By analyzing periodic orbits of winding number 1, we will see that for every convex quadrilateral,
there exists an attracting Tλ-periodic orbit possibly except for one value of λ. (Proposition 28)

A(0, 1) B(a, 1)

C(1, b)D(0, 0)

Figure 4.14. Quadrilateral (a, b)

Up to affine transformations, any convex quadrilateral can be represented by a pair of reals (a, b) where 0 < a,
b < 1, and ab < 1. This pair represents the quadrilateral with vertices A = (0, 1), B = (a, 1), C = (1, b), and
D = (0, 0), as in Figure 4.14. This choice of parameters will turn out to be convenient in Section 5. Moreover, we
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can cyclically rename the vertices; the permutation (A,B,C,D)→(D,A,B,C) correspond to the transformation
(a, b) 7→ (1− b, (1− 1/a)/(1− b)) and one can easily check from this that we can further assume 0 < a < 1 and
0 < b < 1 without loss of generality.

Proposition 28. For every convex quadrilateral, there exists a unique attracting periodic orbit of winding number
1 possibly except for one value of λ.

(1) If a+ b ≤ 1: The unique attracting periodic orbit of winding number 1 exists for λ ∈ (0, 1)\{1− b} and is
(a) the Fagnano orbit in λ ∈ (0, a)
(b) the (degenerate) Fagnano orbit at λ = a
(c) the triangular periodic orbit skipping the vertex A in λ ∈ (a, 1− b),
(d) the triangular periodic orbit skipping the vertex B in λ ∈ (1− b, 1).

(2) If a+ b > 1: The unique attracting periodic orbit of winding number 1 exists for all λ ∈ (0, 1) and is
(a) the Fagnano orbit in λ ∈ (0, a)
(b) the (degenerate) Fagnano orbit at λ = a
(c) the triangular periodic orbit skipping the vertex A in λ ∈ (a, 1).

Proof. Given (P, λ), there are only five possible periodic orbits of winding number 1. Using Equation 2.1, we can
solve for the condition for each of them to exist. �

One should note that if a + b ≤ 1, in the range λ ∈ (a, 1)\{1 − b}, the unique regular period 3 orbit with
winding number 1 has the neighborhood of the singular ray extending the side AB as a basin of attraction.
At the critical value λ = 1 − b, however, we get two degenerate “triangular” periodic orbits, both of which are
non-attracting according to an observation made in the beginning. Then what happens to the points around the
singular ray at this value of λ? Therefore, we expect to observe interesting behavior near the singular ray at this
value of λ. Such a behavior is already visible in Figure 4.15, and it will be analyzed in the next section.

What is also very interesting is that the behavior of the map near the critical value λ. Depending on the
quadrilateral, a whole variety of phenomena can happen. We did not even attempt to enumerate all possibilities,
since there are too many. However, what is common in all cases is that as λ passes through the critical value
1− b, there is a abrupt change in the picture, and this value deserves the name bifurcation value.

Figure 4.15. Attracting periodic orbits for P = (0.5, 0.2) when λ = 0.75, 0.8, 0.85 (from left to right)

From next section, we will see that generically, there exists a degenerate attracting periodic orbit at λ = 1− b,
whose period can be arbitrarily high. Interestingly, it can be either “transient” or stable under decreasing λ. To
illustrate the first possibility, we consider the quadrilateral P = (0.5, 0.2) and look at its behavior right before
0.8, at 0.8, and right after 0.8. The conclusion is that for a = 0.5 < λ < 0.8 = 1− b, every point is attracted to
the triangular orbit skipping the vertex A. Similarly, when λ is slightly larger than 0.8, (at least up to 0.85) every
point is attracted to the triangular orbit skipping the vertex B. At the bifurcation value λ = 0.8, we suddenly
see a degenerate periodic orbit of period 10 (one of the ten points lies in the middle of the edge AB) which again
attracts the whole domain. See Figure 4.15.

But now let us consider the quadrilateral P = (0.1, 0.7) (Figure 4.16). Before the bifurcation, it has four
attracting periodic orbits, whose basins of attraction are colored by red, green, blue (hard to see), and white
(even harder to see). The blue one corresponds to the triangular periodic orbit which attracts barely anything
in this case. The periodic orbit corresponding to the red region becomes the attracting degenerate periodic orbit
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Figure 4.16. Basins of attraction for P = (0.1, 0.7) when λ = 0.79, 0.81 (left, right)

at the bifurcation value. After the bifurcation, however, we see only three periodic orbits, and interestingly
none of them corresponds to any of the four periodic orbits (in terms of combinatorics) that existed right before
bifurcation.

Finally, let us look at one more case when P = (0.15, 0.75) described in Figure 4.17. Now around the bifurcation
value, we always see two periodic orbits, and again they are disjoint from each other. In all cases, the green
region correspond to a triangular periodic orbit. Again, the degenerate attracting periodic orbit which exists at
λ = 0.85 is stable under decreasing λ, and we have included one more picture (the leftmost one) to convince you
that this periodic orbit appears “all of a sudden” and attracts most of the domain. This shows a striking contrast
to the square case from Section 3, in which whenever a new periodic orbit appears, its basin of attraction grows
steadily starting from a point.

