
Approaches to Homomorphic Encryption Using Polynomial Rings

and the Chinese Remainder Theorem

Benjamin T. LeVeque

May 3, 2013

Contents

0 Acknowledgements 2

1 Introduction and background 3
1.1 Introduction . 3
1.2 Introduction to cryptographic concepts and terminology 3
1.3 Introduction to homomorphic encryption . 4

1.3.1 Example . 5

2 Schemes under investigation 7
2.1 Introduction to present work . 7
2.2 Choice-based encryption . 8

2.2.1 Scheme . 8
2.2.2 Motivation . 8
2.2.3 Correctness of encryption/decryption . 10
2.2.4 Correctness of homomorphic operations . 10
2.2.5 Example of choice-based encryption . 11
2.2.6 Analysis of homomorphicity in practice . 13
2.2.7 Security . 14

2.3 Using multivariate polynomial rings . 14
2.3.1 Scheme . 16
2.3.2 Explanation . 17
2.3.3 Correctness of encryption/decryption . 17
2.3.4 Correctness of homomorphic operations . 17
2.3.5 Example of multivariate encryption . 18
2.3.6 Practical analysis of homomorphicity . 19
2.3.7 Security . 22
2.3.8 Generalizing . 25

3 Implementation and Results 27
3.1 Code design . 27

3.1.1 Running times . 28
3.1.2 Gröbner basis computation times . 30

4 Appendix 32
4.1 Common notation and terminology . 32

1

Chapter 0

Acknowledgements

The writing of this thesis has been a deeply rewarding and exciting experience. I am deeply indebted
to my advisor, Prof. Jeffrey Hoffstein, for giving me considerable freedom to explore these concepts
while always being able to point me in the right direction. The chance to work with him the past
year has been so much fun, and I am very appreciative of his patience and humor as well as his
instruction. I am very grateful for the help of Prof. Jill Pipher and Prof. Joseph Silverman, who
offered helpful pointers throughout the project (and co-authored the book that introduced me to
this subject). I would also like to thank Prof. Mike Stillman for a very instructive conversation on
Gröbner bases and for pointing me in the direction of the Macaulay2 computer algebra system. I
am very thankful also for the constant support from my family and friends, whose encouragement
made the writing of this thesis much more manageable and who I can always count on to listen to
my ideas, even when they make no sense. Finally, I would like to acknowledge the staff, faculty,
and my fellow students in the math department for making the past four years so enjoyable.

2

Chapter 1

Introduction and background

1.1 Introduction

In an age of ubiquitous computing, digital security is an important aspect of everyday life. Cryptog-
raphy is already a pervasive concept, providing privacy for everything from email communication
to financial transactions. As computations involving large data sets become more expensive and
time-consuming, and as the need for data storage increases, cloud computing has rapidly become a
platform to which people and institutions alike turn for their computational needs. With this rise
in popularity comes the need for a new class of security protocols that allow data to be stored in
encrypted form yet manipulated in a meaningful way by third parties. In this thesis, we consider
two such cryptographic schemes. We discuss the motivation behind them, analyze their security,
and present data regarding both their security and efficiency. We also provide implementations of
the systems in question in C++ and explain the code’s design.

Two goals in the very close periphery throughout the development of this project have been
reproducibility and accessibility. In this vein, the implementations produced and the data generated
are posted in a public repository on Github at https://github.com/bleveque/HomEnc, and a website
accompanying the project can be found at http://btleveque.org/homenc.php.

1.2 Introduction to cryptographic concepts and terminology

Before explaining and analyzing specific schemes, we give a brief background on some common
cryptographic concepts. A cryptosystem is a collection of procedures that allow a user to securely
map a message (also called a plaintext) m to a cipertext c such that the reverse map can only be
easily computed given some private information, called a secret key. The map taking a message to
a ciphertext is referred to as an encryption function and will be denoted by e, while the reverse
map is referred to as a decryption function and will be denoted by d. The process of determining
the secret key is known as key generation, and the key generation function will be denoted by KG.
The messages lie in some space, referred to as the message space (M), and the ciphertexts lie in a
(possibly) different space, referred to as the ciphertext space (C), so we have

e :M−→ C
d : C −→M

(d ◦ e) = idM

3

A cryptosystem is then given by a collection

{M, C,KG, e, d}

This information together tells us exactly where our messages are coming from and how to encrypt
and decrypt them.

To illustrate the construction above with a brief example, consider the cryptosystem defined by
the following elements:

M = Z
C = Z
KG gives a random integer k > 1

e : m 7→ km

d : c 7→ c/k

This simple scheme encrypts an integer message m by taking its product with the secret key k.
The resulting ciphertext can be decrypted by dividing by k:

d(e(m)) = d(km) = m

It is therefore well-defined to encrypt and decrypt a message. This scheme is not very secure, since
the value of k can be easily discovered by examining several message/ciphertext pairs, but it is
illustrative of the basic ideas.

A lingering question might be “my message is a regular sentence! how can the message space
Z be of any use to me?” The answer comes in the form of an invertible encoding function. An
encoding function is not meant to provide any extra security to our scheme; its sole purpose is
to transform real messages into a format we can use in our encryption function. For example, we
could encode a word by sending each letter to a number:

a 7→ 1

b 7→ 2

...

z 7→ 26

so the word “crypto” would be encoded as the sequence of numbers 3-18-25-16-20-15. We could
then use our encryption function on each of these numbers. When we decrypt the result, we will
get the sequence of numbers back, and then we must perform the inverse of the encoding function
to recover our word as a sequence of letters c-r-y-p-t-o.

1.3 Introduction to homomorphic encryption

The idea of a homomorphic cryptosystem extends the ideas presented above by adding an additional
requirement to our definitions. To motivate this requirement, imagine you have a large collection
of data points and want to compute their mean or standard deviation. You have have two options:

4

you can either do this computation yourself at a potentially high computational cost, or you can
delegate this work to another party and risk losing privacy by exposing your data. The goal of
fully homomorphic encryption is to minimize both potential costs by allowing secure delegation. In
practice, this might mean being able to store data on the Cloud in an encrypted form such that a
third party could still manipulate the data in a meaningful way. By meaningful, we simply mean
that after they operate on our data, we can decrypt the result and obtain exactly the value their
operations would have achieved on our original plaintext data. The following diagram illustrates
this process:

messages operations applied to messages

encryptions operations applied to encryptions

�

operations

decryptionencryption

operations

Homomorphic encryption ensures that we achieve the same result by traversing this diagram in
either direction starting from our messages (i.e. the diagram is commutative). More technically, by
“meaningful” we mean that any combination of sums and products of encryptions decrypt to the
corresponding sums and products of the original, unencrypted data (we call such a combination
an arithmetic circuit, or just a circuit). If this condition holds, data could be encrypted, operated
upon, and decrypted in a completely well-defined manner. What we are looking for, then, is an
encryption function that is a ring homomorphism from the message space M to the ciphertext
space C. Recall that a ring homomorphism is a map σ :M→ C such that for any x, y ∈M,

σ(x) + σ(y) = σ(x+ y)

σ(x)σ(y) = σ(xy)

If our encryption function e, then, is a ring homomorphism, we could add or multiply two encryp-
tions and the result would be an encryption of the sum or product of the corresponding plaintexts.
A cryptosystem employing such an encryption function is said to give fully homomorphic encryption
(FHE). If the encryption function in question is homomorphic on most inputs, but is not guaran-
teed to give well-defined decryption after the application of every circuit, the scheme is said to
provide somewhat homomorphic encryption. Such a scheme might arise if the decryption function
requires its input to be of a certain size, which the application of large circuits might exceed. For
motivation, consider the following toy example.

1.3.1 Example

First, we will construct a somewhat homomorphic encryption scheme, and then we will attempt to
extend it to be fully homomorphic. Consider the message space M = Z≥0 and choose as a secret
key some prime number p. We will encrypt a message m ∈M by setting e(m) = m+ ap for some

5

random integer a. Decryption is then performed by reducing modulo p. As long as the message m
is less than p, this scheme is perfectly well defined, since

d(e(m)) = m+ ap (mod p)

= m

The scheme is additively homomorphic for messages m1 and m2 if m1 +m2 < p because we have

d(e(m1) + e(m2)) = m1 +m2 + (a1 + a2)p (mod p)

= m1 +m2

and multiplicatively homomorphic if m1m2 < p, since

d(e(m1)e(m2)) = m1m2 + (m1a2 +m2a1 + a1a2p)p (mod p)

= m1m2

However, if any of the messages above satisfy m ≥ p, then d(e(m)) will no longer equal m, but
will be the reduction of m modulo p. We can attempt to avoid this problem by encrypting only
messages less than p, but once we start considering circuits applied to encryptions, this idea shows
its flaws. For example, we might want the sum of two encryptions of p − 1 to decrypt to 2p − 2,
but it would decrypt instead to

2p− 2 (mod p) = p− 2

Another solution is to recognize the limitations of the system and include as a part of the sys-
tem’s protocol a bound on the number of additions and multiplications that can be performed on
encryptions before the result should be decrypted.

