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Nomenclature

f̂k, f̂(k) Fourier coefficient

f̂(j, k) 2D Fourier coefficient

D Open unit disk

T Unit circle

dm Normalized Lebesgue measure on T

Lp(T) Space of p−integrable functions defined on T

Hol(D) Space of holomorphic functions defined on D

Hp(D) Hardy space of the disk

Hp = Hp(T) Hardy space of the circle

C(T) Continuous functions defined on T

z Identity function on the circle

zn Pointwise multiplication of n identity functions

span(zn)n∈Z Polynomials

bf Boundary limits of f

limz→eiθ∢ Nontangetial convergence

Sξ Stolz angle

H Hilbert transform

P+ Riesz Projection

Lp,∞ = Lp,∞(T) Weak Lp space

Log Complex Logarithm defined on C − {(−∞, 0)}
H∞

− L∞ functions with vanishing nonnegative Fourier coefficients

C(T)− Continuous functions with vanishing nonnegative Fourier coef-
ficients

H Hartogs triangle

db(H) Distinguished Boundary of the Hartogs triangle

Hp(H) Hardy Space of H

Hp(db(H)) Hardy Space of db(H)

Lp(db(H)) Space of p-integrable functions defined on db(H)

S Szegő projection

C0 Functions vanishing at infinity

Ck Functions with k continuous derivatives

F Fourier transform on R2

S(R) Class of Schwartz functions

Φn n-th Fejer Kernel
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Introduction

Hardy spaces arise naturally when we study the boundary limit of a holomorphic function f
defined in the open unit disk D. This is because f has the following power series representation
for all z ∈ D:

f(z) =
∞∑
n=0

anz
n.

Formally and heuristically, we can replace z with eiθ to obtain a function bf defined on T:

bf(eiθ) =

∞∑
n=0

ane
inθ.

If this infinite sum is well-defined, then we see that an is not only the Taylor coefficient in
the power series expansion, but also the Fourier coefficient in the Fourier series expansion. We
can regard bf as a function with vanishing negative Fourier coefficients. bf and f can then be
identified. To be more precise, the map f 7→ bf is an isometry between some Banach spaces
we will later define. Moreover, we will discuss the following two types of convergence in section
1:

• limr↗1 f(re
iθ) = bf(eiθ), which is the convergence in the space Lp equipped with either

the norm topology or the weak* topology.

• limz→eiθ∢ f(z) = bf(eiθ), which is called the nontangential a.e. convergence.

We will also prove some Banach space properties ofHp. In section 2, we will study two important
operators related to the Hardy space: the Hilbert transform H and the Riesz projection P+.
These two operators can be easily defined on the set of polynomials span(zn)n≥0 ⊂ Lp(T). The
natural question is whether they have a continuous extension to the Lp space. Our main work in
section 2 is to prove an estimate of their operator norms on different function spaces. Alongside,
we will prove that for f ∈ Lp where 1 < p <∞,

m∑
k=−m

f̂(k)zk −→ f,

where the convergence is taken in Lp. We will also apply the boundedness of P+ to prove some
duality results of Hardy spaces.

In (1), Monguzzi defines the Hardy space on the Hartogs triangle. The corresponding projection
map S is called the Szegő projection. The notion of a Hardy space can be readily generalized
to domains with smooth boundaries. However, extending this definition to arbitrary domains
remains a non-trivial challenge. The Hartogs triangle is well-known for its pathological behaviors
in multivariable complex analysis, which motivates the need for a suitable definition tailored to
this specific domain. In section 3, we will generalize some of the classical results of the Hardy
space on the disk to the Hardy space on the Hartogs triangle, including the boundedness of S
and the duality of Hardy spaces.
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1 Preliminaries - Hardy Space on the Unit Disk

Definition 1.1. Let f be an integrable function defined on the unit disk with respect to the
normalized Lebesgue measure. We denote the k−th Fourier coefficient by f̂k or f̂(k), which is
equal to ˆ

T
fz̄kdm.

Definition 1.2. Let D be the open unit disk of the complex plane. Denote its closure by D̄
and its boundary by T. Denote the normalized Lebesgue measure defined on T by dm. Given
a function f defined over D, we can define a function fr on T for each 0 ≤ r < 1 by

fr(z) := f(rz).

We define the following function spaces:

• For p ∈ [1,∞], Lp = Lp(T) is the space p−integrable functions defined on T.

• Hol(D) is the space of holomorphic functions defined on the open unit disk.

• For p ∈ [1,∞), Hp(D) =
{
f ∈ Hol(D) : ∥f∥Hp :=

(
sup0≤r<1

´ 2π
0 |fr(eiθ)|p dθ

2π

) 1
p <∞

}
.

• H∞(D) =
{
f ∈ Hol(D) : ∥f∥H∞ = supz∈D |f(z)| <∞}.

• For p ∈ [1,∞], Hp = {f ∈ Lp(T) : f̂(k) = 0, k < 0}, equipped with the usual Lp norm.

• C(T) is the set of continuous functions defined on T.

• span(zn)n≥0 is the set of all finite linear combinations of zn (i.e. the set of all trignometric
polynomials).

Hp(D) and Hp are both called Hardy spaces because there’s an isometry between them.

Theorem 1.1 (Norm and Weak* Convergence). Let 1 ≤ p ≤ ∞.

• When p <∞, for each f ∈ Hp(D), the limit limr↗1 fr exists in the Lp norm and is denoted
by bf .

• When p = ∞, the limit limr↗1 fr = bf exists in the weak* sense.

• For all 1 ≤ p ≤ ∞, f 7→ bf is an isometry from Hp(D) to Hp.

Theorem 1.2 (Nontangential Convergence). For each ξ on T, a Stolz angle Sξ is an angular
sector inside D centered at ξ such that the straight line connecting 0 and ξ is its bisector and
its opening angle is less than π.
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Suppose f ∈ Hp(D) for 1 ≤ p ≤ ∞. Then the nontangential limit always exists. More precisely,
there exists an Lp function bf such that for a.e. ξ on T,

lim
z→ξ,z∈Sξ

f(z) = bf(ξ)

We also denote this limit by limz→eiθ∢ f(z).

Remark. The main tool used in Theorem 1.1 is the weak or weak* compactness of the closed
unit ball of Lp spaces, while Theorem 1.2 is proved by using a maximal function. For the
details of the proof of Theorem 1.1 and 1.2, see (2). According to this theorem, Hp functions
are the boundary values of Hp(D) functions and Hp(D) functions are the Poisson integrals of Hp

functions. From now on, we use f to denote both a function in Hp(D) and its boundary limit
in Hp.

Theorem 1.3. Hp(D) is a Banach space for p ∈ [1,∞].

Proof. We mostly follow Rudin’s proof (3). Suppose (fn)n≥0 is a Cauchy sequence in Hp(D).
For any 0 ≤ r < R < 1 and any z such that |z| ≤ r, we apply Cauchy’s formula to the function
fn − fm around the circle γ of radius R to get

(R− r)|fn(z)− fm(z)| = (R− r)
1

2π
|
ˆ
γ

fn(ζ)− fm(ζ)

ζ − z
dζ|

≤ (R− r)
1

2π

ˆ 2π

0

|fn(Reiθ)− fm(Reiθ)|
|Reiθ − z|

Rdθ

≤ 1

2π

ˆ 2π

0
|(fn − fm)R(e

iθ)|dθ,

where the last inequality follows from R < 1 and R−r
|Reiθ−z| ≤ 1. We then can further deduce that

(R− r)|fn(z)− fm(z)| ≤ ∥(fn − fm)R∥L1

≤ ∥(fn − fm)R∥Lp

≤ ∥fn − fm∥Hp .

The last expression goes to 0 as n,m→ ∞. This implies that the sequence (fn)n≥0 is uniformly
Cauchy on closed disks contained inside the unit disk. Therefore, it converges uniformly on
compact subsets of D to a function f ∈ Hol(D). We need to show that fn converges to f
in the Hp(D) norm. For every ε > 0, we can find some n so that for every m1,m2 ≥ n,
∥fm1 − fm2∥Hp < ε. For every r < 1, we can use Fatou’s lemma to conclude that for every
m1 ≥ n, we have

∥(fm1 − f)r∥Lp ≤ lim inf
m

∥(fm1 − fm)r∥Lp

≤ lim inf
m

∥fm1 − fm∥Hp

≤ ε.

Thus, supr ∥(fm1 − f)r∥Lp ≤ ε and ∥fm1 − f∥Hp ≤ ε.

Theorem 1.4. Hp is a Banach space for p ∈ [1,∞].

Proof. By Theorem 1.1, there is an surjective isometry from Hp(D) to Hp. Since isometry
preserves completeness and Hp(D) is complete by Theorem 1.3, Hp is complete.
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Lastly, we will prove some density results that are useful for later sections.

Theorem 1.5. span(zn)n≥0 is dense in Hp for 1 ≤ p <∞ and H∞ ∩ C(T).