Figure 4.17. Basins of attraction for P = (0.15, 0.75) when λ = 0.8345573775, 0.8345573800,
and 0.851 (from left to right) In the leftmost picture, the whole domain is attracted to the
triangular orbit. But after some threshold value of λ which apparently lies between 0.8345573775
and 0.8345573800, most of the domain gets attracted to a periodic orbit of very high period “all
of a sudden.” (red region in the second picture)

Some experiments with pentagons reveal that they can possess multiple periodic orbits of winding number 1.
However, the following conjecture seems true.

Conjecture 29. Given any convex polygon P , it has an attracting periodic orbit of winding number 1 possibly
except for finitely many values of λ.

5. Analysis of the Triangular Transition

5.1. Preview. In this section, we analyze the “triangular transition” observed in Subsection 4.5: for quadrilat-
erals (a, b) with a + b ≤ 1, when λ = 1 − b, we have a transition between two triangular periodic orbits. Hence
in this section, it is assumed that λ = 1− b always, (given a quadrilateral) and we study the dynamics near the
singular ray

−−→
AB (Figure 4.14).
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Near the singular ray
−−→
AB, it turns out that every point either converges to a degenerate periodic orbit or to a

Cantor set, depending on the quadrilateral (a, b). Moreover, this is precisely determined by whether the rotation
number of a certain map ga,b is rational or irrational. From this, we can say that for some open and dense set of
quadrilaterals (satisfying a+ b ≤ 1), all the points converge to a degenerate periodic orbit.

To outline the proof, we restrict our attention to the region L(ε) (Figure 5.1) which is forward invariant under
dynamics of Tλ. This thin neighborhood is divided into “above” and “below” from which we deduce that the
dynamics of Tλ is reduced to studying two return maps which are 1-dimensional piecewise contractions. (Lemma
30) We show that the rotation numbers of these maps are well-defined and vary continuously with the parameter.
(Lemma 32) If this rotation number is irrational, then there must be an attracting Cantor set. We show this
existence by showing that the rotation number is non-constant as a function of the parameter by computing 2
examples. (Theorem 34)

Therefore, the key theoretical tool is the theory of rotation number for 1-dimensional maps that are not
necessarily continuous. Such a theory was developed in [11, 10, 1], and we summarize it in Appendix B. In the
following two subsections, we carry out the above outline and conclude the theorem. In the last subsection, we
analyze the complementary case of rational rotation number and deduce existence of attracting periodic orbits.
We note that the 1-dimensional return maps appearing in our analysis are piecewise increasing contractions on
2 intervals, which were studied in [3, 21].

5.2. Attracting Cantor Sets . In this subsection, we deduce that there exist attracting Cantor sets. From
now on, a+ b ≤ 1 is always assumed. For simplicity, let us set µ = 1/λ = 1/(1− b). We start by restricting our
attention to an invariant set. In Figure 5.1, the point E of EA is defined to satisfy T 2

λE = B. A computation
yields E = (−µ− (1− a)µ2, 1).

A

D
C

BE

F G

HL(ε)

Figure 5.1. Forward invariant set L(ε)

Lemma 30. Assume a < 1 + λ− λ3 − λ4. Then for sufficiently small ε > 0, the ε neighborhood L(ε) of the line
segment L= (−µ− (1− a)µ2, 0)×{1} = EA is forward invariant under iterates of Tλ. That is, for any p ∈ L(ε),
there exists the smallest n > 0 such that Tnλ p ∈ L(ε). Moreover, dist(Tnλ p, L) ≤ λ3dist(p, L) so that the sequence
y-coordinates of the iterates of the first-return map to L(ε) converges exponentially to the y-coordinate of L.

To be completely rigorous, we need to take a neighborhood which is “sharp” near E.
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Proof. Under T 2
λ , L(ε) is mapped to a λ2ε-neighborhood of the line segment BH. Let us denote the part of

T 2
λL(ε) lying above BH by U+ and the opposite by U−. Points in U−, either by Tλ or by T 2

λ , end up in L(ε) for
all (a, b) ∈ X. For all the points in U+ to be contained in L(ε) after Tλ, we require |AH| × λ < |EA|, which is
equivalent to a < 1 + λ− λ3 − λ4.

Now the last statement is clear, since a point p ∈ L(ε) comes back to L(ε) either by T 3
λ or T 4

λ and hence the
y-coordinate relative to L gets contracted either by λ3 or λ4 each time. �

From now on, we will denote X to be the set of quadrilaterals (a, b) (with a+ b ≤ 1) satisfying the inequality
a < 1+λ−λ3−λ4, and we will restrict our attention to quadrilaterals in X. This set is convex, and it corresponds
to the colored region in Figure 5.3. The left border represents the curve a = 1 + λ− λ3 − λ4.

In the invariant region L(ε), the dynamics is “trivial” in the y-coordinate, so we can treat L(ε) as a disjoint
union of two line segments (or “infinitesimally thin” rectangles) which we denote by L+ and L−, each having
the same length with L. That is, to study the forward orbit of a point in L(ε), we only need to keep track of
x-coordinates and relative position to L (either above or below) of its iterates. Hence, the dynamics is reduced
to two 1-dimensional ones, which are the first-return maps to L+ and L−. Let us call them f and g, respectively;
they are certainly piecewise affine contractions.