To make this scheme fully homomorphic, we could set M = Z/pZ, since in this case, reducing
modulo p during decryption is consistent with the structure of the message space. However, it
is perhaps unnatural for messages to live in Z/pZ, since when we compute circuits such as the
computation of standard deviations, we don’t want to reduce modulo p at any point during the
computation. In this case, it may be best to accept the limitations of the somewhat homomorphic
scheme above and work within its framework.

It should be mentioned, as well, that the scheme above is just a “toy” example because as in the
case of the example on page 4, it is very insecure. Suppose an eavesdropper asked us to encrypt the
message m = 0 using this system. The result would be a multiple of p. If we were asked to perform
many such encryptions, the eavesdropper would end up with a collection of multiples of p. With
this information, he could very quickly compute the greatest common divisor of these values using
the Euclidean Algorithm, and the result would likely be p itself. Using p, the eavesdropper could
then decrypt any message he pleased by simply reducing it modulo p. This type of attack—using
encryptions of the message 0 to reveal an essential feature of the structure of the scheme itself—will
appear again, and is a necessary threat to consider when formulating encryption schemes.

6

Chapter 2

Schemes under investigation

2.1 Introduction to present work

In his 2009 dissertation [8], Craig Gentry presented the first secure fully homomorphic encryption
scheme. His construction was based on the theory of ideal lattices (ideals in quotient polynomial
rings), and it represented a major breakthrough as a proof-of-concept and started a rapid-pace
movement towards creating an efficient fully homomorphic scheme. This thesis will present two
cryptosystems that show promise as either somewhat or fully homomorphic encryption schemes
and explore their security and efficiency.

The first, which is formulated entirely over the integers (and quotient rings thereof), relies on
the hardness of making N consecutive correct choices, where each choice is between two values.
We will refer to this as “choice-based encryption” (CBE). The second, which is formulated over
multivariate polynomial rings, relies on the hardness of the ideal membership problem (IMP) in
this setting. Similar schemes in the past—sometimes referred to as Polly Cracker schemes after
their introduction by Koblitz and Fellows in [7]—have been formulated, often over finite fields.
The cryptosystem presented in section 2.3 below can be formulated over general rings, though we
focus on an implementation over the integers. Translating this to an implementation over Z/pZ is
a matter of reducing coefficients, so while it is easy to reformulate in this setting, the security of
the scheme may be compromised, as we will see.

Finally, we note that both schemes are presented as symmetric schemes, meaning that the
secret key information is shared by the encryptor and the decryptor. While such schemes do not
enjoy the same flexibility as asymmetric schemes (in which anyone can encrypt a message meant
to be decrypted by a certain recipient, so the knowledge of keys is asymmetric), they are sufficient
for many purposes, including some of the natural applications of homomorphic encryption. For
example, symmetric encryption is well-suited to the situation in which the encryptor has a collection
of data she wants to store on the cloud and later retrieve, since only one person needs to know the
secret information necessary to both encrypt and decrypt.

7

2.2 Choice-based encryption

2.2.1 Scheme

We will first describe the scheme in question and subsequently analyze the motivation behind its
construction and its cryptographic properties. The choice-based cryptosystem is defined using the
following procedures:

• Key generation (KG)

1. Pick a prime P ; the message space is M := Z/PZ
2. Pick a lower bound M ≥ 0 on the number of operations that our scheme will allow

3. Pick an integer K; this is the number of ways we will be able to mask a given message

4. Pick N ∈ Z so that 2N is sufficiently large

5. Pick primes {pi}Ni=1 such that ((K + 1)P)M+1 <
∏
pi and pi 6= P for all i

6. Pick primes {qi}Ni=1 such that qi 6= P for all i

7. Return private key (N,P,M,K, {pi}, {qi}) and public key (N,M, {piqi})

• Encryption (e)

1. Pick a message m ∈M
2. Pick random integers {ai}Ni=1

3. Pick a random positive integer k < K

4. Return e(m) := (m+kP+aipi (mod piqi))
N
i=1; the ciphertext space is C :=

∏N
i=1(Z/piqiZ)

• Decryption (d)

1. For all i = 1, . . . , N , reduce the ith component of the encryption modulo pi

2. Run the Chinese Remainder Theorem with moduli {pi} on the resulting components,
which gives m+ kP (mod

∏
pi)

3. Reduce the result modulo P to retrieve m

• Addition of ciphertexts (+)

1. The sum of two ciphertext vectors is their component-wise sum in
∏

(Z/piqiZ)

• Multiplication of ciphertexts (·)

1. The product of two ciphertext vectors is their component-wise product in
∏

(Z/piqiZ)

2.2.2 Motivation

As mentioned above, this scheme is formulated entirely over quotient rings of the integers: the
message space is Z/PZ, where P is secret, the ciphertext space is the product of the quotient rings
Z/piqiZ, and the Chinese Remainder Theorem in step two of the decryption function returns a
result in Z/

∏
piZ. Since we are working strictly with integers (and quotient rings of integers),

operations on ciphertexts and messages are easy to describe and implement in code. Simplicity

8

of design is one of the motivations behind the construction, and indeed, it is possible to take pi
and qi to be quite small as long as our security parameter N is large enough. The underlying
hardness assumption is also quite easy to state: given N choices, each between two options, can
an eavesdropper identify all N correct options? With a brute-force algorithm, this will take 2N

trials, which is computationally infeasible for large N . Changing N , therefore, affects the hardness
of the underlying problem, but increasing its value also increases the size of ciphertexts (by adding
components to the encryption vectors). It should be noted, too, that choosing even N − 1 correct
values and a single wrong value for the {pi} (say we choose qj instead of pj) can give a drastically
wrong result, since we would not be completely removing the multiple of pj in step 1 of decryption,
and step 2 of decryption would run the Chinese Remainder Theorem on the wrong collection of
primes.

Before proving the correctness and analyzing the characteristics of this system, we will also give
some explanation for the other components of the scheme, beginning with the public and private
keys. The prime P is the size of our message space. The primes {pi} and {qi} can be chosen
arbitrarily as long as they satisfy the constraints in steps 5 and 6 of key generation above. The
sizes of the primes pi and qi are up to the user; larger primes allow for a larger message space,
but they also lead to larger ciphertexts. We note, too, that it is also possible to create a larger
message space by increasing the size of N . This will also affect the size of a cipher text, but it has
the potential benefit of keeping the values in each component relatively smaller.

The integers M and K together represent the number of ways we can mask (i.e. add noise to)
a message with multiples of P before we exceed

∏
pi. In other words, we are allowing up to K

multiples of P to be added as noise to each component of an encryption, and we are allowing up to
M operations to be performed on ciphertexts. We will discuss the implications of these numbers
in section 2.2.6 below. Note that if we did not allow adding of noise, then it would be easy for
an eavesdropper to determine the primes pi from encryptions of zero. For example, consider a
collection of r encryptions of zero (recall that they are not the same, since we choose the values ai
randomly in step 2 of encryption):

e(0) = (a1,1p1 (mod p1q1), . . . , a1,NpN (mod pNqN))

...

e(0) = (ar,1p1 (mod p1q1), . . . , ar,NpN (mod pNqN))

Since reducing an integer l modulo M is done by adding an appropriate multiple of M to l, we can
express the above as:

e(0) = (a1,1p1 + b1,1p1q1, . . . , a1,NpN + b1,NpNqN)

...

e(0) = (ar,1p1 + br, 1p1q1, . . . , ar,NpN + br,NpNqN)

where the bi,j are the appropriate factors necessary to perform reduction in each component.
Now, the ith component of each jth encryption is a multiple of pi, namely (aj,i + bj,iqi)pi, so
the component-wise GCD of the r encryptions above will likely give us all of the pi, and the
security of the scheme (which is based on the difficulty of identifying the pi) will be compromised.

Finally, we note that by setting the message space to Z/PZ rather than Z, we ensure that even
if a sum or product of messages is greater than P , reducing modulo P will give the well-defined sum

9

or product in the message space. In some applications, we may want to ensure that this reduction
never occurs (for example, if we are computing statistical quantities over the integers), but it is at
least well-defined if it does.

2.2.3 Correctness of encryption/decryption

In order for the choice-based scheme above to be a valid cryptosystem, we need to prove that the
composition of encryption with decryption is the identity function on the message space. Formally,
we want:

d ◦ e ≡ idZ/PZ

We prove this below:

Theorem 1 (Correctness of encryption/decryption for CBE). If m ∈ Z/PZ, then d(e(m)) = m.

Proof. Let (N, {pi}, {qi},K, P) be our secret key. Then

e(m) = (m+ kP + aipi (mod piqi))
N
i=1

for some random ai and a random k < K. Step 1 of decryption performs reduction of each
component modulo the corresponding pi, giving

{m+ kP (mod pi)}Ni=1

Now, using the Chinese Remainder Theorem in step 2 gives

m+ kP (mod
∏

pi)

Since m < P (here, we are abusing notation slightly and identifying the equivalence class m̄ ∈ Z/PZ
with its minimal representative) and k < K, and P was defined such that (K + 1)P <

∏
pi (since

M ≥ 0), we have that m+ kP <
∏
pi, so

m+ kP (mod
∏

pi) = m+ kP

Now, reducing modulo P in step 3 gives m, since m ∈ Z/PZ.