Proof. Let Φn be the Fejér kernel. It is well-known that for all p ∈ [1,∞) and f ∈ Lp,

f ∗ Φn(z) =
1

n+ 1

n∑
m=0

m∑
k=−m

f̂(k)zk
Lp

−→ f.

That is, the nth arithmetic means of the partial Fourier sum of f converges in Lp to f . The
same is true for p = ∞ if f ∈ C(T). If f ∈ Hp or H∞∩C(T), then by definition it has vanishing
negative Fourier coefficients. We can thus deduce that

f ∗ Φn(z) =
1

n+ 1

n∑
m=0

m∑
k=0

f̂(k)zk
Lp

−→ f.

This implies the density of span(zn)n≥0 in Hp and H∞ ∩ C(T).

Corollary 1.5.1. Hp for 1 ≤ p <∞ and H∞ ∩ C(T) are separable.

Proof. Consider the following subset of functions:

E := {f : T → C : f(z) =
n∑

k=0

(ak + ibk)z
k, n ∈ N, ak ∈ Q, bk ∈ Q}.

It is easy to see that any polynomials can be approximated by polynomials in E.

The following corollary is the analogue of the density of L2 in Lp.

Corollary 1.5.2. H2 is dense in Hp for 1 ≤ p <∞.

Proof. H2 certainly contains span(zn)n≥0.

It is natural to ask whether H∞ is separable. One should expect that this is not true since L∞

is not separable. We will follow the hint in (2) to prove this statement.

Theorem 1.6. H∞ is not separable.

Proof. We will construct an uncountable collection of functions (Θα)α∈R+ ⊂ H∞ such that
∥Θα −Θβ∥L∞ ≥ 1 whenever α ̸= β. This creates uncountably many disjoint open sets in H∞,
which implies that H∞ is not separable.

Define

Θα(e
iθ) := e

−α 1+eiθ

1−eiθ = lim
r↗1

e
−α 1+reiθ

1−reiθ .
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We first show that Θα ∈ H∞. Clearly Θα is the radial limit of the function e−α 1+z
1−z ∈ Hol(D).

By Theorem 1.2, it suffices to show that e−α 1+z
1−z ∈ H∞(D). For all 0 ≤ r < 1,

1− 2r cos θ + r2 ≥ 1− 2r + r2 = (1− r)2.

1− r2

1− 2r cos θ + r2
≥ 0.

|e−α 1+reiθ

1−reiθ | = e
−αℜ( 1+reiθ

1−reiθ
)
= e

−α 1−r2

1−2r cos θ+r2 ≤ e0 = 1.

Hence, ∥e−α 1+z
1−z ∥H∞ ≤ 1 < ∞. Moreover, the calculation above also suggests that when r = 1

and eiθ ̸= 1,
|Θα(e

iθ)| = 1

Now we show that ∥Θα −Θβ∥L∞ ≥ 1 whenever α ̸= β. We first notice that

∥Θα −Θβ∥L∞ = ∥Θα −
Θβ

Θα
Θα∥L∞ = ∥|Θα||1−Θβ−α|∥L∞ = ∥1−Θβ−α∥L∞

Hence, it suffices to show that ∥1−Θα∥L∞ ≥ 1 for α > 0. When eiθ ̸= 1, we have

ℜ(1 + eiθ

1− eiθ
) =

1− |eiθ|2

1− 2|eiθ| cos θ + |eiθ|2
= 0,

ℑ(1 + eiθ

1− eiθ
) =

sin θ

1− cos θ
.

By L’Hôpital’s rule,

lim
θ↘0

sin(θ)

1− cos θ
= lim

θ↘0

cos θ

sin θ
= ∞,

lim
θ↗2π

sin(θ)

1− cos θ
= lim

θ↗2π

cos θ

sin θ
= −∞.

By the intermediate value theorem, for any α > 0, we can find some 0 < θ0 < 2π such that

α sin θ0
1− cos θ0

= π,

Θα(e
iθ0) = e

−αiℑ( 1+eiθ0

1−eiθ0
)
= e

−i
α sin θ0
1−cos θ0 = e−iπ = −1,

|1−Θα(e
iθ0)| = 2.

By the continuity of Θα around eiθ0 , we can find a subset A ⊂ T with positive measure such
that |1−Θα(e

iθ)| > 1.5 on A. We conclude that ∥1−Θα∥L∞ ≥ 1 for α > 0.
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2 Operators Defined on the Hardy Space

2.1 Boundedness of the Hilbert Transform and the Riesz Projection

Definition 2.1. Let u ∈ L2(T) be a real-valued function. Then the Hilbert transform Hu ∈
L2(T) of u is defined to be the unique function such that

Ĥu(0) = 0,

u+ i(Hu) ∈ H2.

Remark. It is known that the Hilbert transform satisfies the following estimate:

∥Hu∥L2 ≤ ∥u∥L2 .

If u is a complex-valued function, then we can extend H linearly:

Hu := H(ℜu) + iH(ℑu).

Here are two formulae for Hu:

Hu =
1

i
(P+u− P−u)−

1

i
û(0),

Hu(z) =

ˆ
T
ℑ(ζ + z

ζ − z
)u(ζ)dm(ζ),

where P+ and P− are defined by the following formula:

P+u =
∑
k≥0

ûkz
k,

P−u =
∑
k<0

ûkz
k.

These formulae hold at least when u is a polynomial.

Theorem 2.1. The Hilbert transform is anti-self-adjoint on L2(T).

Proof. P+, P−, and the function u 7→ û(0) are all orthogonal projections on L2(T), so they are
all self-adjoint. We then use the property that inner product is conjugate linear in the second
entry to get

⟨Hu, v⟩ = −i⟨P+u, v⟩+ i⟨P−u, v⟩+ i⟨û(0), v⟩
= −i⟨u, P+v⟩+ i⟨u, P−v⟩+ i⟨u, v̂(0)⟩
= ⟨u, iP+v⟩+ ⟨u,−iP−v⟩+ ⟨u,−iv̂(0)⟩
= ⟨u, i(P+v − P−v)− iv̂(0)⟩
= −⟨u,Hv⟩.

Remark. Notice that L2 ∩L1 = L2 (because the circle is a space with finite measure) is a dense
subspace of L1. Suppose we do know that H sends functions in L2 to L1,∞ and is in fact a
bounded operator (i.e. for all f ∈ L2, there exists some constant C such that ∥Hf∥L1,∞ ≤
C∥f∥L1 , which is proved in the following theorem). Then, we can extend H to L1 and view
it as an bounded operator from L1 to L1,∞. Specifically, for any g ∈ L1, we find a sequence
{gn}n ∈ L2 such that

gn
L1

−→ g,
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and then define Hg to be the limit of {Hgn}n in L1,∞. The limit exists because {Hgn}n is a
Cauchy sequence in L1,∞:

∥Hgn −Hgm∥L1,∞ = ∥H(gn − gm)∥L1,∞ ≤ C∥gn − gm∥1 → 0 as n,m→ ∞.

Suppose {kn}n is another sequence in L2 that converges to g. Then the following sequence also
converges to g:

k1, g1, k2, g2, · · ·
For the same reason, the image of this sequence under H is again a Cauchy sequence. Moreover,
it contains both {Hgn}n and {Hkn}n as its subsequences. Therefore, {Hgn}n and {Hkn}n must
have the same limit. This suggests that the definition of Hg is independent of the choice of an
approximating sequence. In this way, we extends H to get a weak-type (1,1) operator on L1(T).
We will often use a similar type of argument implicity for a continuous extension of an operator
throughout the entire thesis.

Theorem 2.2. The Hilbert transform densely defined on L2(T) ⊂ L1(T) satisfies a weak type
(1, 1) estimate.

Proof. We follow the hint on (2). For every u ∈ L2(T) ⊂ L1(T), we define a distribution
function:

λHu(t) = m{ζ : |Hu(ζ)| > t}.
We can assume that u ≥ 0 by decomposition and ∥u∥1 =

´
T udm = 1 by normalization. We

show that it satisfies the following inequality:

λHu(t) ≤
2

t
, for all t > 0.

Let f = u+ iHu so that f ∈ H2 (and thus f(0) = f̂(0) = û(0) = 1). Define

ϕt = 1 +
f − t

f + t
.

For a fixed t, ϕt is a bounded function on the circle because

|ϕt| ≤ 1 +
|f − t|
|f + t|

= 1 +

√
(u− t)2 + (Hu)2

(u+ t)2 + (Hu)2
≤ 2.

Therefore,

It(z) :=

ˆ
T

ζ + z

ζ − z
ℜϕt(ζ)dm(ζ)

defines an analytic function on D. Notice that

∀z ∈ D,ℜIt(z) =
ˆ

T
ℜ(ζ + z

ζ − z
)ℜϕt(ζ)dm(ζ) = ℜϕt(z).

Thus, ϕt (it has a holomorphic extension to D) and It are two analytic functions with the
same real part. It follows from the Cauchy Riemann equations that It and ϕt only differ by
an imaginary constant. Since both It(0) =

´
T ℜϕt(ζ)dm(ζ) and ϕt(0) = 1+ 1−t

1+t are real, It ≡ ϕt.