For simplicity, we will apply an orientation-preserving affine transformation to send the line L to the unit
interval (0, 1] and regard g as a map from the circle S1 to itself. Then g takes the following form:

Lemma 31. The first-return map of L− has the formula

(5.1) g(x) =

{
λ4(x− 1 +H/L) + 1 0 < x < 1−H/L
λ6(x− 1) + (1− Y/L) 1−H/L < x ≤ 1

where

L = µ+ (1− a)µ2

H = L− aµ3

Y = λ(1 + λ)(1 + aλ2 − λ3)

are positive constants.

Proof. Straightforward computation. �

Lemma 32. For (a, b) ∈ X, the first-return map to L−, ga,b ∈ S so that its rotation number ρ(ga,b) is well-defined
mod 1. Moreover, this rotation number is continuous in a and b.

Proof. For the first statement, we need to check that for (a, b) ∈ X, there is a lift Ga,b that is strictly increasing
and of degree 1. We simply define

Ga,b(x) =

{
g(x) 0 < x < 1−H/L
g(x) + 1 1−H/L < x ≤ 1

on (0, 1] and extend to R by Ga,b(x+ 1) = Ga,b(x) + 1. If ga,b were injective, then Ga,b is strictly increasing. But
injectivity of ga,b is same as checking limh→0+ ga,b(h) > ga,b(1), and the inequality from Lemma 30 implies this
one.

Next we argue continuity of the rotation number. Given five parameters λ1, λ2, c1, c2, and t, which all lie in
(0, 1), we can associate the following function:

h(x) =

{
λ1x+ c1 0 < x ≤ t
λ2x+ c2 + 1 t < x ≤ 1

.

For any (a, b) ∈ X, Ga,b takes above form for appropriate parameters. If we fix four parameters and move the
remaining one continuously, (the closure of) the filled-graph of h moves continuously in the Hausdorff topology.
Therefore, we can move above five parameters simultaneously, and still the filled-graph moves continuously. It is
clear that varying a and b continuously moves five parameters continuously. �

We can similarly show that fa,b is injective and the rotation number ρ(fa,b) is well-defined.
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Remark 33. Viewed as a circle map, ga,b is not continuous at two points, 1 − H/L and 1(= 0). But we have
intentionally left ga,b undefined at 1 −H/L, while at x = 1, it is defined to be continuous from the left. Recall
that when the rotation number of ga,b is rational, then g̃a,b has a periodic orbit where g̃a,b can be different from
ga,b at points of discontinuity. At x = 1, there is no ambiguity since the portion of the segment L close to the
point E is not forward invariant under Tλ; hence we can assume g̃a,b(1) = ga,b(1). From now on, when we say
“ga,b-periodic orbit”, it is assumed that ga,b has selected one of two possible values for ga,b(1−H/L). The same
observation applies to fa,b.

Theorem 34. For uncountably many choice of (a, b), for the map Tλ, there exists a Cantor set K such that
ω(x) = K for all x ∈ L(ε).

Proof. This is achieved by showing two things. First, we show that if ρ(ga,b) is irrational, then ω(x) for x ∈ L(ε)
is a Cantor set. Then it only remains to show that this rotation number is non constant in X since it is convex.

To begin with, it is clear that for x ∈ L(ε), its limit set under outer billiards with contraction ωT1−b
(x) equals

the union of ωg(x) and ωf (x) viewed as subsets of L together with their finitely many T1−b-iterates. Now, if
ρ(ga,b) is irrational, then ga,b cannot have a periodic orbit. Since a periodic orbit of fa,b would give a periodic
orbit for ga,b (will follow from Proposition 36 but easy to check directly), it implies that ρ(fa,b) must be irrational
as well. Therefore, it follows that ωg(x) and ωf (x) are both Cantor sets on L. So ωT1−b

(x) is a finite union of
Cantor sets. This set lies on a union of two lines, and since it is invariant under a piecewise contraction, it
must have one-dimensional Lebesgue measure zero. Therefore, ωT1−b

(x) must be totally disconnected and it is a
Cantor set as well.

For the second step, we claim that at (0.6, 0.2), the rotation number is 1/2: it is a simple computation to
check g2a,b has a fixed point while ga,b does not. On the other hand, at (0.3, 0.2), the rotation number of ga,b
is 1 because it has a fixed point. Therefore we are guaranteed uncountably many pairs (a, b) with an irrational
rotation number. �

5.3. Degenerate Periodic Orbits. In this section, we continue the same analysis, but now we will look at the
case when g has a rational rotation number.