2.2.4 Correctness of homomorphic operations

We now prove that the scheme is somewhat homomorphic up to the desired M operations. Let us
first make the following definitions:

Definition 1 (Primitive encryption). A primitive encryption e(m) ∈ C is an encryption on which
no operations have been performed.

Definition 2 (n-circuit). An n-circuit is a sequence of additions and multiplications such that when
all multiplications are distributed out, there no more than n total operations in the expression.

Intuitively, we can think of a primitive encryption as one for which < K multiples of P have
been added to each component as noise, as is the case when a message is first encrypted. Now, we
will prove correctness:

10

Theorem 2 (Correctness of homomorphic operations for CBE). If C is an M -circuit which acts
on n ≤M values, C(m1, . . . ,mn) = d(C(e(m1), . . . , e(mn))).

Proof. Consider two encryptions

e(m1) = (m1 + k1P + a1,ipi (mod piqi))
N
i=1

e(m2) = (m2 + k2P + a2,ipi (mod piqi))
N
i=1

Our procedure for addition of ciphertexts tells us that we should perform addition component-wise,
so we get

e(m1) + e(m2) = (m1 + k1P + a1,ipi (mod piqi)) + (m2 + k2P + a2,ipi (mod piqi))

= (m1 +m2 + (k1 + k2)P + (a1,i + a2,i)pi (mod piqi))

Let us assume for the moment that m1 +m2 + (k1 + k2)P <
∏
pi. Then decrypting e(m1) + e(m2)

gives m1 +m2, so we have that e(m1)+e(m2) = e(m1 +m2) (where equality here really means that
e(m1)+e(m2) is an encryption of m1 +m2, since random numbers are involved in each encryption,
so it unlikely that an arbitrary encryption of m1 plus an arbitrary encryption of m2 will equal an
arbitrary encryption of m1+m2). We will return to the question of the size of m1+m2+(k1+k2)P
shortly.

Now consider the product of e(m1) and e(m2):

e(m1)e(m2) = (m1 + k1P + a1,ipi (mod piqi)) · (m2 + k2P + a2,ipi (mod piqi))

= (m1m2 + (m1k2 +m2k1 + k1k2P)P+

((m1 + k1P)a2,i + (m2 + k2P)a1,i + a1,ia2,ipi)pi (mod piqi))

In this case, as long as

m1m2 + (m1k2 +m2k1 + k1k2P)P <
∏

pi

we see that e(m1)e(m2) will decrypt as m1m2 by applying the decryption function. Therefore,
e(m1)e(m2) is a valid encryption of m1m2, so e(m1)e(m2) = e(m1m2). Together with our result
for addition, this proves that our scheme is somewhat homomorphic, up to the point that the
combination of m and P in each component is less than

∏
pi.

We now show that this is the case for any M -circuit. Consider the growth of the combination
of m and P as we add and multiply encryptions. Primitive encryptions have combinations less
than (K+ 1)P , so a sum of two primitive encryptions will have a combination less than 2(K+ 1)P
and a product of encryptions will have a combination less than ((K + 1)P)2. An M -circuit with
exclusively multiplications will then have a combination less than ((K + 1)P)M+1, which by our
constraints on the system is less than

∏
pi. Since multiplications have a greater effect on the size

of the combination than additions, we have shown that our scheme is somewhat homomorphic for
all M -circuits.

2.2.5 Example of choice-based encryption

To illustrate the concepts above, we will carry out a numerical example of encryption, application
of circuits, and decryption. For this purpose, we will take our keys to be quite small, letting N = 2,

11

M = 3, K = 3, and P = 7. Running the key generation function gives us

{pi} = {263, 251}
{qi} = {223, 263}

Note that

((K + 1)P)M = 21952

< 66013

=
∏

pi

Now, suppose our message is m = 4. Running the encryption procedure with random values
{ai} = {11, 13} and k = 2 gives

e(4) = (4 + kP + a1p1 (mod p1q1), 4 + kP + a2p2 (mod p1q1))

= (2911 (mod 58649), 3281 (mod 66013))

= (2911, 3281)

Now, running our decryption circuit, we first reduce each ith component by pi, which gives

(2911 (mod 263), 3281 (mod 251)) = (18, 18)

We next use the Chinese Remainder Theorem, which trivially gives us

m+ kP ≡ 18 (mod 66013)

Finally, we reduce modulo P = 7 to get

18 ≡ 4 (mod 7)

which matches our original message m = 4.
Now, we’ll give an example of applying a circuit to encryptions. Consider the keys N = 3,

M = 3, K = 4, and P = 11; the messages m1 = 2, m2 = 4, m3 = 9; and the circuit C(x1, x2, x3) =
x1x2 + x3. Since M = 3, and this circuit has three operations, these operations should be well-
defined. Running key generation gives

{pi} = {97, 67, 89}
{qi} = {107, 79, 127}

Encrypting our three messages (computations omitted for brevity) gives:

e(m1) = (8097, 649, 3072)

e(m2) = (8293, 4805, 7791)

e(m3) = (4515, 1728, 5037)

Now, applying our circuit to the encryptions gives

C(e(m1), e(m2), e(m3)) = e(m1) ∗ e(m2) + e(m3)

= (8097 · 8293 + 4515, 649 · 4805 + 1728, 3072 · 7791 + 5037)

= (806, 2596, 10538)

12

Decrypting this gives

d(C(e(m1), e(m2), e(m3))) = 6

Applying our circuit to our unencrypted messages likewise gives

C(m1,m2,m3) = m1m2 +m3

= 6

(recall that our messages are elements of Z/PZ). This shows that the diagram on page 5 is indeed
commutative for our example.

2.2.6 Analysis of homomorphicity in practice

In practice, we may want to know the most efficient way to increase the number of homomorphic
operations supported by our system. Since the parameters of the scheme tell us that

#ops ≥ log(K+1)P

(
N∏
i=1

pi

)
− 1

we have several options for parameters to alter. We can decrease K, decrease P , increase N ,
or increase the values of the pi. Decreasing P or K affects the security of the system, since we
would have either a smaller message space or fewer ways to mask encryptions. On the other hand,
increasing the size of each prime pi will increase the size of the ring Z/piqiZ in each component of an
encryption, and will therefore cause our arithmetic on encryptions to run more slowly. Increasing
N (and maintaining the size of the pi and qi) has a similar effect; now we have more components in
each encryption, so arithmetic will be less efficient. However, increasing N has the added benefit
of increasing the complexity of a brute-force search through all 2N combinations of pi and qi.

Which option should we take in practice? In increasing the number of operations allowed, we
certainly do not want to negatively impact the security or flexibility of our scheme, so decreasing
K or P is not ideal. It would seem, then, that increasing N might be provide the greatest benefit:
increasing the number of multiplications (by increasing the product

∏
pi) while also increasing the

complexity of brute-force search. Analyzing this problem further would be an interesting application
of the implementations outlined in chapter 3.

An additional concern is that our message space may not realistically resemble Z/pZ, for exam-
ple if the information we want to encode is a collection of integer values, and we want to compute
the product of these integers, we expect the result of performing the encrypted operation to be the
true product, even if it exceeds P . As soon as the results of computations exceed P , the scheme
fails to return the correct value to the user, so practically speaking, we want our messages to be
much smaller than P , which is in turn much smaller than

∏
pi. Precisely, this means that requiring

that any message m satisfy m < M+1
√
P guarantees that products of messages will always decrypt

properly, since M is the number of allowed multiplications from above. In practice, this means that
if we want our operations to remain in the integers, we should set M = Z

< M+1√P .

A desirable aspect of any cryptosystem is that the size of any ciphertext is not excessively large
relative to the size of its corresponding plaintext. In this system, including the considerations in

13

the paragraph above, a message m has worst-case size |m| = M+1
√
P , while a ciphertext has size

N∑
i=1

|(Z/piqiZ)| =
N∑
i=1

piqi

Note that if we did not reduce each component modulo piqi, our ciphertexts could grow quite
rapidly. Also, since we’re reducing modulo piqi, we do not experience any ciphertext expansion
when we apply circuits to ciphertexts. This is a major benefit of this cryptosystem: despite the
limitation on the number of operations we can perform on ciphertexts, we can perform all of these
operations without worrying about ciphertext growth.

2.2.7 Security

We now address the security of this scheme. As we mentioned above, masking our messages with
multiples of P in each component avoids a greatest common divisor attack on encryptions of m = 0.
This is because encryptions of m = 0 have the form

e(0) = (kP + aipi (mod piqi))
N
i=1

Since P is coprime to piqi (it is a prime which is not equal to either pi or qi), the components of
this encryption should have no particular form; in other words, P is a unit in each component, so
its multiples fill each Z/piqiZ. Note that if K < piqi, then the possible multiples kP for k < K
in each component may not completely fill the corresponding Z/piqiZ, but the multiples that do
appear will be indistinguishable from multiples of any other unit u. This means that encryptions
of m = 0 are indistinguishable from other encryptions.