Now if |Hu| > t, then we have

(Hu)2 > t2,

u2 + (Hu)2 > t2,

2u2 + 2(Hu)2 + 2tu > u2 + t2 + 2tu+ (Hu)2,

2u2 + 2(Hu)2 + 2tu > (u+ t)2 + (Hu)2,

ℜϕt =
2u2 + 2(Hu)2 + 2ut

(u+ t)2 + (Hu)2
> 1.
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By Chebyshev’s inequality, we can conclude that

λHu(t) ≤ λℜϕt(1) ≤
ˆ

T
ℜϕtdm = It(0) = ϕt(0)

= 1 +
1− t

1 + t
=

1 + t+ 1− t

1 + t
=

2

1 + t
≤ 2

t

Remark. Now we know that H is defined on L1 (with codomain in L1,∞), so it is defined on Lp

for any 1 ≤ p ≤ ∞.

Theorem 2.3. The Hilbert transform is a strong (p, p) operator any 1 < p <∞.

Proof. The case that 1 < p < 2 follows immediately from Theorem 2.2, L2 boundedness of H,
and the Marcinkiewicz Interpolation Theorem. If 2 < p < ∞, then for every u ∈ Lp, we can
define a linear functional on L2 ⊂ Lp′ (1p + 1

p′ = 1):

v ∈ L2 7→
ˆ

T
vHudm.

Since H is anti-self-adjoint, we have:

|
ˆ

T
vHudm| = |

ˆ
T
(Hv)ūdm|

≤ ∥u∥Lp∥Hv∥Lp′ (Hölder’s inequality)

≤ ∥u∥Lp∥H∥Lp′→Lp′∥v∥Lp′ .

This functional can then be extended to Lp′ by density. The duality between Lp and Lp′ then
implies that ∥Hu∥Lp ≤ ∥H∥Lp′→Lp′∥u∥Lp .

Theorem 2.4. The Riesz Projection P+ is a strong (p, p) operator for any 1 < p <∞.

Proof. Recall that

P+u− P−u = iHu+ û(0),

2P+u = iHu+ û(0) + u.

By Theorem 1.4, we have

∥P+u∥Lp =
1

2
∥iHu+ û(0) + u∥Lp

≤ 1

2
(∥H∥Lp→Lp + 1)∥u∥Lp +

1

2
|û(0)|

≤ 1

2
(∥H∥Lp→Lp + 1)∥u∥Lp +

1

2
∥u∥L1

≤ (
1

2
∥H∥Lp→Lp + 1)∥u∥Lp .

Theorem 2.5. The Hilbert transform is not bounded on L∞ and L1.

11



Proof. We first consider the space L∞. Consider the function f(z) = iLog(1− z) (we use Log
to denote the complex logarithm defined on C − {(−∞, 0]}), which is holomorphic in the open
unit disk D and can be extended continuously to D − {1}. f has the following power series
representation in D:

f(z) = iLog(1− z) = −
∞∑
k=1

i

k
zk.

f belongs to H2(D) because

sup
0≤r<1

ˆ 2π

0
|f(reiθ)|2 dθ

2π
=

∑
k≥0

|f̂(k)|2 =
∞∑
k=1

1

k2
<∞.

The boundary value bf of f thus belongs to H2. Since bf is the a.e. nontangential limit of f
and f is continuous on D − {1}, we have

iLog(1− eiθ) = bf(eiθ) ∈ H2.

Notice that the real part u := ℜbf is equal to

− arctan(
sin θ

cos θ − 1
),

which is in L∞ because arctan is a bounded function. The imaginary part ℑbf is unbounded
and has mean value zero by the next lemma. Consequently, Hu = ℑbf , which shows that H
does not even map L∞ into L∞.

Now suppose by way of contradiction H is a bounded operator from L1 to L1. We can then
define a linear functional on L2 for each u ∈ L∞ by the following formula:

v ∈ L2 7→
ˆ

T
vHudm.

Again we use Hölder’s inequality and the anti-self-adjoint property of H to deduce that

|
ˆ

T
vHudm| = |

ˆ
T
(Hv)udm|

≤ ∥u∥L∞∥Hv∥L1

≤ ∥u∥L∞∥H∥L1→L1∥v∥L1 .

This functional can then be extended to L1, which then shows that ∥Hu∥L∞ ≤ ∥H∥L1→L1∥u∥L∞ .
This contradicts what we proved above.

Lemma 2.6. log |1− z| has mean value zero on the circle.

Proof. Consider the function hr(θ) = log |1 − reiθ| a.e. defined on the interval [0, 2π] for some
r ∈ [0, 1]. hr is the restriction of the real part of the function iLog(1− rz), which is harmonic
on a open domain containing D̄ when r < 1, by the mean value property of harmonic functions,
we have

1

2π

ˆ 2π

0
hr(θ)dθ = 0,

lim
r→1

1

2π

ˆ 2π

0
hr(θ)dθ = 0.

12



We are done if we can interchange the order of limit and integral. Hence, our goal now is to
justify the use of the dominated convergence theorem. We use Euler’s formula to get

hr(θ) = log
√

1 + r2 − 2r cos θ.

From this equality, we can see that hr is symmetric around π, so we just need to focus on the
behavior of hr on [0, π]. Choose some small ε > 0 so that

• when 1− r is small enough, |1− reiθ| < 1 for all θ ∈ [0, ε) and

• θ2 < sin θ for all θ ∈ [0, ε).

Such ε exists by the continuity of the function |1− reiθ|. Then, |hr(θ)| has a uniform bound M
over the interval [ε, π] because it can be viewed as a two-variable continuous function defined on
the compact space [0, 1]× [ε, π]. We claim that |hr(θ)| is dominated by the following function:

p(θ) :=

{
log( 1

θ2
), θ ∈ [0, ε)

M, θ ∈ [ε, π]
.

Indeed, we have just shown that |hr(θ)| ≤ M for θ ≥ ε. Now we fix some 0 < θ < ε. By
calculating the derivative of 1+r2−2r cos θ with respect to r, one can know that this expression
reaches its minimum at r = cos θ. Hence,

θ2 ≤ | sin θ|

=
√
1 + cos2 θ − 2 cos2 θ

≤
√

1 + r2 − 2r cos θ

= |1− reiθ|
< 1.

The monotonity of logarithm implies that

log θ2 ≤ log |1− reiθ| < log 1 = 0,

|hr(θ)| = | log |1− reiθ|| ≤ log(
1

θ2
).

Lastly, we need to show that the function p is integrable. By the monotone convergence theorem
and the L’Hôpital’s rule, we haveˆ ε

0
log(

1

θ2
)dθ = lim

a↘0

ˆ ε

a
log(

1

θ2
)dθ

= lim
a↘0

[
x log(

1

x2
) + 2x

]ε
a

= ε log(
1

ε2
) + 2ε− lim

a↘0
(−2a log a+ 2a)

= ε log(
1

ε2
) + 2ε

<∞.

Remark. Since

iHu = P+u− P−u− û(0)

= P+u− P−u− û(0) + u− u

= 2P+u− û(0)− u,
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P+ cannot be a bounded operator on L∞ or L1, as this would imply that H is bounded on these
two spaces, leading to a contradiction. We can also directly prove that P+ is not bounded on
L∞ by considering the following function

g(θ) =

{
π − θ, 0 < θ < π

−π − θ, −π < θ < 0
.

We can compute its Fourier coefficients. When k ̸= 0, we have

ĝ(k) =
1

2π

ˆ π

−π
g(θ)e−ikθdθ

=
1

2π

ˆ π

0
(π − θ)e−ikθdθ +

1

2π

ˆ 0

−π
(−π − θ)e−ikθdθ

=
1

2π
(
−iπk + eiπk − 1

k2
− iπk + e−iπk − 1

k2
)

=
1

2π
(
−2πik

k2
)

= − i

k
.

When k = 0, ĝ(k) is just the integral of g. Since g is an odd function, ĝ(0) = 0. Hence,

P+g(e
iθ) = −

∞∑
k=1

i

k
eikθ = iLog(1− eiθ),

where the last equality is a consequence of Abel’s theorem. Since iLog(1 − eiθ) is unbounded
around θ = 0, we can conclude again that P+ is unbounded on L∞.

Theorem 2.7. The Hilbert transform and the Riesz projection are not bounded on C(T).

Proof. By using the formula in the remark above, the unboundedness of P+ follows from the
unboundedness of H. Hence, we will just show that H is not bounded.

We prove by contradiction. Suppose H : C(T) → C(T) is bounded (or H has a continuous
extension to C(T)). Let M(T) be the space of Radon measures. The norm of a measure
ν ∈ M(T), denoted by |µ|, is its total variation. For a fixed f ∈ L1, ∥f∥L1 = |fdm| (see
Chapter 3 and 7 in (4)) and defines a bounded linear functional If on C(T) by the following
formula:

for all g ∈ C(T), If (g) =
ˆ

T
gfdm.