L−
1 L−

2

T 3
λL

−
1

Figure 5.2. Dynamics of L−1 and L−2

There is a natural partition L− = L−1 ∪ L−2 (Figure 5.2), where L−1 is defined to be the set of points that
returns to L− by T 4

λ . For points in L
−
2 , it takes T

6
λ . The segment T 4

λL
−
1 (which is the Tλ-image of small segment
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lying on top of AB in Figure 5.2) might or might not intersect L−1 , and the analysis gets simpler when it does
not. This happens precisely when

(5.2) a <
µ2 + µ3

1 + µ3 + µ4

holds. In this section, we will only look at the space of quadrilaterals in X satisfying above inequality, which
we denote by X1. Clearly, in the interval corresponding to L−1 , g contracts by λ4 and in the other interval, it
contracts by λ6. Now notice that for any (a, b) ∈ X, T 3

λL
+ ⊂ L−. So we can likewise consider the partition of

L+ into L+
1 and L+

2 , where L
+
i = (T 3

λ)−1(L−i ) for i = 1, 2. Let us point out that L+
2 is located on the left of L+

1

since T 3
λ is orientation reversing. For i = 1, 2, we set fi and gi be the restriction of f and g onto L+

i and L−i ,
respectively.

Lemma 35. For quadrilaterals in X1, we have relations

T 3
λ ◦ f2 = g2 ◦ T 3

λ

T 3
λ ◦ f1 = g2 ◦ g1 ◦ T 3

λ

where maps above are L+
2 → L− and maps below are L+

1 → L−.

Proof. On L+
2 , f = T 6

λ since T 3
λL

+
2 ⊂ L−2 and T 3

λL
−
2 ⊂ L+. Similarly, on L−2 , g = T 6

λ so that T 3
λ ◦ f2 = g2 ◦ T 3

λ

holds. For the second relation, we only need to take account of the fact that T 4
λ(L−1 ) ⊂ L−2 . �

Lemma 36. For (a, b) ∈ X1, there exist bijections between degenerate Tλ-periodic orbits intersecting L(ε),
periodic orbits of f , and periodic orbits of g.

Proof. Let O be a Tλ-periodic orbit intersecting L(ε). By Lemma 30, O ∩ L(ε) = O ∩ L. For each p ∈ O ∩ L,
we can tell whether it corresponds to a point in L+ or L− by looking at its first three combinatorics. If it is
{D,C,B}, p ∈ L− and otherwise p ∈ L+ ({D,C,A}). Assume p ∈ L+ for some p ∈ O ∩ L. Then the iterates
{p, f(p), ...} ⊂ O ∩ L and it defines a single f -periodic orbit. It cannot exhaust the set O ∩ L since T 3

λ(p) ∈ L−.
The remaining elements in O ∩L defines a single g-periodic orbit. We can deduce the same thing when we start
by assuming p ∈ L−.

Now, let U be a periodic orbit for f . Pick any point p ∈ U , then U can be written as a finite letter a0a1...ak−1
where k is the period and al = i if and only if f l(p) ∈ L+

i for 0 ≤ l ≤ k − 1. Then using relations from Lemma
35, it is straightforward to see that q = T 3

λp is a periodic point of g with letter b0...bl−1 obtained by applying the
substitution

1 7→ 12 2 7→ 2

to the letter a0...ak−1. That is, the periodic orbit U for f has selected a periodic orbit V of g, which is independent
on the choice of p (a different choice would correspond to a cyclical permutation of letters). Then the union
U ∪ V together with finitely many Tλ-iterates of it define a Tλ-periodic orbit intersecting L(ε). At this step, we
note that any choice that g makes at the ambiguous point 1−H/L is realized as a (degenerate) dynamics of Tλ.
The same holds for f as well.

Finally, let V be a g-periodic orbit. Pick a point q ∈ V and consider its letter as above. We have g(L−1 ) ⊂ g(L−2 )
so that a 2 must follow whenever there is a 1 in this letter. That is, in any case we have gl(q) ∈ L−2 for some l
and then p := T 3

λ(gl(q)) ∈ L+. Then we see that p defines a f -periodic orbit, whose letter is the one obtained by
applying the inverse substitution to the letter of q. �

We claim that Lemma 36 also holds for quadrilaterals not in X1. To see this, first assume that the inequality
5.2 is not satisfied. Put I = T 4

λL
−
1 ∩ L−1 and I ′ = (T 4

λ)−1(I) so that I ′ is mapped homeomorphically onto I by
T 4
λ |I′ , which is a translation composed with the contraction by λ4. Since I is always located to the right of I ′

and the right endpoint of I is the left endpoint of L−2 , the homothety center of T 4
λ |I′ is contained in the interior

of L−2 . In other words, for any (a, b) ∈ X, there exists an integer N > 0 such that L−1 is partitioned into N
intervals (from left to right) L−1,N , ..., L

−
1,1 with the property that (T 4

λ)jL−1,i ⊆ L−1 for j < i and (T 4
λ)iL−1,i ⊆ L−2 .

We can denote XN the subset of X that L−1 is partitioned into N intervals as above, for N ≥ 1. What depends
on N is not the shape of the return map g (given by the equation 5.1) but the conjugacy relations between f
and g. The explicit formulas are given by N + 1 relations for quadrilaterals in XN ;
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(5.3)


T 3
λ ◦ f2 = g2 ◦ T 3

λ

T 3
λ ◦ f11 = g2 ◦ g11 ◦ T 3

λ

...