Intuitively speaking, the fact that we have incorporated noise into our encryption function
ensures that it is difficult to identify the underlying structure of our scheme. Breaking the scheme,
then, should depend on being able to solve some sort of approximation problems (for an example,
called the approximate greatest common divisor problem, see [18]). However, the fact that our noise
is not required to be small, per se (since, for example, a large N allows us to choose pi relatively
small compared to P), means that we are not in an approximate greatest common divisor situation.

The security of this scheme then seems primarily based on the difficulty of choosing each pi in
sequence. The difficulty of this task is quantifiable to an average and worst case of O(2N).

2.3 Using multivariate polynomial rings

Another approach to homomorphic encryption is to use the properties of arithmetic in polynomial
rings. Perhaps the most natural thing to try in this setting is the following algorithm: choose a
principal ideal (f) ⊂ Z[x] and encrypt an integer message m by adding a random element af ∈ (f),
so e(m) = m + af . Then to decrypt, we simply reduce modulo the polynomial f . This process is
homomorphic because ideals are closed under addition and multiplication:

e(m1) + e(m2) = m1 +m2 + (a1 + a2)f

= e(m1 +m2)

14

and

e(m1)e(m2) = m1m2 + (m2a1 +m1a2 + a1a2)f

= e(m1m2)

Note that our definition of equality above is somewhat loose; since e(m1+m2) encrypts by choosing
a random multiple of f , it may not be exactly (a1+a2)f (and likewise for the case of multiplication).
The notion of equality we adopt, then, is a notion of coset equality: e(m1) + e(m2) is in the same
coset of (f) as e(m1 + m2), so they will decrypt identically, and the same is true for e(m1)e(m2)
and e(m1m2).

While this scheme illustrates the ideas we will use later, it is not very secure on its own. For
example, suppose an eavesdropper, Eve, asks us to encrypt m = 0 several times. The resulting
ciphertexts would be a collection

{a1f1, a2f2, . . . , anfn}

Now, if Eve takes the greatest common divisor of the elements in this collection (note that this is
very similar to the attack employed to break the toy example in section 1.3), there is a very high
chance that the result will be f itself or a small multiple of f . With f in hand, Eve could then
decrypt any message she pleased, and the scheme would be compromised.

The scheme above was easily broken because it relied on a fairly easy problem: given a collection
of polynomials in a principal ideal, find a generator for the ideal. This is easily found because we can
compute fairly efficiently the greatest common divisor of two polynomials in Z[x]. This allows us to
easily determine, in particular, further encryptions of m = 0, since we can reduce any encryption
modulo the generator f we found and check if the result is 0. This is a basic case of a more general
problem.

Definition 3 (Ideal Membership Problem (IMP)). Given a ring R, a set of elements {r1, . . . , rn} ∈
R, and an element f ∈ R, determine whether f ∈ (r1, . . . , rn) ⊂ R.

If the structure of R is simple, then this problem is correspondingly easy, as we saw above in
the case of our generators being multiples of a single polynomial f ∈ Z[x]. However, if we look
instead at multivariate polynomial rings such as Z[x, y] or Z/pZ[x, y], the problem might not be so
simple. To give an indication of the increased complexity of multivariate polynomial rings, consider
the seemingly simple problem of reduction modulo a polynomial f ∈ Z[x, y], which is essentially
an attempt to reduce the degree of a polynomial by subtracting multiples of f . However, which
degree do we want to reduce? We could mean either the degree of x or that of y, and choosing one
over the other turns out to affect the result of reduction. Consider, for example

g = x+ 4y2

f = x− 2y

If we want to reduce g modulo f and choose the ordering x > y (i.e. we prioritize reducing the
degree of x), then

g (mod f) = g − f
= 4y2 + 2y

15

which has x-degree 0. On the other hand, with the ordering y > x, we have

g (mod f) = f − g2 + 2xg

= x2 + x

which has y-degree 0. Where reduction was straightforward in the single-variable case, it is now
convoluted by the structure of the multivariate case. Using multivariate polynomial rings as the
foundation of a cryptosystem might provide increased security, then, since the complexity of the
underlying ring has increased. It is with this motivation that we formulate the following scheme.

2.3.1 Scheme

The scheme goes as follows:

• Key generation (KG)

1. Set M := Z and C := Z[x, y]

2. Pick a degree bound D and a coefficient bound B

3. Pick a random number z0 < B

4. Pick a random polynomial f with total degree less than or equal to D and coefficients
less than B

5. Pick a random polynomial g′ of total degree less than or equal to D− 1 and coefficients
less than B

6. Set g := (y − z0)g′

7. Return private key (f, g, z0)

• Encryption (e)

1. Pick a message m ∈ Z
2. Pick random polynomials a and b which respect the degree and coefficient bounds

3. Return e(m) := m+ af + bg

• Decryption (d)

1. Evaluate the encryption at z0

2. Reduce the result modulo f(x, z0), a single-variable polynomial, and return the result

• Addition of ciphertexts (+)

1. Given two ciphertexts in Z[x, y], their sum is simply their sum as multivariate polyno-
mials

• Multiplication of ciphertexts (·)

1. Given two ciphertexts in Z[x, y], their product is simply their product as multivariate
polynomials

16

2.3.2 Explanation

Before analyzing the security properties of this scheme, we give a brief summary of its procedures.
Key generation uses degree and coefficient bounds to create a secret root z0 and secret polynomials
f and g, where g vanishes on the line y = z0. The fact that g vanishes at (x, z0) for all x ∈ Z allows
us to evaluate an encryption at (x, z0) to eliminate the bg term completely. We are then in a single-
variable setting (evaluating at (x, z0) is essentially a map Z[x, y] → Z[x]), and can easily reduce
modulo f(x, z0). It is therefore straightforward to perform encryption and decryption, since we are
only performing simple polynomial arithmetic, evaluating polynomials, and reducing modulo one-
variable polynomials. We prove below that this gives a well-defined encryption scheme. We note also
that the degree and coefficient bounds can be chosen as to make the underlying problem (discussed
in section 2.3.7 below) as complex as desired (though larger parameters will be a detriment to the
efficiency of the scheme). In chapter 3, we discuss the problem of choosing appropriate parameters.

One benefit of using polynomials to encrypt integer messages, as we will prove below, is that
since our message is zero-degree, there is no limit on the number of additions and multiplications
we can perform.

2.3.3 Correctness of encryption/decryption

We will now prove the well-definition of encryption and decryption.

Theorem 3 (Correctness of encryption/decryption for multivariate encryption). If m ∈ Z, then
d(e(m)) = m.

Proof. First, encryption gives us
e(m) = m+ af + bg

for some a and b, where we know that g(x, z0) = 0 by construction. In step 1 of decryption, we
evaluate at (x, z0), giving

e(m)(x, z0) = m+ a(x, z0)f(x, z0)

This is a single variable polynomial which can be reduced modulo the polynomial f(x, z0) (this is
known to the decryptor, since f and z0 are both components of the secret key) to give m, since m
is simply a constant value and will not be affected by reduction by any non-constant polynomial.
This proves correctness.

2.3.4 Correctness of homomorphic operations

Now we prove that sums and products of encryptions are valid encryptions of the sums and products
of the corresponding plaintexts. Unlike the choice-based scheme, there is no limit on the number
of operations that can be performed on ciphertexts (i.e. we can apply an n-circuit for any n in a
well-defined manner).

Theorem 4 (Correctness of homomorphic operations for multivariate encryption). If m1,m2 ∈ Z,
then e(m1) + e(m2) = e(m1 +m2) and e(m1)e(m2) = e(m1m2).

Proof. Note first that two ciphertexts are encryptions of the same value if and only if they lie in
the same coset of (f, g) ⊂ Z[x, y]. The encryptions e(m1) and e(m2) are of the form

e(m1) = m1 + a1f + b1g

e(m2) = m2 + a2f + b2g

17

for some ai, bi ∈ Z[x, y]. Then

e(m1) + e(m2) = m1 +m2 + (a1 + a2)f + (b1 + b2)g

This is in the coset m1 +m2 of (f, g), so it is indeed an encryption of m1 +m2. This proves that
the scheme is additively homomorphic. Consider the product now:

e(m1)e(m2) = m1m2 + (m1a2 +m2a1)f + ((m1 + a1f)b2 + (m2 + a2f)b1)g

This is in the coset m1m2 of (f, g), so it is an encryption of m1m2. This proves that the scheme is
multiplicatively homomorphic as well.

At no point in the proof above does the size of either message affect the ability of the scheme to
encrypt and decrypt properly; the scheme is fully homomorphic in the sense that arbitrary-depth
circuits can by applied homomorphically.