By the Riesz representation theorem (see Chapter 7 in (4)), which describes an isometric iso-
morphism from M(T) to (C(T))∗, the operator norm of If is equal to the total variation norm
|fdm|, which means that

∥f∥L1 = ∥f̄∥L1 = |f̄dm| = sup{|
ˆ

T
gf̄dm| : g ∈ C(T), ∥g∥L∞ ≤ 1}.

We can then use this quantity to estimate the L1 norm of Hf . Suppose first that f ∈ L2. For
all g ∈ C(T), we can use the self-adjoint property of H to deduce that

|
ˆ

T
gHfdm| = |

ˆ
T
Hgf̄dm|

≤ ∥Hg∥L∞∥f∥L1

≤ ∥H∥C(T)→C(T)∥g∥L∞∥f∥L1 .
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Hence,
∥Hf∥L1 ≤ ∥H∥C(T)→C(T)∥f∥L1 .

As L2 is dense in L1, this inequality above is true for any f ∈ L1. This means that H is
continuous from L1 to L1, which contradicts Theorem 2.5.
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2.2 The Nonexistence of Projection onto H1 and H∞.

Definition 2.2. Let X be a Banach space andM a closed subspace. A bounded linear operator
P : X → X is called a projection onto M if P 2 = P and its image is equal to M .

Theorem 2.8. There does not exist any bounded projection from L1 onto H1.

This result was first proved by Newman in (5). Later, Rudin gives another proof in (6). In the
following, I will explain Rudin’s approach.

Proof. Here is an outline of Rudin’s proof. Suppose P : L1 → L1 is a bounded projection onto
H1. We can use P and a vector-valued integral that we will later define in this section to obtain
another bounded projection P ∗ onto H1 that commutes with translation (given f ∈ L1, its
translation by ζ ∈ T is the function τζf(z) = f(zζ̄)). That is, for all f ∈ L1(T), ζ ∈ T,

τζ(P
∗f) = P ∗(τζf).

Then by a standard result about the Fourier multiplier operators, see (7), there exists a sequence
{cn} ∈ l∞ such that for a smooth function f ,

P ∗f(z) =
∑
n∈Z

cnf̂(n)z
n.

Apply the equality P ∗2 = P ∗ to f(z) = zn for all n ∈ Z, we get

P ∗2(zn) = P ∗(zn),

P ∗(cnz
n) = cnz

n,

c2nz
n = cnz

n,

cn = 0 or 1,

P ∗(zn) = 0 or zn.

Since P ∗L1 ⊂ H1 and does not include zn for n < 0, P ∗(zn) = 0 for n < 0. Since P ∗ is surjective
onto its image H1, P ∗(zn) = zn for n ≥ 0. Therefore, P ∗ is equal to the Riesz projection P+ (at
least on the set of trignometric polynomials), which is a contradiction because we have already
shown that P+ cannot be extended to a bounded projection on L1.

We see that the essence of the proof is to construct a bounded projection that commutes with
translation. Therefore, we introduce some basic knowledge about topological vector space and
vector-valued integral. Many definitions and theorems in this subsection can be found in Rudin’s
functional analysis (8). We only state theorems essential to the construction of P ∗ without giv-
ing a proof.

Definition 2.3. Let X be a topological vector space (TVS) over a field F = R or C. We always
assume that a TVS satisfies the T1 axiom and is thus Hausdorff. A local base of X is a collection
B of neighborhoods of 0 such that every neighborhood of 0 contains a member of B. X is locally
convex if there is a local base B whose members are convex. X is an F−space if its topology
is induced by a complete, translation invariant metric d. X is a Fréchet space if X is a locally
convex F−space. The dual of X, denoted by X∗, is the set of all continuous linear functionals
on X.

In order to ensure that the integral of a reasonably nice function exists, we need some criterion
for compactness.
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Definition 2.4. Let E ⊂ X. The convex hull of E is the intersection of all convex subsets of
X which contain E, and it is denoted by co(E). Its closure is denoted by co(E). E is bounded
if for every neighborhood V of 0 in X, there exists a number s > 0 such that E ⊂ tV for every
t > s. E is said to be totally bounded if for every neighborhood V of 0 in X, there exists a
finite set F such that E ⊂ F + V .

Theorem 2.9. If X is locally convex and E is bounded, then co(E) is totally bounded. If X is
Fréchet and E is compact, then co(E) is compact.

We also want the integral that we later define to be unique. The following theorem is essential
for uniqueness.

Theorem 2.10. If X is locally convex, then X∗ separates points. That is, for every pair of
distinct points x1, x2 ∈ X, there exists a continuous linear functional Λ such that Λ(x1) ̸= Λ(x2).
In particular, the dual of a Fréchet space separates points.

We are ready to define a vector-valued integral. Assume f : Q → X is a continuous function
from a compact measure space Q with a (positive) Borel probability measure µ to a TVS X
such that X∗ separates points. Since f is continuous, for all linear functional Λ ∈ X∗, Λ ◦ f is
continuous and thus measurable. Λ(f(Q)) is a compact subset of C and thus bounded, which
implies that Λ ◦ f is an integrable function defined on Q. The following expression is then
well-defined: ˆ

Q
(Λ ◦ f)dµ.

We want the integral to behave nicely with linear functionals. For example, we can always
change the order of integration and scalar multiplication for a scalar-valued integral. We in-
clude this property into our definition of a vector-valued integral.

Definition 2.5. Let f : Q → X be a continuous function from a compact measure space Q
with a (positive) Borel probability measure µ to a TVS X such that X∗ separates points. If
there exists a vector y ∈ X such that for all linear functionals Λ ∈ X∗,

Λy =

ˆ
Q
(Λ ◦ f)dµ,

then we define the weak integral of f to be y, which is denoted byˆ
Q
fdµ.

We can apply Theorem 2.9 to see that this weak integral is unique if it exists.

Remark. Notice that if T : X → Z is a continuous linear operator, then for all Λ ∈ Z∗, Λ ◦ T is
again an element of X∗ and,

Λ(Ty) =

ˆ
Q
(Λ ◦ T ◦ f)dµ,

Ty =

ˆ
Q
Tfdµ.

T thus commutes with the integral.

Theorem 2.11. Let f : Q→ X be a continuous function from a compact measure space Q with
a (positive) Borel probability measure µ to a TVS X such that X∗ separates points. If co(f(Q))
is compact in X, then the integral of f exists. Moreover, the integral belongs to co(f(Q)). In
particular, the integral of f exists uniquely when X is Fréchet by Theorem 2.9.
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In the case that X is a Banach space, we also have the following triangle inequality for the weak
integral:

Theorem 2.12. Suppose X is Banach. Then by an application of the Hahn-Banach theorem,
we have

∥
ˆ
Q
fdµ∥ ≤

ˆ
Q
∥f∥dµ.

As mentioned in the beginning of this subsection, we will construct a bounded projection
P ∗ : L1 → H1 that commutes with translation given any bounded projection P : L1 → H1. In
fact, we will prove a more general statement.

Theorem 2.13. Let X be a Banach space and G a compact, abelian topological group acting
continuously on X. This means that each g ∈ G corresponds to a linear continuous isomorphism
Tg of X (and we denote Tg(x) by gx) such that

(g, x) 7→ gx

is not only a group action but also a continuous function from G×X to X. Let P : X → X be
a bounded projection onto a closed, translation-invariant subspace Y ⊂ X (i.e. for all g ∈ G,
gY ⊂ Y ). P induces a bounded projection P ∗ : X → X onto Y such that P ∗ commutes with
every g ∈ G.

Remark. We claim that the conditions of this theorem are satisfied in the case that G = Tn and
X = L1(Tn), which is the space of integrable functions with respect to the normalized Haar
measure µ. The group multiplication of Tn is just pointwise multiplication in each component.
The n−torus acts on L1(Tn) by translation:

For all f ∈ L1(Tn), z = (z1, · · · , zn) ∈ Tn, ζ = (ζ1, · · · , ζn) ∈ Tn,

ζ̄ = (ζ̄1, · · · , ζ̄n).
τζf(z) = f(zζ̄).

We need to show that (ζ, f) 7→ τζf is a continuous function from Tn × L1(Tn) to L1(Tn). We
apply the triangle inequality to see that

∥τζf − τζ0f0∥L1 = ∥τζf − τζf0 + τζf0 − τζ0f0∥L1

≤ ∥τζf − τζf0∥L1 + ∥τζf0 − τζ0f0∥L1

= ∥f − f0∥L1 + ∥τζf0 − τζ0f0∥L1

where we use the equality ∥τζf − τζf0∥L1 = ∥f − f0∥L1 , which follows from the translation
invariance of the Haar measure. By definition, ∥f − f0∥L1 goes to 0 as f → f0. ∥τζf0− τζ0f0∥L1

goes to 0 because translation is continuous in L1. Hence, τζf converges to τζ0f0 → ζ as f → f0,
ζ → ζ0.

Remark. We show that Hp ⊂ Lp is a closed, translation invariant subspace for 1 ≤ p ≤ ∞.

• Hp is complete and thus a closed subset of Lp.