T 3
λ ◦ f1N = g2 ◦ g1N ◦ ... ◦ g11 ◦ T 3

λ

where f1j is the first-return map to L+
1j = (T 3

λ)−1L−1j for 1 ≤ j ≤ N . These formulas are easily verified as in
the simplest case N = 1. We note that Lemma 36 carries over to quadrilaterals in regions XN (N ≥ 2), using
conjugacy relations. Therefore, using a result by Nogueira and Pires [9], we obtain the following corollary.

Corollary 37. For (a, b) ∈ X, the number of Tλ-periodic orbits intersecting L(ε) cannot exceed 2.

While it is easy to prove the finiteness of periodic orbits “away” from the singular rays (where the dynamics
is continuous), the same question is highly nontrivial near the singular rays. Hence this result from [9] provides
a case where the finiteness near a singular ray can be settled.

Now, we can also deduce the following corollary for all quadrilaterals in X.

Corollary 38. Let (a, b) ∈ X. Every point in L(ε) is asymptotic to a degenerate Tλ-periodic orbit (resp. a
Cantor set) if and only if the rotation number ρ(ga,b) is rational (resp. irrational).

Figure 5.3. The rotation number as a function of parameters a and b. Here the vertical axis
is a, the horizontal axis is b and the top left corner corresponds to a = b = 0.

Figure 5.3 shows the regions where the rotation number of Ga,b is a rational number using various colors.
In two black regions, the rotation numbers are 1 (upper region) and 0 (lower region). The central red region
corresponds to 1/2 and two green regions correspond to 2/3 and 1/3, and so on. It follows from continuity that
for each irrational number 0 < α < 1, there exists a 1-parameter family of quadrilaterals whose first-return maps
have rotation number α. We note that if the rotation number of g is rational and has denominator d, then the
corresponding degenerate Tλ-periodic orbit has period greater than 3d.
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Figure 5.4. The bifurcation attracting periodic orbits are drawn for P = (a, b = 0.15) where
a =0.30, 0.33, 0.34, 0.35, 0.40, 0.50 in clockwise order starting from the top left picture. They
correspond to rotation numbers 1, 6/7, 4/5, 3/4, 2/3, 1/2, respectively. One can easily see that
the period increases in proportion to the denominator of the rotation number.
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Appendix A. Proof of Theorem 25.

Proof. We will first prove that for λ > 1/(1 + 2 cos(2π/n)), there exist two star shaped orbits. Next, we need to
show that for λ ≤ 1/(1 + 2 cos(2π/n)), the Fagnano orbit attracts the whole domain. This statement is harder
to prove, and our proof consists of a geometric part and an analytic part. 1

The value λ = 1/(1 + 2 cos(2π/n)) is chosen to satisfy |B′D| ×λ = |DD′| in Figure 5.5. Given a regular n ≥ 5
gon P , we connect its shortest diagonal to obtain a smaller regular n-gon P ′ inside as shown in figure 4.12. Given
any 0 < λ < 1, we can construct yet another regular n-gon P ′′ by dividing each edge of P ′ with ratio 1 : λ. Then
P is a Tλ′ -periodic orbit around P ′′ for λ′ determined by λ, and we see that when λ goes to 1, λ′ approaches
1/(1 + 2 cos(2π/n)).

Now let us prove the second statement. Notice that for all values of n, small triangles formed by taking the
intersection of extensions of two edges adjacent to one edge (4AA′B, 4BB′C, ... in Figure 5.5) are basin of
attraction for λ > 1/(1 + 2 cos(2π/n)). The following proof requires that n ≥ 8. For n = 5, 6, and 7, a finite
computation shows that the ball of radius 2 centered at the origin is covered by taking second inverse iterates of
aforementioned triangle regions.

When n ≥ 8, the rays BB′ andDC ′ intersects, and let us call it B′′. The point C ′′ is constructed similarly. Now
we claim that the inverse image of 4EDD′ contains 4DB′B′′. Our λ is chosen in a way that |B′D|×λ = |DD′|,
and when n ≥ 8, the angle between rays ED′ and BB′ are 8π/n which does not exceed π. Therefore, the inverse
image of 4EDD′ is a triangle containing 4DB′B′′. We now consider 4BFG, which is obtained as the inverse
image of 4BB′′C ′, which is now known to be a basin of attraction. Consider the line OH perpendicular to edge
ED. Since ED is parallel to FG, the line OH will intersect with the extension of FG at a point which is lies
on the opposite side of G with respect to F . Hence F is the point whose distance to O is minimal. Consider all
2πk/n-rotated images of 4FGB with respect to O, whose union is now a basin of attraction. It is elementary to
see that the segment FO is contained in this union. (if we counterclockwisely rotate the segment FB by 2π/n,
this rotated segment will intersect the segment FO in its interior, and so on) Therefore, it implies that this union
contains the ball of radius |FO| centered at O. Let us call this radius by d1.