2.3.5 Example of multivariate encryption

We will now work out an example using the multivariate encryption scheme above. Let us choose
D = 2 and B = 10. Running the key generation step, we get

z0 = 6

f = 4xy + 6y + 1

g = y2 + 3y − 54

Note that it is coincidence only that g is a polynomial in Z[y]. Also, its constant coefficient is larger
than our coefficient bound! The reason for this transgression is that g is generated as a product of
a random polynomial (which does adhere to the degree bound) and the polynomial (y − z0), so g
itself may have coefficients as large as B2.

Now, suppose we want to encrypt m = 1024. Running our encryption procedure with random
polynomials

a = 5xy + x+ y + 5

b = 3xy + 8x+ 3y + 1

we get

e(m) = m+ af + bg

= 20x2y2 + 3xy3 + 4x2y + 75xy2 + 3y3 − 107xy + 52y2 − 431x− 122y + 975

Now, we run our decryption circuit by first plugging in z0 = 6, which gives

e(m)(x, z0) = 20x2(62) + 3x(63) + 4x2(6) + 75x(62) + 3(63)− 107x(6) + 52(62)− 431x− 122(6) + 975

= 744x2 + 2275x+ 2763

Finally, we reduce modulo f(x, z0) to get

e(m)(x, z0) (mod f(x, z0)) = (744x2 + 2275x+ 2763) (mod 24x+ 37)

= 1024

18

This is indeed our original message, which shows that encryption/decryption is well-defined for this
example.

We now give an example of a circuit applied to three encryptions (in fact, the same circuit as
we used in section 2.2.5), namely C(x1, x2, x3) = x1x2 +x3. Suppose we want to encrypt m1 = 123,
m2 = 234, and m3 = 345 and apply the circuit C to the encryptions. We show this process below
(omitting some computations for brevity). First, running key generation gives

f = 7xy + 5x+ 6y + 5

g = 2xy − 14x+ 3y − 21

z0 = 7

Now, encrypting our messages gives:

e(m1) = 42x2y2 − 42x2y − 36x2 + 45xy2 − 42xy − 137x+ 51y + 1

e(m2) = 24x2y2 − 60x2y + 34xy2 − 44xy + 2x+ 6y2 + 47y + 222

e(m3) = 42x2y2 − 15x2y + 45x2 + 62xy2 − 78xy + 57x+ 21y2 − 46y + 343

Applying the circuit C to these encryptions gives

C(e(m1), e(m2), e(m3)) = e(m1)e(m2) + e(m3)

= 1008x4y4 − 3528x4y3 + 1656x4y2 + 2160x4y + 2508x3y4 − 6984x3y3−
60x3y2 + 9720x3y − 72x3 + 1782x2y4 − 462x2y3 + 1420x2y2−
5147x2y − 8221x2 + 270xy4 + 3597xy3 + 5046xy2 − 15783xy−
30355x+ 306y3 + 2424y2 + 11323y + 565

As a brief aside, note that in this scheme, ciphertexts grow quite quickly as we apply circuits. We
will discuss this in more depth in section 2.3.6 below. Now, decrypting the result above gives

d(C(e(m1), e(m2), e(m3))) = C(e(m1), e(m2), e(m3))(x, z0) (mod f(x, z0))

= 29127

Now, applying C to the original messages gives

C(m1,m2,m3) = m1m2 +m3

= 29127

This shows that applying a circuit is well-defined for this example.

2.3.6 Practical analysis of homomorphicity

Unlike the choice-based scheme above, this scheme as presented suffers from significant ciphertext
expansion as circuits with a large number of multiplications are applied. Sums of ciphertexts do not
grow in size too quickly, because when two ciphertexts are added, the degree of the result will not
have grown. The coefficients roughly double in an addition, but this is negligible when compared

19

to the result of a multiplication. When two ciphertexts (of comparable degree) are multiplied,
the total degree of the result is roughly twice the total degree of the initial ciphertexts. Let d be
the maximum of the maximum x-degree and y-degree of the product. Since we are working with
two variables, there are roughly d2 possible terms, each having coefficients larger than those in the
initial ciphertexts. For example, the coefficient of the highest degree term will be the product of the
corresponding highest-degree coefficients of the original ciphertexts, and the coefficients of smaller
degree terms will be sums of such products, leading to very fast coefficient growth.

There are then two issues with homomorphic operations in this scheme: coefficient growth and
degree growth. In order to combat coefficient growth, we could imagine setting up our scheme with
C = Z/pZ[x, y] for some prime p rather than C = Z[x, y]. We will discuss the feasibility of this
possibility in more depth in section 2.3.7 below, but doing so negatively affects the security of the
scheme. To attempt to deal with degree growth, we could consider making an encryption of m = 0
public knowledge and then reducing modulo this encryption whenever we want to reduce the degree
of a ciphertext (with the caveat that the leading coefficient of the public encryption must divide
the leading coefficient of the ciphertext). In general, reducing modulo a polynomial may not reduce
both the x- and y-degree of the polynomial it is reducing, but suppose we choose one encryption
of zero (i.e. element of (f, g)) which lies entirely in Z[x] (of degree n) and one which lies entirely in
Z[y] (of degree m). If this were possible, and if its leading coefficient divided any leading coefficient
of an encryption, we could reduce the x- and y-degrees of our ciphertext independently, so that the
maximum x-degree we would ever encounter would be n, and similarly for the y-degree and m.

Given certain restrictions on f and g, we know that it is possible to find such elements of (f, g)
by the theory of resultants, which we now discuss briefly:

Definition 4 (Resultant). If h, h′ ∈ Z[x] are given by

h = anx
n + . . .+ a1x+ a0

h′ = bmx
m + . . .+ b1x+ b0

then we define the resultant Res(h, h′) of h and h′ to be the determinant of the following (m+n)×
(m+ n) matrix:

Res(h, h′) = det



an an−1 a0
an an−1 a0

. . .

an an−1 a0
bm bm−1 b0

bm bm−1 b0
. . .

bm bm−1 b0



m

n

From the definition, it is clear that if h and h′ are integer polynomials in one variable, Res(h, h′) ∈
Z. From [13], we also have that there exist polynomials l, l′ ∈ Z[x] such that

hl + h′l′ = Res(h, h′)

Now, consider our secret polynomials f and g. By the above, we know that

Res(f(x, 1), g(x, 1)) =: Rx ∈ Z
Res(f(1, y), g(1, y)) =: Ry ∈ Z

20

and that there exist lf,x, lg,x ∈ Z[x] and lf,y, lg,y ∈ Z[y] such that

lf,xf(x, 1) + lg,xg(x, 1) = Rx

lf,yf(1, y) + lg,yg(1, y) = Ry

By replacing the variables y and x, respectively, we can see that

lf,xf + lg,xg ∈ Z[y]

lf,yf + lg,yg ∈ Z[x]

Furthermore, both polynomials above (we will call them resultant polynomials) are elements of
(f, g). In general, these resultant polynomials will not have leading coefficients which will allow
reduction of arbitrary encryptions, so we need to restrict the form of f and g slightly to allow this.
Experimentation with different f and g leads to the following:

Lemma 1. Suppose the leading term of f is xd1, and the leading term of g is yd2 for some d1, d2,
and d1 > degx(g), d2 > degy(f). Then each resultant polynomial of f and g will have leading
coefficient 1.

Proof. Without loss of generality, we will prove this just for the y-resultant polynomial (that is,
the resultant polynomial in Z[y]). Note that with the notation in the definition above, d1 = n and
d2 = m. Consider the determinant of the matrix M = {zi,j}n+m,n+m

i=1,j=1 in the definition, where we

now consider the entries to be elements of Z[y]. If the strictly highest-degree term of f is xd1 , then all
of the an entries on the diagonal will be 1, since the leading term has coefficient 1 ∈ Z[y], and since
the strictly highest-degree term of g is yd2 , the entries b0 will all be monic d2-degree polynomials in
y, since considering g as a polynomial in Z[x][y], yd2 is in the constant term. Therefore, the term
in the determinant obtained by taking the product of the diagonal elements will have leading term
yd1d2 .

Now, we want to show that deviating from the diagonal gives a collection of terms whose product
has smaller y-degree than our diagonal product — since terms in the determinant of M are products
of entries in M such that no two share a row or a column, we can look at general collections of such
entries. We know that the collective deviation (or vertical “distance”) of an entry in the upper
triangle of our matrix (i.e. the difference between their row and column indices) is the negative of
the deviation of those in the lower triangle. This is because there must be one entry in our product
for each row and column of M , so the average deviation must be 0 along the rows and the columns.
Since vertical deviation is the additive inverse of horizontal deviation (we subtract the indices in
the opposite order), we know that the horizontal deviation of all entries below the diagonal is equal
to the vertical deviation of all entries above the diagonal. This tells us that any terms in our
determinant come from a product of entries whose collective horizontal deviation is equal to its
collective vertical deviation. In terms of the resultant matrix above, horizontal deviation to the left
is equivalent to reducing y-degree by at least one, since yd2 being the leading term tells us that the
y-degree in the x1 term must be at most d2 − 2 (so in particular, the first time we move left from
the diagonal, we reduce the y-degree by 2), and this reduction continues as the x-degree grows.
Vertical deviation corresponds to increasing the y-degree by at most one, since the y-degree can
grow as the x-degree in f shrinks. We know by the constraint d2 > degy(f) that the y-degree of b0
is strictly larger than that of a0, so as the y-degree increases with vertical deviation, it still never
reaches d2. Therefore, since the sums of the deviations are equal, and as we deviate horizontally,

21

we start by subtracting two from the y-degree, it is impossible for a product of any other collection
of entries to have y-degree as large as the product along the diagonal. This proves that yd1d2 is the
leading term of det(M) = Res(f, g), and it is indeed monic.