• If f̂(n) = 0, then τ̂ζf(n) = 0 because

τ̂ζf(n) =

ˆ
T
f(ζz)zndm

=

ˆ
T
f(ζz)ζnζz

n
dm

= ζnf̂(n).
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Hence, if f ∈ Hp, then f̂(n) = 0 for n < 0 and thus τ̂ζf(n) = 0 for n < 0, which implies
that τζf ∈ Hp. We conclude that Hp is translation invariant.

Proof of Theorem 2.13. We define P ∗ to be the following vector-valued integral:

P ∗x :=

ˆ
G
g−1Pgxdµ(g).

µ is the normalized Haar measure. Notice that for a fixed x, g−1Pgx is a continuous function
from G to X. Since X is a Banach space and thus a Fréchet space, P ∗x is well-defined by
Theorem 2.11. P ∗ is clearly linear. We need to check that

• P ∗ is bounded. By the next lemma, there exists a uniform bound M such that ∀g ∈ G,
∥g∥ ≤M . We can then use Theorem 2.12 to obtain the following inequality:

∥P ∗x∥ ≤
ˆ
G
∥g−1Pgx∥dg

≤
ˆ
G
M2∥P∥∥x∥dg

=M2∥P∥∥x∥.

The operator norm of P ∗ is thus bounded by M2∥P∥.

• the image of P ∗ is Y . Pgx ∈ Y by the definition of P . Since Y is translation-invariant,
g−1Pgx ∈ Y . Let f(g) = g−1Pgx. Then Theorem 2.11 tells us that P ∗x lies in co(f(G)).
We just showed that f(G) ⊂ Y . Since Y is both closed and convex, co(f(G)) ⊂ Y and
P ∗x ∈ Y .

• P ∗ is idempotent. It suffices to show that P ∗ is equal to identity on Y . If x ∈ Y , then
gx ∈ Y and Pgx = gx because P is equal to identity on Y . In this case, g−1Pgx =
g−1gx = x is a constant function (independent of g) and thus P ∗x = x.

• for all a ∈ G, P ∗a = aP ∗. Since µ is translation invariant, the integral of f(ga) is equal
to the integral of f(g). Recall that a linear bounded operator always commutes with the
integral. In particular, Ta commutes with the integral. We then can conclude that

P ∗(ax) =

ˆ
G
g−1P (gax)dµ(g)

=

ˆ
G
a(ga)−1P (gax)dµ(g)

= a

ˆ
G
(ga)−1P (gax)dµ(g)

= a

ˆ
G
f(ga)dµ(g)

= a

ˆ
G
f(g)dµ(g)

= aP ∗x.

Lemma 2.14. ∥g∥ := ∥Tg∥X→X is uniformly bounded.

Proof. Rudin’s original proof relies on the Baire category theorem. Here I give an easier argu-
ment using the uniform boundedness principle. By this principle, it suffices to show that for all
x ∈ X,

sup
g∈G

∥gx∥ <∞
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Notice that since x is fixed, the function g 7→ ∥gx∥ is continuous. Since G is assumed to be
compact, the image of this function is a compact set in R and is thus bounded.

Theorem 2.15. There does not exists any bounded projection from L∞ onto H∞.

Proof. Again we prove by contradiction. Suppose P : L∞ → L∞ is a bounded projection onto
H∞. T also acts on C(T) continuously by translation because each f ∈ C(T) is uniformly
continuous and translation always preserves the supremum norm. Hence, for each f ∈ C(T)
and ζ ∈ T, the function ζ 7→ τζf is continuous from T to L∞ (as the norms of L∞ and C(T) are
the same). We can then deduce that ζ 7→ τζ−1(P (τζf)) is a continuous function from T to L∞,
which implies that that the following integral is still well-defined and lies in L∞:

P ∗f =

ˆ
T
τζ−1(P (τζf))dm(ζ).

Moreover, we can use Theorem 2.12 and the fact that translation by a fixed ζ is an isometry to
estimate the norm of P ∗f :

∥P ∗f∥L∞ ≤
ˆ

T
∥τζ−1(P (τζf))∥L∞dm

≤
ˆ

T
∥P∥L∞→L∞∥f∥L∞dm

= ∥P∥L∞→L∞∥f∥L∞ .

P ∗ is thus a bounded operator from C(T) to L∞. Suppose we can show that P ∗ = P+ on zn

for each n ∈ Z. This implies that P ∗(span(zn)n∈Z) ⊂ span(zn)n≥0 and by the continuity of P ∗

and Theorem 1.5, we have

P ∗(C(T)) = P ∗(span(zn)n∈Z) ⊂ P ∗(span(zn)n∈Z) ⊂ span(zn)n≥0 = H∞ ∩ C(T) ⊂ C(T).

P ∗ is thus a continuous extension of P+ from C(T) to C(T), which contradicts Theorem 2.7.

Hence, our goal now is to show that for each n ∈ Z, P ∗zn = P+z
n. Recall that the weak

integral commutes with every bounded linear functional in (L∞)∗ and in particular, the Fourier
coefficients operator Λk defined by Λk(f) = f̂(k) for each k ∈ Z. Let’s do some calculations:

Λk(P ∗zn) = Λk(

ˆ
T
τζ−1(P (τζz

n))dm(ζ))

=

ˆ
T
Λk(τζ−1(P (τζz

n)))dm(ζ)

=

ˆ
T

ˆ
T
(P (znζ̄n))(ξζ)ξ̄kdm(ξ)dm(ζ)

=

ˆ
T

ˆ
T
(P (znζ̄n))(ξ)ξ̄kζkdm(ξ)dm(ζ)

=

ˆ
T

ˆ
T
(Pzn)(ξ)ξ̄kζk−ndm(ξ)dm(ζ)

=

ˆ
T

ˆ
T
(Pzn)(ξ)ξ̄kdm(ξ)ζk−ndm(ζ)

=

ˆ
T
(Pzn)(ξ)ξ̄kdm(ξ)

ˆ
T
ζk−ndm(ζ)

= Λk(Pzn)δnk

When n ≥ 0, zn ∈ H∞ and Pzn = zn because P is equal to identity on H∞. Hence, Λk(P ∗zn) =
Λk(zn)δnk = (δnk)

2 and P ∗zn = zn = P+z
n. When n < 0, Pzn ∈ H∞. Thus, Λn(Pzn) = 0 and
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P ∗zn = 0 = P+z
n.

Remark. As Λk is also a bounded functional in (L1)∗, one can perform the same calculation in
the proof of Theorem 2.15 to prove Theorem 2.8. Hence, the result about the Fourier multiplier
operators is actually not necessary.

Theorem 2.16. There does not exists any bounded projection from C(T) onto H∞ ∩ C(T).

Proof. The proof is almost exactly the same as the one of Theorem 2.15. One just needs to
replace L∞ with C(T).
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2.3 First Application: Convergence of the Partial Fourier Sum in Lp for
1 < p < ∞

In this section, we will apply the Lp boundedness of P+ for 1 < p <∞ to show the convergence
of the partial Fourier sum in Lp. We first need some definitions and lemmas from (2).

Definition 2.6 (Basis). Let X be a Banach space and let (xk)k∈Z ⊂ X be a family indexed by
the set of integers. It is called a symmetric basis if for all x ∈ X, there exists a unique sequence
(ak(x))k∈Z ⊂ C such that

x = lim
n→∞

n∑
k=−n

ak(x)xk.

Remark. For 1 < p < ∞, (zn)n∈Z forming a symmetric basis in Lp is equivalent to the conver-
gence of the partial Fourier sum of f to f itself in Lp. Hence, our goal now is to show that
(zn)n∈Z forms a symmetric basis, which explains why the following lemma is useful.

Definition 2.7 (Biorthogonal System). A biorthogonal system is a pair ((xn)n ⊂ X, (fk)k ⊂
X∗) such that

fk(xn) = δkn.

Lemma 2.17. Given a biorthogonal system ((xn)n ⊂ X, (fn)n ⊂ X∗) in a Banach space X, set

Pn,m =
n∑

k=m

fk(·)xk,m ≤ n,

Pn = Pn,−n, n ≥ 1.

Then (xn)n is a symmetric basis iff S := supn≥1 ∥Pn∥ <∞ and span(xn) is dense in X.

Proof. ⇒ If (xn)n is a symmetric basis, then for each x, there exists a unique sequence (ak(x))k∈Z ⊂
C such that

x = lim
m→∞

m∑
k=−m

ak(x)xk,

fn(x) = lim
m→∞

m∑
k=−m

ak(x)fn(xk) = lim
m→∞

m∑
k=−m

ak(x)δkn = an(x).

Hence, the sequence Pnx converges to x. Since a convergent sequence is bounded, we have
supn≥1 ∥Pnx∥ < ∞. By the uniform boundedness principle, supn≥1 ∥Pn∥ < ∞. Density of
span(xn) is trivial.