A

O

B
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D

E

A′ B′
C ′

B′′

C ′′
D′

F

G

A

O

B
CX ′

Y ′ B′ X

Y

Figure 5.5. Geometric part of the proof

Now consider a situation where some ball radius d > 1 centered at O is given as a basin of attraction. The
circle of radius d will intersect rays BB′ and BC at two points X and Y respectively (Figure 5.5, right). Since
the triangle BXY is contained in this ball, the inverse image 4BX ′Y ′ is also a basin of attraction. By the same
logic, we consider all its 2π/n-rotates and argue that on the segment X ′Y ′, X ′ is the closest to O and that the
segment X ′O is contained in the union of rotated images. That is, we now know that the whole ball of radius
h(d) = |OX ′| centered at O is a basin of attraction. Here h is simply a function converting a number greater
than 1 to another number.

1Regarding this analytic part: I had to show that some function was always positive, so I consulted R. Schwartz to set up a
computer-aided proof. On the other hand, F. Bozgan thought it is possible by hand, and he managed to do it in a few hours.
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Since we have our initial radius d1 > 1 to begin with, we apply above procedure to get a sequence of radii
h(d1), h(h(d1)), ..., which we want to prove that it goes to infinity. It will be enough to prove that for d ≥ d1,
the function f(d) := h(d)/d is strictly greater than 1 and non decreasing for all n ≥ 8. From now on, the proof
is technical. We will show that f(d1) > 1 for all n ≥ 8 and f is increasing for d ≥ d1. Three following lemmas
will complete the proof. �

Lemma 39. For each n, we have the following formula for d1:√
cos2(

π

n
) + sin2(

π

n
){(1 + 2 cos(2π/n)

cos(2π/n)
)(1 +

cos(π/n)

cos(3π/n)
)− 1)}2.

Proof. Straightforward verification. �

Lemma 40. For each n, we have

f2(d) =
1

d2
(1 +

1

λ
)(1 +

(
√
d2 − cos2(π/n)− sin(π/n))2

λ
)− 1

λ
.

Proof. We look at triangles 4OX ′B and 4OXB. From the law of cosines, we have

h(d)2 = 12 + x2/λ2 − 2(x/λ) cos(∠OBX ′)

and
d2 = 12 + x2 + 2x cos(∠OBX),

where we temporarily denote |BX| = x. Multiply the first equation by λ and add two equations to obtain
λh(d)2 + d2 = (1 + λ) + x2(1 + 1/λ). The length of BX is obtained by taking the square root of |OX|2 − |OM |2
and subtracting sin(π/n), where M is the midpoint of AB. �

Lemma 41. For each n, f(d1) > 1 and f(d) is increasing for d ≥ d1.
Proof. Since it is clear that f > 0, it is enough to show that f(d1)2 > 1 and f(d)2 is increasing, or (f(d)2)′ > 0
for d ≥ d1. We begin by showing that f(d1)2 > 1. It is equivalent to showing that

1

d2
(
1

λ
+ 1)(1 +

(
√
d2 − cos2(π/n)− sin(π/n))2

λ
) > 1 +

1

λ

⇐⇒ 1 +
(
√
d2 − cos2(π/n)− sin(π/n))2

λ
> d2

⇐⇒ 1 + (1 + 2 cos(
2π

n
))(d2 − cos(

2π

n
)− 2 sin(

π

n
)

√
d2 − cos2(

π

n
)) > d2

⇐⇒ 1− 2 cos2(
2π

n
)− cos(

2π

n
) + 2d2 cos(

2π

n
)

−2 sin(
π

n
)(1 + 2 cos(

2π

n
))

√
d2 − cos2(

π

n
) > 0

⇐⇒ 2 cos(
2π

n
)d2 − 2 sin(

π

n
)(1 + 2 cos(

2π

n
))

√
d2 − cos2(

π

n
) > cos(

2π

n
) + cos(

4π

n
)

⇐⇒ 2 cos(
2π

n
) cos2(

π

n
) + 2 cos(

2π

n
){((G(n) + 1) sin(

π

n
)− sin(

π

n
))2

−2 sin(
π

n
)(1 + 2 cos(

2π

n
))G(n) > cos(

2π

n
) + cos(

4π

n
),

where we are introducing

G(n) = (
1 + 2 cos(2π/n)

cos(2π/n)
)(1 +

cos(π/n)

cos(3π/n)
)− 1.
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Continuing with our original expression, we get

⇐⇒ sin2(
2π

n
) + 2 cos(

2π

n
) sin2(

π

n
)G(n)2 − 2 sin2(

π

n
)(1 + 2 cos(

2π

n
))G(n) > 0.

Write sin2( 2π
n ) = (2 sin(πn ) cos(πn ))2 to cancel sin2( 2π

n ). Use the substitution 2 cos2(πn ) = cos( 2π
n ) + 1 and then

we are left with

⇐⇒ 2 cos(
2π

n
) + 2 + 2 cos(

2π

n
)G(n)2 − 2(1 + 2 cos(

2π

n
))G(n) > 0

⇐⇒ (2 cos(
2π

n
) + 1) + (2 cos

2π

n
+ 1)G(n)2 + 2(1 + 2 cos(

2π

n
))G(n) > G(n)2 − 1

⇐⇒ (2 cos(
2π

n
) + 1)(G(n)− 1)2 > G(n)2 − 1

⇐⇒ (2 cos(
2π

n
) + 1)(G(n)− 1) > G(n) + 1.