Therefore, if we follow the restriction above on f and g of degree d1d2, we will be able to
reduce encryptions modulo degree d1d2 monic resultant polynomials and achieve the desired degree
reduction.

Below, we show an example of computing resultants using Sage [16]:

sage: S.<x,y>=ZZ[]

sage: f=0; g=0

sage: for i in range(3):

for j in range(3):

f+=floor(random()*10)*x^i*y^(3-j)

g+=floor(random()*10)*x^(3-i)*y^j

....:

sage: f

9*x^2*y^3 + 8*x^2*y^2 + 8*x*y^3 + 9*x^2*y + 3*x*y^2 + 8*y^3 + 3*x*y + 2*y^2 + 5*y

sage: g

9*x^3*y^2 + 8*x^3*y + 3*x^2*y^2 + 6*x^3 + 8*x*y^2 + x^2 + 5*x*y + 8*x

sage: f+=x^6; g+=y^6

sage: f.resultant(g,x)

y^36 + 5778*y^31 + + 11788353*y^2 + 1310720*y

sage: f.resultant(g,y)

x^36 + 8406*x^31 + - 3046439*x^2 + 125000*x

2.3.7 Security

We now look at the security characteristics of this system. We have seen that the scheme is
constructed to rely on the hardness of the Ideal Membership Problem for multivariate polynomial
rings. In particular, encryptions of m = 0 lie in (f, g) ⊂ Z[x, y], so if there is a procedure to
efficiently decide whether an element of Z[x, y] is in the ideal (f, g), we would be able to test
whether arbitrary encryptions are encryptions of 0. The ability to do so would be disastrous for
the the security of our system; beyond simply being able to test if we are sending the message
m = 0 (which we could always avoid doing if need be), it allows us to compare encryptions. We
know that any two encryptions of a message m ∈ M are in the same coset of (f, g), so their
difference will be in the coset 0̄ (namely, it will be in (f, g)). Therefore, if an eavesdropper collects
several plaintext/ciphertext pairs, she essentially has a table of encryptions to check any future
encryptions against. For example, if our message space is small, an eavesdropper could perform a
chosen-plaintext attack and ask our encryption scheme to encrypt each of the possible messages, and
then when she intercepts any message, she could easily determine its value based on her knowledge
and ability to recognize encryptions of zero.

One tool that helps solve the IMP in the setting of polynomial rings is the theory of Gröbner
bases. Given a set of generators for an ideal, a the idea of a Gröbner basis is to provide a set of
generators for the same ideal, but which have other properties that make them ideally suited for
computation. We define two separate (but similar) notions of a Gröbner basis below, since both
appear in the literature. Note that the definitions below are given in the context of Z[x, y], but

22

they are applicable for polynomial rings in arbitrary numbers of variables over general rings. We
include the following two definitions to clarify our usage, as there does not seem to be a standard
usage in the literature (see [4] for example, where the following two definitions are switched):

Definition 5 (Monomial). A monomial in the variables x1, . . . , xn is an expression of the form
m = xd11 · · ·xdnn . The degree of m is then d1 + . . .+ dn.

Definition 6 (Term). A term in the variables x1, . . . , xn is an expression of the form t = cxd11 · · ·xdnn ,
where c ∈ Z (in the case of general rings R, c ∈ R).

Definition 7 (Leading term). The leading term of a polynomial f , denoted LT (f), is its term
with largest total degree.

Definition 8 (Ideal of leading terms). Given an ideal I ⊂ Z[x, y], its ideal LT (I) of leading terms
is defined as

LT (I) = 〈{LT (f) : f ∈ I}〉

Definition 9 (Strong Gröbner basis). A strong Gröbner basis for the ideal I ⊂ R[x, y] is a collection
of polynomials G = {g1, . . . , gn} that satisfy the following two conditions

1. 〈{gi}〉 = I

2. If f ∈ I, then there exists g ∈ G such that LT (g) | LT (f)

Definition 10 (Weak Gröbner basis). A weak Gröbner basis for the ideal I ⊂ R[x, y] is a collection
of polynomials G = {g1, . . . , gn} that satisfy the following two conditions

1. 〈{gi}〉 = I

2. If f ∈ I, then LT (f) ∈ 〈{LT (g) : g ∈ G}〉; in other words, 〈{LT (g) : g ∈ G}〉 = LT (I)

By Gröbner basis, we refer generally to the notion of a strong Gröbner basis. It is worth
noting that there are benefits to both types of bases; since strong Gröbner bases have stricter
divisibility conditions, they are generally larger than weak Gröbner bases (and therefore require
more memory to store). On the other hand, strong Gröbner bases are easier to compute [17]. From
the definitions, strong Gröbner bases form a subset of weak Gröbner bases, so when we discuss
ease of computation, we are referring to computing small weak Gröbner bases. Intuitively, we can
imagine that this discrepancy comes from the need to discover and eliminate redundant polynomials
in order to make our weak Gröbner basis as small as possible. It is worth noting that every ideal
in Z[x, y] does indeed have a Gröbner basis, which may be non-obvious [4]. An algorithm known
as the Buchberger algorithm was among the first methods for finding Gröbner bases over fields,
and adaptations work over the integers as well (see Tables 5.4 and 10.1 in [4] for the original and
adapted algorithms).

Now, imagine an eavesdropper had access to a Gröbner basis for the ideal (f, g) in our multi-
variate encryption scheme, and she has intercepted a new ciphertext. She could iterate through her
table of known plaintext/ciphertext pairs, checking each ciphertext against the intercepted encryp-
tion. Each check is comprised of taking a difference between the known ciphertext and the new
encryption. If the leading term of the resulting polynomial is not divisible by any leading term in
the Gröbner basis, we already know that the difference is not an element of (f, g), so the known
ciphertext cannot be an encryption of the same message as the intercepted encryption. If there

23

does exist a leading term in the basis dividing the leading term of the difference, then Theorem
10.23 in [4] tells us that we can algorithmically determine whether our new encryption is in (f, g).

Barkee et al [2] describe another potential threat to the security of this scheme, namely an
attack which reduces the complexity of the ideal membership problem. The applicability of their
threat is not explicit from their exposition, since they work entirely over a field k rather than over
the integers, but it is worthwhile to mention that regardless of applicability, our scheme can (with
appropriate constraints) withstand it. Their attack relies on a theorem of Dickenstein et al [5],
which says that given an ideal I = (g1, . . . , gl) ∈ k[x1, . . . , xn], where each gi is public and of degree
less than or equal to some integer d, and an element h = M +

∑l
i=1 pigi for M = h mod I and

some pi of degree less than or equal to some r ∈ Z, then we can reduce h to find M by using
only the polynomials output by a simplified version of the Buchberger algorithm mentioned above.
Namely, the original algorithm tests each pair of polynomials in the input collection {gi} to see if
a certain reduction of a combination of this pair should be included in our Gröbner basis, but the
simplification allows us to ignore each pair (gi, gj) such that

deg(gi, gj) := max

{
deg

(
lcm(LM(gi), LM(gj))

LM(gi)
gi

)
, deg

(
lcm(LM(gi), LM(gj))

LM(gj)
gj

)}
> d+ r

In the context of our scheme, we can consider the gi here to be encryptions ei(0) of zero which
generate (f, g), which for the purposes of security analysis we can consider to be public. We use
subscripts in ei(0) to denote different encryptions rather than different encryption functions. The
h above is then an arbitrary encryption e(m), and the pi are the polynomials necessary to express
h as

h = e(m) = m+

l∑
i=1

piei(0)

The theorem then tells us that in order to reduce h modulo (f, g), which would recover m in
our scheme, it is only necessary to run the Buchberger algorithm on the pairs of polynomials
(ei(0), ej(0)) such that deg(ei(0), ej(0)) is less than or equal to the degree of the maximal-degree
encryption plus the degree of the maximal-degree pi. If we can show that all pairs satisfy this
constraint, then the complexity of the Buchberger algorithm will not have been reduced (note that
the Buchberger algorithm is not the fastest Gröbner basis computation algorithm, so reducing our
problem to the complexity of the Buchberger algorithm does not help an eavesdropper). However,
we can ensure that this is the case by the construction of our algorithm. For example, in our key
generation step we can ensure that the random polynomials ai and bi are chosen such that the
leading monomials of all encryptions are the same, then

deg(gi, gj) = max

{
deg

(
lcm(LM(ei(0)), LM(ej(0)))

LM(ei(0))
ei(0)

)
, deg

(
lcm(LM(ei(0)), LM(ej(0)))

LM(ej(0))
ej(0)

)}

= max

{
deg

(
LM(ei(0))

LM(ei(0))
ei(0)

)
, deg

(
LM(ej(0))

LM(ej(0))
ej(0)

)}

= deg(ei(0)) = deg(ej(0))

and since all encryptions have the same leading monomial, they all have the same degree d, and
deg(ei(0)) = d ≤ d + r from above, and we cannot eliminate any pairs of encryptions from our

24

execution of the Buchberger algorithm. Making the leading monomials of all encryptions the
same should not tell us any additional information about f and g, since it is the ai and bi which
create these equal degrees. We could also generalize this approach to allow ai and bi that make
all of our encryptions have the same x-degree. In this case, the least common multiple of the
leading monomials of each pair of encryptions would be one of the encryptions back again, so
deg(ei(0), ej(0)) would be exactly max{deg(ei(0)), deg(ej(0))} ≤ d, where d again is the upper
bound on the degrees of the encryptions we are considering. In light of these possibilities, we will
consider our scheme to rely on the hardness of Gröbner basis computation.