⇐ We’ll first show that Pnx converges to x for each x. Notice that given any finite linear
combination z =

∑
k∈K ckxk of (xn)n, where K is a finite set. Then for sufficiently large n, we

have

Pn(z) = Pn(
∑
k∈K

ckxk) =
n∑

i=−n

fi(
∑
k∈K

ckxk)xi =
∑
k∈K

n∑
i=−n

ckδi,kxi =
∑
k∈K

ckxk = z,
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which implies that Pnz converges to z for all z ∈ span(xn). Now for each x ∈ X, since span(xn)
is dense in X, there exists a sequence (zk)k ⊂ span(xn) such that zk → x.

Pn(x) = Pn( lim
k→∞

zk) = lim
k→∞

Pn(zk).

lim
n→∞

Pn(zk) = zk.

lim
n→∞

Pn(x) = lim
n→∞

lim
k→∞

Pn(zk).

Notice that the first convergence is uniform in n because

∥Pn(x)− Pn(zk)∥ ≤ ∥Pn∥∥x− zk∥ ≤ S∥x− zk∥.

By the Moore-Osgood Theorem, we can interchange the limit operation to get

lim
n→∞

Pn(x) = lim
k→∞

lim
n→∞

Pn(zk) = lim
k→∞

zk = x.

We then need to show the uniqueness of the coordinate functionals. Suppose there exists another
sequence (ak(x))k ⊂ C such that

lim
m→∞

m∑
k=−m

fk(x)xk = lim
m→∞

m∑
k=−m

ak(x)xk.

We apply fn on both sides to get

fn( lim
m→∞

m∑
k=−m

fk(x)xk) = fn( lim
m→∞

m∑
k=−m

ak(x)xk),

lim
m→∞

m∑
k=−m

fk(x)fn(xk) = lim
m→∞

m∑
k=−m

ak(x)fn(xk),

lim
m→∞

m∑
k=−m

fk(x)δkn = lim
m→∞

m∑
k=−m

ak(x)δkn,

fn(x) = an(x).

Theorem 2.18. For 1 < p < ∞, (zn)n∈Z forms a symmetric basis in Lp. Consequently, for
any f ∈ Lp, its Fourier series converges in Lp to f .

Proof. ((zn)n∈Z, (z
n)n∈Z) is a biorthogonal system because

f 7→
ˆ

T
fz̄ndm

is a continuous linear functional defined on Lp. By Lemma 2.17, we only need to show that
supn≥1 ∥Pn∥Lp→Lp < ∞ and span(zn) is dense in Lp. The second condition follows easily from
the Stone Weierstrass theorem, so we only need to check the first condition. Suppose q is a
trignometric polynomial. Then for each n ≥ 1,

Pnq = z−nP0,2n(z
nq),

∥Pnq∥Lp ≤ ∥P0,2n(z
nq)∥Lp ≤ ∥P0,2n∥Lp→Lp∥znq∥Lp = ∥P0,2n∥Lp→Lp∥q∥Lp .

By density, we then have ∥Pn∥Lp→Lp ≤ ∥P0,2n∥Lp→Lp and

sup
n≥1

∥Pn∥Lp→Lp ≤ sup
n≥1

∥P0,2n∥Lp→Lp .
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Therefore, it suffices to show that supn≥1 ∥P0,2n∥Lp→Lp <∞.

P0,2n(q) = P+q −
∞∑

m=2n+1

(q, zm)zm

= P+q − z2n+1
∞∑

m=0

(q, zm+2n+1)zm

= P+q − z2n+1
∞∑

m=0

(qz̄2n+1, zm)zm

= P+q − z2n+1P+(qz̄
2n+1).

∥P0,2n(q)∥Lp ≤ ∥P+q∥Lp + ∥P+(qz̄
2n+1)∥Lp ≤ 2∥P+∥Lp→Lp∥q∥Lp .

Again by density and by Theorem 1.5, we then have ∥P0,2n∥Lp→Lp ≤ 2∥P+∥Lp→Lp <∞.

Theorem 2.19. The following definitions of Hp are equivalent for 1 < p <∞:

1. {f ∈ Lp(T) : f̂(n) = 0, n < 0}.

2. {f ∈ Lp(T) : there exists (an)n≥0 such that
∑k

n=0 anz
n converges in Lp to f}.

3. The closure of the span(zn)n≥0 in Lp(T).

4. The image of Lp(T) under P+.

Proof. 1 ⇒ 2 Let f ∈ Lp such that f̂(n) = 0 for n < 0. We know that by Theorem 2.18, zn is
a (symmetric) basis for Lp, so f has the following series representation:

f =
∞∑
n=0

f̂(n)zn.

This series converges in Lp norm.

2 ⇒ 3 Trivial.

3 ⇒ 4 Let f be in the closure of the span(zn)n≥0 such that (fn)n≥0 ⊂ span(zn)n≥0 is a sequence
that converges to f ∈ Lp. By Theorem 2.3, P+ is bounded on Lp (or it is a bounded operator
on L2 ∩ Lp and thus can be extended to Lp). Since we clearly have P+fn = fn, taking L

p limit
on both sides gives:

P+f = P+(lim fn) = limP+fn = lim fn = f.

4 ⇒ 1 Suppose g = P+h for some h ∈ Lp. By Theorem 2.3, g ∈ Lp. We need to show that
ĝ(n) = 0 for n < 0. Consider the series representation of g and h:

h =
∑
n∈Z

ĥ(n)zn = limPnh,∑
n∈Z

ĝ(n)zn = g = P+h = limP+Pnh =
∑
n≥0

ĥ(n)zn.

Again (zn)n∈Z is a basis, so the uniqueness of the coefficients in the series representation implies
that ĝ(n) = 0 for n < 0.

Remark: This theorem also shows that (zn)n≥0 is a basis for Hp, 1 < p <∞.
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2.4 Second Application: Duality of Hardy Spaces

Theorem 2.20. For every continuous linear functional ϕ ∈ (Hp)∗, 1 < p < ∞, there exists a
unique g ∈ Hp′, 1

p + 1
p′ = 1, such that

ϕ(f) =

ˆ
T
fḡdm

for all f ∈ Hp. For each g ∈ Hp′, denote the integral operator
´

T(·)ḡdm by Ig, then the map

I : g 7→ Ig gives an isomorphism between Hp′ and (Hp)∗.

Proof. By the Hahn-Banach theorem, ϕ ∈ (Hp)∗ can be extended to a linear functional Φ ∈
(Lp)∗. By the duality (Lp)∗ ∼= Lp′ , there exists an Lp′ function g such that

for all f ∈ Hp, ϕ(f) =

ˆ
T
fḡdm.

Suppose first that f ∈ span(zn)n≥0 ⊂ H2 and g ∈ L2∩Lp′ . On L2, P+ is a projection operator.
By the self-adjoint property of a projection operator defined on a Hilbert space,

ϕ(f) =

ˆ
T
fḡdm =

ˆ
T
(P+f)ḡdm,

ϕ(f) =

ˆ
T
fP+gdm.

The equality then still holds for arbitrary f ∈ H2 by the density of span(zn)n≥0 (proved in
Theorem 1.10), and P+g ∈ H2 indeed represents ϕ in this case. In general, if g ∈ Lp′ , we taken
a sequence (gn)n≥0 ⊂ L2 ∩ Lp′ that converges to g in Lp′ . Then for a fixed f ∈ span(zn)n≥0 ⊂
H2 ∩Hp,

ϕ(f) =

ˆ
T
(P+f)ḡdm = lim

ˆ
T
(P+f)gndm,

ϕ(f) = lim

ˆ
T
fP+gndm,

ϕ(f) =

ˆ
T
fP+gdm,

where the last equality follows from the continuity of P+ on Lp′ . Lastly, for an arbitrary f ∈ Hp,
we can find a sequence (fn)n≥0 ⊂ span(zn)n≥0 that converges to f in Lp norm. Then,

ϕ(f) = limϕ(fn) = lim

ˆ
T
fnP+gdm =

ˆ
T
fP+gdm.

This convergence follows from the p′-integrability of P+g and Hölder’s inequality.

Now we prove the second part. We have already shown that I is surjective, and its boundedness
follows easily from Hölder’s inequality. It remains to show that I is injective (the open mapping
theorem then guarantees that a bijective continuous operator is a homeomorphism). Suppose
Ig = Ih for two functions g, h ∈ Hp′ . Then Ig(z

n) = Ih(z
n) for any n ≥ 0. By using the fact

that (zn)n∈Z is a basis for Lp′ , we have

Ig(z
n) =

ˆ
T
zngdm =

ˆ
T
znhdm = Ih(z

n),

for all n, ĝ(n) = ĥ(n),

g =
∑
n≥0

ĝ(n)zn =
∑
n≥0

ĥ(n)zn = h.
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Definition 2.8. In order to describe the duality results of Hp for p /∈ (1,∞), we introduce the
following function spaces:

• P+L
∞ = {f : there exists g ∈ L∞ such that f = P+g}.

• H∞
− = {f ∈ L∞ : for all n ≥ 0, f̂(n) = 0}.

• P+C(T) = {f : there exists g ∈ C(T) such that f = P+g}.

• C(T)− = {f ∈ C(T) : for all n ≥ 0, f̂(n) = 0}.

If g ∈ P+L
∞ or P+C(T), then

∥g∥P+L∞ = inf{∥h∥L∞ : P+h = g}.