⇐⇒ (
1 + 2 cos(2π/n)

cos(2π/n)
)(1 +

cos(π/n)

cos(3π/n)
)− 1 = G(n) >

1 + cos(2π/n)

cos(2π/n)

⇐⇒ (
1 + 2 cos(2π/n)

cos(2π/n)
)(1 +

cos(π/n)

cos(3π/n)
) >

1 + 2 cos(2π/n)

cos(2π/n)

⇐⇒ 1 +
cos(π/n)

cos(3π/n)
> 1.

Since G(n)− 1 > 4, we could divide by it. Hence we are done with this part. It is straightforward to verify that
the derivative of f(d)2 is, when we factor out a positive part, equals

h(d) := cos(
2π

n
)− 1

1 + 2 cos(2π/n)
+ sin(

π

n
)(
d2 − 2 cos2(π/n)√
d2 − cos2(π/n)

)

which we want to show positive for d ≥ d1. For this it is enough to show that h(d1) > 0 and h′(d) > 0 for d > 0.
For the latter part, we have

h′(d) =
d3

(x2 − cos2(2π/n))3/2
> 0,

so we only need to check h(d1) > 0. This statement is equivalent to:

cos(2π/n) + 2 cos2(2π/n)− 1

1 + 2 cos(2π/n)
+ sin(

π

n
)(
d2 − 2 cos2(π/n)√
d2 − cos2(π/n)

) > 0

⇐⇒ cos(2π/n) + cos(4π/n)

1 + 2 cos(2π/n)
+ sin(

π

n
)
(y − sin(π/n))2 − cos2(π/n)

(y − sin(π/n))
> 0,

where y is simply given by the relation d2 = cos2(π/n) + (y − sin(π/n))2:

⇐⇒ 2 cos(π/n) cos(3π/n)

1 + 2 cos(2π/n)
+ sin(

π

n
)(y − sin(

π

n
))− cos2(π/n)

G(n)
> 0

⇐⇒ 2 cos(π/n) cos(3π/n)

1 + 2 cos(2π/n)
+ sin2(

π

n
)G(n)− cos2(π/n)

( 1+2 cos(2π/n)
cos(2π/n) )(1 + cos(π/n)

cos(3π/n) )− 1
> 0



32 IN-JEE JEONG

Let us simplify the last term:

cos2(π/n) cos(3π/n)

(1 + 2 cos(2π/n)2 cos(π/n)− cos(3π/n)

=
cos(π/n) cos(3π/n)

2(1 + 2 cos(2π/n))− 4 + 3 cos2(π/n)

=
2 cos(π/n) cos(3π/n)

11 cos(2π/n)− 1
.

Therefore, our expression equals

⇐⇒ 2 cos(π/n) cos(3π/n)

1 + 2 cos(2π/n)
+ sin2(

π

n
)G(n)− 2 cos(π/n) cos(3π/n)

11 cos(2π/n)− 1
> 0

⇐⇒ sin2(
π

n
)G(n) +

2 cos(π/n) cos(3π/n)

(1 + 2 cos(2π/n))(11 cos(2π/n)− 1)
(9 cos(2π/n)− 2) > 0.

This final expression is easily seen to be positive: the first term is clearly positive, and n ≥ 8 so 9 cos(2π/n)−2 > 0.
Indeed, h(d1) monotonically decreases to the limit 7/15. �

Appendix B. Rotation Theory for Discontinuous Circle Maps

Recall that the rotation number for a circle homeomorphism f : S1 → S1 is defined by

(5.4) ρ(F ) = lim
n→∞

Fn(x)− x
n

where F is any lift of f into a homeomorphism of R and x is an arbitrary real number. Once we fix F , this limit
exists and independent on x. If we have two lifts F1 and F2, ρ(F1) − ρ(F2) is an integer so that the rotation
number of f , ρ(f) is uniquely determined mod 1. Then, ρ(f) is rational if and only if f has a periodic point. On
the other hand, when ρ(f) is irrational, the ω-limit set of a point (which is independent on the point) is either
the whole circle or a Cantor set.

Rhodes and Thompson, in [10, 11], develops a theory of rotation number for a large class of functions f : S1 →
S1. We only state the results that we need. A map (not necessarily continuous) f : S1 → S1 is in class S if and
only if it has a lift F : R→ R such that F is strictly increasing and F (x+ 1) = F (x) + 1 for all x ∈ R. Now given
such a lift F , since it is strictly increasing, we can define F− and F+, where they are continuous everywhere
from the left and from the right, respectively and coincide with F whenever F is continuous. Then we consider
the filled-graph of F defined by

Γ(F ) := {(x, y)|0 ≤ x ≤ 1, F−(x) ≤ y ≤ F+(x)}
which is simply the graph of F where all the jumps are filled with vertical line segments. We have restricted the
set to the region 0 ≤ x ≤ 1 to make it compact. We will consider the Hausdorff metric on the collection of Γ(F )
where F is some lift of f ∈ S.
Theorem. [10] The rotation number ρ(f) is well-defined for f ∈ S up to mod 1 by the equation 5.4 where
F is any strictly increasing degree 1 lift of f . This number does not change if we redefine f at its points of
discontinuity.