Using this scheme, then, relies on choosing our keys in such a way that the process of finding
a Gröbner basis for (f, g) given a list of encryptions of zero is hard (for security against a chosen
plaintext attack, which assumes that an eavesdropper has as access to as many plaintext/ciphertext
pairs as she desires [11]). We address this question in more depth in chapter 3 below, where
we discuss the implementation of these cryptosystems and related data generation. For now, we
mention that the degree of the polynomials f and g appears to play a large role in the complexity
of the computation (as might be expected, since increasing the total degree of a two-variable
polynomial increases the number of terms quadratically, and any computation becomes more time-
consuming). Though we only produce data for the two-variable case, the number of variables also
plays a role in this complexity (see, for example, [3]).

2.3.8 Generalizing

As mentioned in the preceding section, the complexity of Gröbner basis computation depends in
part on the number of variables involved. One potential benefit of the scheme presented is that it
generalizes very easily and naturally to polynomial rings in arbitrary numbers of variables while
maintaining ease of encryption and decryption. Since the scheme remains largely unchanged from
that presented above, we list only the main features:

• Our secret polynomials f, g are now elements of Z[x1, . . . , xn]

• The polynomial g is now a product of a random polynomial g′ ∈ Z[x1, . . . , xn] and n − 1
polynomials gi, where gi = xi − zi for some random integers zi (for i = 2, . . . , n)

• Encryption is still e(m) = m+ af + bg for some random polynomials a, b ∈ Z[x1, . . . , xn]

• To decrypt, we first evaluate an encryption at (x, z2, . . . , zn) and then reduce modulo f(x, z2, . . . , zn) ∈
Z[x]

The proof of the correctness of encryption and decryption is identical to that presented in
section 2.3.1, and it is thus merely sketched. In the encryption step, we add to m ∈ Z a random
multiple of f and a random multiple of g = g′ · (x2−z2) · · · (xn−zn). Evaluating this encryption at
(x, z2, . . . , zn) eliminates the term involving g, and leaves us with m+a(x, z2, . . . , zn)f(x, z2, . . . , zn).
Finally, reducing modulo f(x, z2, . . . , zn) gives us the message, as desired. The proof of the well-
definition of homomorphic operations is omitted, for it is identical to that presented above as
well.

When we increase the number of variables in our scheme, we also lose efficiency, since general
polynomials in more variables of the same total degree contain a greater number of terms. This
becomes a significant problem when we consider multiplying ciphertexts. For this reason, it may
not be practical to consider using many variables, but the possibility is there.

25

It is worth noting that if we attempted to generalize schemes such as those presented on pages
12 and 23 of [1], the efficiency of the decryption step would rely on reducing modulo a basis in
many variables. Our scheme avoids such messy computations by allowing decryption via simple
evaluations and reduction by a single-variable polynomial.

26

Chapter 3

Implementation and Results

In this chapter, we explain our implementation of the two encryption schemes presented above. We
implement both in C++ to take advantage of the efficiency of a compiled language and the flexibility
and power of an object-oriented language. In particular, classes are used to model polynomials and
vectors. Furthermore, we require manipulation of integers of arbitrary size. For this purpose, we
use the GNU Multiple Precision Arithmetic Library (GMP) [9]. The files referred to in the sections
below can be found at https://github.com/bleveque/HomEnc, and more extensive runtime results
can be found at http://btleveque.org/homenc.php.

Beyond theoretical formulation, it is important to see how these schemes might perform in
practice. As such, we include runtime results and some preliminary tests of Gröbner basis compu-
tation times using the computer algebra systems Macaulay2 [10] and Maple [14] [15] (in particular,
Jean-Charles Faugère’s Gröbner basis package FGb [6], which is available through Maple), as well
as runtime results for our schemes.

3.1 Code design

Choice-based scheme implementation

Our choice-based encryption scheme requires an implementation of vectors of size N , where N is
part of the scheme’s protocol. Operations on ciphertexts require the implementation of component-
wise addition and multiplication of such vectors. To accomplish this, we define a vector class in
the files vec.h and vec.cpp, and provide for it all of the necessary arithmetic methods. Since N is
a static parameter (applying circuits does not change N), the implementation simply wraps the
built-in array functionality in C++. Since the key generation function sets each element in our
encryption vector before any elements are accessed, we do not need to worry about initializing the
values in our vector, which helps the efficiency of our implementation.

Our implementation of the Chinese Remainder Theorem is straightforward, since we are working
strictly over the integers. It makes use of GMP’s built-in mpz_gcdext function, which for inputs
a, b ∈ Z produces c, d ∈ Z such that

ac+ bd = gcd(a, b)

27

Multivariate scheme implementation

Following the implementation of multivariate polynomials in [12], we use linked lists in llist.h and
llist.cpp to model multivariate polynomials. Each node in a list has three components: a coefficient
(again represented using GMP), an x-degree, and a y-degree. This approach has several benefits
over using standard arrays. Most importantly, if the polynomials in question are of large degree
(say n) but are very sparse (say with only t non-zero terms), using standard arrays will necessitate
O(n2) storage to accommodate each of the possible terms, while the linked list will only require
O(t) memory. Additionally, it is very straightforward to add and multiply using this construction,
provided we have a well-formulated algorithm for adding nodes to our list. This insertion algorithm
is outlined below:

1: insert(list, node):

2: set term <-- list.head

3: while term.xdeg > node.xdeg

4: set term to be the next term

5: check if term.xdeg < node.xdeg

6: if so insert node before term, return

7: while term.xdeg == node.xdeg and term.ydeg > node.ydeg

8: set term to be the next term

9: check if term.xdeg < node.xdeg or term.ydeg < node.ydeg

10: if so, insert node before term, return

11: add node.coeff to term.coeff

This algorithm maintains the loop invariant that the input node’s x-degree is always greater
than or equal to that of the current term, and if they are equal, then the node’s y-degree is also
greater than or equal to that of the current term. If this is ever untrue (we check in lines 5 and
9), we insert the node before the current term and return (lines 6 and 10). Since the list is in
descending order of degree with the variable ordering x > y, this successfully places our node. Note
that if we reach a term with x- and y-degree both equal to those of the input node, then we combine
like terms (line 11).

As mentioned above, this routine makes it straightforward to implement addition and mul-
tiplication, since like-term combination is take care of. Addition can then be accomplished by
simply creating a new list and inserting each node from the two input polynomials into this list.
Multiplication can be accomplished by inserting each product of pairs of terms from the two inputs.

Finally, we implement reduction in Z[x] by using polynomial long division. Reduction by a
degree n polynomial f ∈ Z[x] is not in general guaranteed to produce a polynomial of degree less
than n, since the leading coefficient of f may not divide the intermediate leading coefficients of
the dividend as we perform long division. However, since we only reduce polynomials e(m)(x, z0)
(which are constants added to multiples of f(x, z0)) modulo f(x, z0), we never run into this problem.

3.1.1 Running times

Here we give a brief tabulation of some running times of the cryptosystems described above.

28

Choice-based encryption runtimes

For choice-based encryption, we include parameters for the size of the prime P , the number of ways
K that we can mask messages with multiples of P , the number of operations M we are allowing,
and the encryption vector length N . A small sample of running times with various parameters is
given below:

Runtimes for choice-based cryptosystem

P K M (#ops) N time (sec)

1031 10 0 256 0.5611786

1031 10 40 256 0.536617

1031 10 0 512 2.499592

1031 30 40 512 3.43153

1073741827 10 0 256 0.8517384

1073741827 10 40 256 0.569316

1073741827 30 0 512 3.998316

1073741827 30 20 512 3.807948

1073741827 30 40 512 3.56772

Further testing is necessary to establish the soundness of these results, since the average times
above were taken from fairly small sample sets (five values), but the range of time values for
each set of parameters was less than 0.7 seconds (and most often substantially smaller). One
oddity about the data above is that applying circuits does not seem to have an effect on the time
it takes to encrypt and decrypt. On the contrary, it often seems to reduce the time. Further
testing would help to isolate the cause of this inconsistency. More extensive data is available at
http://btleveque.org/homenc.php.