The norms in H∞
− and C(T)− are inherited from H∞ and C(T), respectively.

Theorem 2.21. P+L
∞ and P+C(T) are both Banach spaces. Hence, P+C(T) is a closed

subspace of P+L
∞.

Proof. We first show that ∥∥P+L∞ is indeed a norm. The only nontrivial part is to check that
it is positive definite. Suppose

∥g∥P+L∞ = 0

for some g ∈ P+L
∞. We can then find a sequence of functions (hn)n≥0 ⊂ L∞ ⊂ L2 such that

for each n,

P+hn = g, ∥hn∥L∞ ≤ 1

n
.

The sequence (hn)n≥0 thus converges to 0 in L2. Since P+ is continuous from L2 to L2, we have

0 = P+0 = P+( lim
n→∞

hn) = lim
n→∞

P+hn = lim
n→∞

g = g.

To check that P+L
∞ is Banach, we just need to show that for every sequence (xk)k≥0 ⊂ P+L

∞

such that
∑∞

k=1 ∥xk∥P+L∞ <∞,
∑n

k=1 xk converges. For each k, we can find yk ∈ L∞ such that

P+yk = xk, ∥yk∥L∞ ≤ ∥xk∥P+L∞ +
1

2k
.

The sequence (yk)k≥0 is absolutely convergent because

∞∑
k=1

∥yk∥L∞ ≤
∞∑
k=1

∥xk∥P+L∞ +
∞∑
k=1

1

2k
=

∞∑
k=1

∥xk∥P+L∞ + 1 <∞.

Since L∞ is a Banach space,
∑n

k=1 yk converges to some y ∈ L∞. Notice that
∑n

k=1 xk converges
to P+y because as n→ ∞, we have

∥P+y −
n∑

k=1

xk∥P+L∞ = ∥P+(y −
n∑

k=1

yk)∥P+L∞ ≤ ∥y −
n∑

k=1

yk∥L∞ → 0.

The completeness of P+C(T) can be proved by using the same method.

Theorem 2.22. For every continuous linear function ϕ ∈ (H1)∗, there exists a g ∈ L∞ such
that for all f ∈ H1,

ϕ(f) =

ˆ
T
fḡdm.

Moreover, for all p > 1 and f ∈ Hp, we have

ϕ(f) =

ˆ
T
fP+gdm.
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Remark. p > 1 is a necessary condition because P+g does not necessarily lie in L∞ (recall
in last subsection, we construct an explicit example of a bounded function g such that P+g
is unbounded), which prevents us from using Hölder’s inequality to justify that the integral´

T fP+gdm is well-defined.

Proof. Again we can use the Hahn-Banach theorem to extend ϕ to obtain a bounded linear
functional Φ defined on L1. Since (L1)∗ ∼= L∞, Φ is represented by some g ∈ L∞. Thus, for all
f ∈ H1,

ϕ(f) = Φ(f) =

ˆ
T
fḡdm.

This functional proves the first part of this theorem. For the second part, we discuss two cases
separately.

• When p ≥ 2, an Hp function f also belongs to H2. In addition, g ∈ L∞ ⊂ L2. Therefore,
we can use the self-adjoint property of P+ on L2 to conclude that for all f ∈ Hp,

ϕ(f) = ϕ(P+f) =

ˆ
T
P+fḡdm =

ˆ
T
fP+gdm.

• When 1 < p < 2, let p′ be the conjugate exponent of p. In this case, P+g ∈ P+L
∞ ⊂

P+L
p′ = Hp′ and let (fn)n≥0 ⊂ Hp ∩H2 be a sequence of functions that converges in Lp

to f . Then,

ϕ(f) = limϕ(fn) = lim

ˆ
T
fnP+gdm =

ˆ
T
fP+gdm,

where the last equality follows from Hölder’s inequality.

It turns out that P+L
∞ is still isomorphic to (H1)∗. We need some additional tools about

quotient spaces before proving this fact.

Lemma 2.23 (First Isomorphism Theorem of Banach Space). Let X,Y be Banach spaces and
T : X → Y a bounded surjective operator. Assume that X/ ker(T ) is equipped with canonical
norm for quotient space. For each x ∈ X, denote its coset in X/ ker(T ) by [x]. Then the map
T̂ : X/ ker(T ) → Y defined by

T̂ ([x]) = Tx

is an isomorphism between Banach spaces.

Proof. See Exercise 35 in Chapter 5 of (4).

Corollary 2.23.1. We have the following two isomorphisms:

P+L
∞ ∼= L∞/H∞

− ,

P+C(T) ∼= C(T)/C(T)−.

Proof. By Lemma 2.23, it suffices to show that H∞
− = kerP+∩L∞ and C(T)− = kerP+∩C(T).

For any f ∈ L∞ or C(T), f ∈ L2. Hence,

P+f =

∞∑
n=0

f̂(n)zn,
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where the series converges in L2. Therefore, P+f = 0 iff f̂(n) = 0 for all n ≥ 0 (the forward
direction of this statement uses the uniqueness of the coefficients in the series representing 0).

Theorem 2.24. For every functional ϕ ∈ (H1)∗, there exists a unique coset [g] ∈ L∞/H∞
− such

that for all f ∈ H1,

ϕ(f) =

ˆ
T
fḡdm.

For each g ∈ L∞, denote the the integral operator
´

T(·)ḡdm by Ig. [g] 7→ Ig is then an isomor-
phism from L∞/H∞

− to (H1)∗. Thus, we have

P+L
∞ ∼= L∞/H∞

−
∼= (H1)∗.

Proof. To show that the map [g] 7→ Ig is well-defined, we need to show that for every element
h ∈ H∞

− , Ih is the zero functional. For each n ≥ 0,

Ih(z
n) = ĥ(n) = 0

by definition. As span(zn)n≥0 is dense in H1 by Theorem 1.5, Ih is indeed the zero functional.

Ig ∈ (H1)∗ and ∥Ig∥H1→C ≤ ∥[g]∥L∞/H∞
−

by Hölder’s inequality. In Theorem 2.22, we have

already shown that the map [g] 7→ Ig is surjective. We also need to show that it is injective.
Suppose g1 and g2 are two functions in L∞ such that Ig1 = Ig2 . Then, for each n ≥ 0,

Ig1(z
n) = Ig2(z

n),

Ig1−g2(z
n) = 0,

ĝ1 − g2(n) = 0.

This implies that g1 − g2 ∈ H∞
− . Hence, [g1] = [g2].

A more explicit representation of a linear functional in (H1)∗ is given in the following theorem.

Theorem 2.25. For any g ∈ P+L
∞ and any f ∈ H1, the following limit exists:

Ig(f) := lim
r↗1

ˆ
T
f(rζ)g(rζ)dm(ζ).

Ig is a continuous operator defined on H1 with its operator norm equivalent to ∥g∥P+L∞. g → Ig
is an isomorphism from P+L

∞ to (H1)∗.

Proof. This theorem is called Fefferman’s duality theorem. The proof is rather long and com-
plicated. Interested readers can refer to (9).

As an application, we show that P+L
∞ equipped with the weak* topology is separable. We

first state two lemmas.

Lemma 2.26. Let X be a Banach space. Let Y = X∗ equipped with the weak* topology. Then
Y ∗ ∼= X.

Proof. See Proposition 1.2 in Chapter 5 of (10).
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Lemma 2.27. Let Y be a locally convex space. A subspace E of Y is dense in Y iff for any
continuous linear functional f ∈ Y ∗, f |E ≡ 0 implies that f ≡ 0.

Proof. See Theorem 3.5 in Chapter 3 of (8).

Theorem 2.28. The subspace span(zn)n≥0 is weak* dense in P+L
∞. Consequently, P+L

∞ is
separable when it is equipped with the weak* topology.

Proof. By Theorem 2.25 and Lemma 2.26, we know that (P+L
∞)∗ ∼= H1. Since the weak*

topology is always locally convex, we can apply Lemma 2.27. Thus to prove the first part, it
suffices to show that if f ∈ H1 satisfies Ig(f) = 0 for all g ∈ span(zn)n≥0, then f = 0. Notice
that for all n ≥ 0,

0 = Izn(f) = lim
r↗1

ˆ
T
f(rζ)(rζ)ndm(ζ) =

ˆ
T
fzndm = f̂(n)

because as r ↗ 1, f(r(·)) converges to f in L1 and rζn converges to ζn in L∞. Since f ∈ H1,
its negative Fourier coefficients also vanish. As a result, we have

f ∗ Φn = 0
L1

−→ f.

We conclude that f = 0. Lastly, we show that the following countable set can be used to
approximate elements of span(zn)n≥0 in the weak* topology:

E := {
n∑

k=0

(ak + ibk)z
k : n ∈ N, ak ∈ Q, bk ∈ Q}.

Indeed, for every nonempty weak* basic open set U , there are finite collections (fj)
k
j=1 ⊂ L1,

(hj)
k
j=1 ⊂ P+L

∞, and (εj)
k
j=1 such that

U =

k⋂
j=1

{g ∈ P+L
∞ : |Ig−hj

(fj)| < εj}.