Moreover, ρ(f) is rational if and only if there exists some function f̃ which has a periodic point, where f̃
coincides with f possibly except at finitely many points where f is discontinuous.

Theorem. [11] Let Fλ be a family of strictly increasing degree 1 functions R→ R for λ = [0, 1]. If Γ(Fλ)→ Γ(F0)
as λ→ 0 in the Hausdorff topology, then ρ(Fλ)→ ρ(F0).

Notice that when the family Fλ is uniformly convergent, Γ(Fλ) clearly converges to Γ(F0) in the Hausdorff
topology. Finally, regarding the ω-limit set we refer to [1].

Theorem. [1] If f ∈ S has a rational rotation number p/q, ω(x) gives a q-periodic orbit of f̃ (which exists by
above result) for all x ∈ S1. If f has an irrational rotation number, ω(x) = ω(y) for all x, y ∈ S1 and it is either
S1 or a Cantor set.



OUTER BILLIARDS WITH CONTRACTION 33

References

[1] Romain Brette. Rotation numbers of discontinuous orientation-preserving circle maps. Set-Valued Analysis, Volume 11, Number
4:359–371, 2003.

[2] Henk Bruin and Jonathan H. B. Deane. Piecewise contractions are asymptotically periodic. Proc. Amer. Math. Soc., 137(4):1389–
1395, 2009.

[3] Christopher Chase, Joseph Serrano, and Peter J. Ramadge. Periodicity and chaos from switched flow systems: contrasting
examples of discretely controlled continuous systems. IEEE Trans. Automat. Control, 38(1):70–83, 1993.

[4] Daniel Genin. Research announcement: boundedness of orbits for trapezoidal outer billiards. Electron. Res. Announc. Math.
Sci., 15:71–78, 2008.

[5] Daniel I. Genin. Regular and chaotic dynamics of outer billiards. ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–The
Pennsylvania State University.

[6] Eugene Gutkin and Nándor Simányi. Dual polygonal billiards and necklace dynamics. Comm. Math. Phys., 143(3):431–449,
1992.

[7] Jürgen Moser. Is the solar system stable? Math. Intelligencer, 1(2):65–71, 1978/79.
[8] Julien Cassaigne Nicolas Bedaride. Outer billiard outside regular polygons. J. London Math. Soc., 2011.
[9] Arnaldo Nogueira and Benito Pires. Dynamics of piecewise contractions of the interval, 2012.

[10] Frank Rhodes and Christopher L. Thompson. Rotation numbers for monotone functions on the circle. J. London Math. Soc.
(2), 34(2):360–368, 1986.

[11] Frank Rhodes and Christopher L. Thompson. Topologies and rotation numbers for families of monotone functions on the circle.
J. London Math. Soc. (2), 43(1):156–170, 1991.

[12] Richard Evan Schwartz. Obtuse triangular billiards. I. Near the (2, 3, 6) triangle. Experiment. Math., 15(2):161–182, 2006.
[13] Richard Evan Schwartz. Outer billiards on kites, volume 171 of Annals of Mathematics Studies. Princeton University Press,

Princeton, NJ, 2009.
[14] Richard Evan Schwartz. Outer billiards, arithmetic graphs, and the octagon, 2010.
[15] Richard Evan Schwartz. Outer billiards and the pinwheel map. J. Mod. Dyn., 5(2):255–283, 2011.
[16] S. Tabachnikov. On the dual billiard problem. Adv. Math., 115(2):221–249, 1995.
[17] Serge Tabachnikov. Billiards. Panor. Synth., (1):vi+142, 1995.
[18] Serge Tabachnikov. Fagnano orbits of polygonal dual billiards. Geom. Dedicata, 77(3):279–286, 1999.
[19] Serge Tabachnikov. Geometry and billiards, volume 30 of Student Mathematical Library. American Mathematical Society,

Providence, RI, 2005.
[20] Serge Tabachnikov. A proof of Culter’s theorem on the existence of periodic orbits in polygonal outer billiards. Geom. Dedicata,

129:83–87, 2007.
[21] Peter Veerman. Symbolic dynamics of order-preserving orbits. Phys. D, 29(1-2):191–201, 1987.

E-mail address: in-jee_jeong@brown.edu


	1. Introduction
	2. Definitions and Preliminary Results 
	3. Dynamics Outside the Square 
	4. Types of Periodic Orbits
	4.1. Fagnano-type Periodic Orbits
	4.2. Stable Periodic Orbits
	4.3. Stable Degenerate Periodic Orbits in Trapezoids
	4.4. Star Shaped Periodic Orbits in Regular Polygons
	4.5. Periodic Orbits of Winding Number 1 in Quadrilaterals

	5. Analysis of the Triangular Transition 
	5.1. Preview
	5.2. Attracting Cantor Sets 
	5.3. Degenerate Periodic Orbits

	Acknowledgments
	Appendix A. Proof of Theorem 25.
	Appendix B. Rotation Theory for Discontinuous Circle Maps 
	References