Multivariate encryption runtimes

As expected, our multivariate scheme exhibits much larger ciphertext expansion than did our
previous scheme, due to the fact that upon multiplications, the polynomials roughly double in
degree, which corresponds to a quadratic increase in the number of terms. As such, runtimes
quickly slow down. We have not implemented reduction modulo resultant polynomials, which
could help this issue. The parameters we test with are the degree of f and g, the bound on the
coefficient size of f , g, and the random polynomials a and b, and the number of operations we are
allowing.

Runtimes for multivariate cryptosystem

Degree of f , g 2-log of coefficient bound #ops time (sec)

2 2 0 0.0002388

2 2 4 0.0024646

2 2 8 0.0108714

2 10 0 0.0001832

10 10 0 0.0078788

10 10 4 17.3912

10 10 8 290.8336

29

We see indeed that as we start applying circuits, our scheme slows down considerably. It would
be interesting further research to see how resultant reduction would impact this situation.

3.1.2 Gröbner basis computation times

The main tool that could be used to break our multivariate encryption scheme above is the the-
ory of Gröbner bases. We defined and discussed this notion in section 2.3.7, and here we give
some sample results for current Gröbner basis generation software using a variety of parameters.
We use Jean-Charles Faugère’s FGb package through Maple and the Macaulay2 function gb. In
Macaulay2, we generate Gröbner bases over both the integers and Z/pZ for several choices of p. The
results were generated using the scripts grob.sh (calling Macaulay2 over the integers), ZpGrob.sh
(calling Macaulay2 over Z/pZ), and MapleScript.sh (calling FGb over the integers). We did not
verify the correctness of the bases output by these methods. The calls to FGb sometimes resulted
in errors, and we have done our best to remove the corresponding runtimes manually from the
resulting data, since an error causes the function to return relatively quickly with the incorrect
result. More complete results may be found on the website accompanying this thesis (located at
http://btleveque.org/homenc.php).

Results from running Macaulay2 over the integers were promising, with calls to gb taking
several minutes for fairly small-degree (i.e. degree 6) secret polynomials f and g. Note that
then encryptions would have roughly twice that degree, since f and g are multiplied by random
polynomials a and b in the encryption process.

Computed in Macaulay2 over Z

degree log coeff bd. num. encryptions time (sec)

3 3 2 0.00694

3 6 4 0.01548

3 10 4 0.02332

4 3 2 0.052821

4 6 4 0.23544

4 10 4 1.28991

5 10 4 10.3009

6 10 4 153.14296

30

Computed in Macaulay2 over Z/pZ
degree log coeff bd. num. encryptions p time (sec)

3 10 4 11 0.00151

4 10 4 11 0.00348

5 10 4 11 0.0079

6 10 4 11 0.0178

10 10 4 11 0.1442

3 10 4 32749 0.00157

4 10 4 32749 0.004929

5 10 4 32749 0.01223

6 10 4 32749 0.02294

10 10 4 32749 0.24629

30 16 2 32749 16.9890

30 16 10 32749 50.30124

Computed using FGb over Z

degree log coeff bd. num. encryptions time (sec)

3 3 2 0.02967

3 6 4 0.025

3 10 4 0.02487

4 3 2 0.0368

4 6 4 0.0262

4 10 4 0.027

5 10 4 0.12

6 10 4 0.1232

16 20 10 43.7112

16 60 10 115.4898

We see that while all three implementations run very quickly for small degrees, the runtime starts
growing rapidly as the degree increases. The FGb implementation, seems to perform best over the
integers, at least for the parameters we tested. We see also that Gröbner basis computation is much
faster over Z/pZ than over the integers. Note that we do not alter the coefficient bounds in the
second table above too much, since we are working over a finite field. The results above certainly
show that an implementation of the multivariate encryption scheme presented in the preceding
chapters would need to use fairly large-degree polynomials, which would impede efficiency.

31

Chapter 4

Appendix

4.1 Common notation and terminology

We recall in this section some commonly used notation used throughout the preceding pages:

• Z — the ring of integers, i.e. {. . . ,−2,−1, 0, 1, 2, . . . }

• Z/pZ — the ring of integers modulo p, i.e. the set of equivalence classes {0̄, 1̄, . . . , ¯(p− 1)}

• R[x1, . . . , xn] — the ring of polynomials in the variables x1, . . . , xn with coefficients in the ring
R; used most often above is the ring of polynomials with integer coefficients, Z[x1, . . . , xn]

• If {r1, . . . , rn} ⊂ R is a collection of ring elements, we define the ideal generated by {r1, . . . , rn}
as the collection of all finite

〈r1, . . . , rn〉 =

{
n∑

i=1

airi

}
where ai ∈ R. In particular, the ideal above is finitely generated, since the collection {ri} is
finite. The definition is analogous for infinite generating sets; we still consider finite sums in
this case.

• If f is a multivariate polynomial, we mean by its degree or total degree the largest sum of
degrees of variables in any term. For example, the degree of 4x7y + 4x3y3 is 8.

• LM(f) — given a polynomial f , LM(f) is the highest-degree monomial term of f (i.e. not
including its coefficient).

• LC(f) — given a polynomial f , LC(f) is the coefficient of the highest-degree term of f .

• LT (f) — the highest degree term in f .

• A commutative diagram is a visual representation of a collection of maps which can be applied

32

in multiple ways to get the same result. For example, if we have the maps

f : R2 −→ R
(x, y) 7→ x+ y

g : R2 −→ R2

(x, y) 7→ (2x, 2y)

h : R2 −→ R2

(x, y) 7→ (
x

2
,
y

2
)

the following commutative diagram represents the fact that adding two numbers is the same
as first multiplying both by 2, adding them, and then dividing the sum by 2:

(x, y) x+ y

(2x, 2y) 2x+ 2y

�

f

hg

f

33

Bibliography

[1] Martin R. Albrecht, Pooya Farshim, Jean-Charles Faugère, and Ludovic Perret. Polly Cracker,
revisited. In Advances in cryptology—ASIACRYPT 2011, volume 7073 of Lecture Notes in
Comput. Sci., pages 179–196. Springer, Heidelberg, 2011.

[2] Boo Barkee, Deh Cac Can, Julia Ecks, Theo Moriarty, and R. F. Ree. Why you cannot even
hope to use Gröbner bases in public key cryptography: an open letter to a scientist who failed
and a challenge to those who have not yet failed. J. Symbolic Comput., 18(6):497–501, 1994.

[3] David Bayer and Michael Stillman. On the complexity of computing syzygies. J. Symbolic
Comput., 6(2-3):135–147, 1988. Computational aspects of commutative algebra.

[4] Thomas Becker and Volker Weispfenning. Gröbner Bases: A Computational Approach to
Commutative Algebra, volume 141 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1993. In Cooperation with Heinz Kredel.

[5] Alicia Dickenstein, Noäı Fitchas, Marc Giusti, and Carmen Sessa. The membership problem for
unmixed polynomial ideals is solvable in single exponential time. Discrete Applied Mathematics,
33(13):73 – 94, 1991.

[6] Jean-Charles Faugère. FGb: A Library for Computing Grbner Bases. In Komei Fukuda,
Joris Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathematical Software - ICMS
2010, volume 6327 of Lecture Notes in Computer Science, pages 84–87, Berlin, Heidelberg,
September 2010. Springer Berlin / Heidelberg.

[7] Michael Fellows and Neal Koblitz. Combinatorial cryptosystems galore! In Finite fields:
theory, applications, and algorithms (Las Vegas, NV, 1993), volume 168 of Contemp. Math.,
pages 51–61. Amer. Math. Soc., Providence, RI, 1994.

[8] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[9] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision
Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/manual/.

[10] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in
algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[11] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An introduction to mathematical
cryptography. Undergraduate Texts in Mathematics. Springer, New York, 2008.

34

[12] Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms,
2nd Edition. Addison-Wesley, 1973.

[13] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New
York, third edition, 2002.

[14] a division of Waterloo Maple Inc. Maplesoft. Maple User Manual. Toronto, 2005-2013.
http://www.maplesoft.com/support/help/Maple/view.aspx?path=author.

[15] a division of Waterloo Maple Inc. Maplesoft. Maple Programming Guide. Toronto, 2013.
http://www.maplesoft.com/support/help/Maple/view.aspx?path=author.

[16] W. A. Stein et al. Sage Mathematics Software (Version 4.7.2). The Sage Development Team,
2011. http://www.sagemath.org.

[17] Mike Stillman. Personal communication, 2013.

[18] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in cryptology—EUROCRYPT 2010, volume 6110 of
Lecture Notes in Comput. Sci., pages 24–43. Springer, Berlin, 2010.

35