We need to show that U contains an element of E. We have already shown that span(zn)n≥0 is
weak* dense. Hence, U contains some polynomial p(z) =

∑t
i=0 ciz

i such that for each j,

|Ip−hj
(fj)| <

εj
2
.

For each coefficient ci of p, choose rationals ai, bi such that di := ai + ibi and |di − ci| <
minj{εj}

2tmaxj{∥fj∥L1} (the case that maxj{∥fj∥L1} = 0 is trivial), and define another polynomial q(z) :=∑t
i=0 diz

i ∈ E. Then for each j, we have

|Iq−hj
(fj)| ≤ |Iq−p(fj)|+ |Ip−hj

(fj)|

< | lim
r↗1

ˆ
T
fj(rζ)(q(rζ)− p(rζ))dm(ζ)|+ εj

2

=

ˆ
T
|fj ||q − p|dm+

εj
2

(as q − p ∈ L∞)

≤
ˆ

T
|fj |

t∑
i=0

|di − ci|dm+
εj
2

<

ˆ
T
|fj |

minj{εj}
2maxj{∥fj∥L1}

dm+
εj
2

<
εj
2

+
εj
2

< εj .
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We conclude that q ∈ U .

Theorem 2.29 (Riesz Brothers’ Theorem). Let µ be a complex valued Borel measure on T such
that for all n ≥ 1, ˆ

T
zndµ = 0

Then µ is absolutely continuous with respect to m and dµ = hdm for some h ∈ H1.

Proof. See for instance (3) and (2).

Theorem 2.30. For every functional ϕ ∈ (C(T)/C(T)−)∗, there exists a unique function g ∈ H1

such that for all [f ] ∈ C(T)/C(T)−,

ϕ([f ]) =

ˆ
T
fḡdm.

For each g ∈ H1, denote the the integral operator
´

T(·)ḡdm by Ig. g 7→ Ig is then an isomorphism
from H1 to (C(T)/C(T)−)∗. Consequently, we have

(P+C(T))
∗ ∼= (C(T)/C(T)−)

∗ ∼= H1.

Proof. We first show that Ig is well-defined on C(T)/C(T)−. That is, we need to show that
Ig(h) = 0 for any h ∈ C(T)−. Since C(T)− is the closure of span(zn)n<0 with respect to the
supremum norm, it suffices to show that Ig(z

n) = 0 for n < 0. As we assume that g ∈ H1,

Ig(z
n) = ĝ(n) = 0.

Again Ig ∈ (C(T)/C(T)−)∗ and ∥Ig∥C(T)/C(T)−→C ≤ ∥g∥L1 by Hölder’s inequality. Now for each
ϕ ∈ (C(T)/C(T)−)∗, define a linear functional ψ ∈ (C(T))∗ by

ψ(f) = ϕ([f ]).

By the Riesz Representation theorem, there exists a complex measure µ such that for all f ∈
C(T),

ψ(f) =

ˆ
T
fdµ.

Let µ̄ be the conjugate of µ. For all n < 0, [zn] = [0] in C(T)/C(T)−. Let’s calculate ψ(zn).

ψ(zn) = ϕ([zn]) = ϕ([0]) = 0.

ψ(zn) =

ˆ
T
zndµ =

ˆ
T
z̄ndµ̄.

We conclude that the positive Fourier coefficients of µ̄ vanish. By Theorem 2.29, dµ̄ = gdm for
some g ∈ H1. We conclude that

ϕ([f ]) =

ˆ
T
fdµ =

ˆ
T
f̄dµ̄ =

ˆ
T
f̄gdm =

ˆ
T
fḡdm = Ig(f).

The map g 7→ Ig is thus surjective. Lastly, we claim that it is also injective. If Ig1 = Ig2 for two
functions g1, g2 ∈ H1, then for each n ∈ Z,

Ig1(z
n) = Ig2(z

n),

ĝ1(n) = ĝ2(n).

Since L1 functions can be approximated by the arithmetic means of the partial Fourier sums
(see Theorem 1.5), two L1 functions are equal a.e. iff they have the same Fourier coefficients.
We conclude that g1 = g2.
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3 Hardy Space on the Hartogs Triangle

3.1 Basic Definitions and Motivations

Definition 3.1. The Hartogs triangle is defined to be the set

H := {(z1, z2) ∈ C2 : |z1| < |z2| < 1}.

Its distinguished boundary is the set

db(H) := {(z1, z2) ∈ C2 : |z1| = |z2| = 1},

which can be identified with the torus T2.

Let Ω ⊂ Cn be a bounded domain (i.e. open and connected) with a smooth boundary. In
this case, it is easy to define the Hardy space Hp(Ω) and generalize some results in the case
of Ω = D. This is because ∂Ω is still a smooth manifold after a small perturbation. More
specifically, suppose ρ : Cn → R is a smooth defining function such that

Ω = {z ∈ Cn : ρ(z) < 0},
∂Ω = {z ∈ Cn : ρ(z) = 0},
∇ρ ̸= 0 on ∂Ω.

Then according to (11), we can define the Hardy space Hp(Ω) to be the set

{f ∈ Hol(Ω) : ∥f∥Hp(Ω) := sup
ε>0

ˆ
{ρ=−ε}

|f |pdσε <∞},

where dσε is the Hausdorff measure defined on the boundary of Ωε := {ρ = −ε}. This definition
is natural given the definition of Hp(D).

What if Ω does not have a smooth boundary? What is the natural definition of the Hardy
space in this case? It is mentioned in (12) and (13) that the Hartogs triangle has a non-smooth
boundary and many pathological behaviors, making it a well-known counterexample in several
variable complex analysis. In (1), motivated by obtaining a reproducing kernel Hilbert space
with the desired reproducing kernel, Monguzzi defines the Hardy space H2(H) of the Hartogs
triangle to be{

f ∈ Hol(H) : ∥f∥H2(H) := sup
(s,t)∈(0,1)×(0,1)

1

4π2

ˆ
db(Hst)

|f |2dσst < +∞

}
,

where
Hst =

{
(z1, z2) ∈ C2 : |z1| /s < |z2| < t

}
and dσst is the Hausdorff measured defined on the set db(Hst) := {(z1, z2) : |z1| = s, |z2| = t}.
Let Γ := {(j, k) ∈ Z2 : j ≥ 0, k ≥ −j−1}, which is called the set of allowable indices. Monguzzi
shows that (zj1z

k
2 )(j,k)∈Γ is an orthonormal basis of H2(H). That is, for any f ∈ H2(H), there

are coefficients (ajk)(j,k)∈Γ such that

∥ajk∥l2 <∞, f(z1, z2) =
∑

(j,k)∈Γ

ajkz
j
1z

k
2 .

We can then associate f with a boundary value function bf ∈ L2(db(H)) defined as

bf(eiθ, eiγ) =
∑

(j,k)∈Γ

ajke
ijθeikγ ,
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which converges absolutely exactly because ∥ajk∥l2 < ∞. The Hardy space H2(db(H)) is then
defined as

{
∞∑

(j,k)∈Γ

ajkz
j
1z

k
2 : ∥ajk∥l2 <∞},

where the infinite sum converges in the L2 norm. Notice that in this case, the order of summation
is not important because we require the series to converge absolutely.

Monguzzi did not explicitly define Hp(db(H)) for 1 ≤ p ≤ ∞ in (1). Here’s a natural definition
of Hp(db(H)) given the definition of H2(db(H)) and Hp(T).

Definition 3.2. For 1 ≤ p ≤ ∞,

Hp(db(H)) := {f ∈ Lp(db(H)) : f̂(j, k) = 0, (j, k) /∈ Γ}.

It is easy to see that they are Banach spaces by using the continuity of the Fourier coefficients.

Theorem 3.1. span(zj1z
k
2 )(j,k)∈Γ is dense in Hp(db(H)) for 1 ≤ p < ∞ and H∞(db(H)) ∩

C(db(H)).

Proof. This is the higher dimensional analogue of Theorem 1.5. Again one uses the Fejér kernel
to prove this theorem.

Theorem 3.2. For 1 < p <∞, (zj1z
k
2 )(j,k)∈Z2 is a (symmetric) basis in Lp(db(H)) ∼= Lp(T2), in

the sense that for every f ∈ Lp(db(H)), there exists a unique sequence of coefficients (ajk)(j,k)∈Z2 =

(f̂(j, k))(j,k)∈Z2 such that

f = lim
n→∞

∑
max(|j|,|k|)≤n

f̂(j, k)zj1z
k
2 ,

where the convergence is in Lp for 1 < p <∞.

Proof. See chapter 4 in (7) for the proof of convergence of this series (Grafakos actually uses
induction to prove it for Tn, where n can be any positive integer).

The uniqueness of coefficients follows from the continuity of the map f 7→ f̂(j, k) with respect
to the Lp norm.

Remark. By Theorem 3.2, it is easy to prove for 1 < p <∞, a function f in Lp(db(H)) belongs
to Hp(db(H)) iff

f = lim
n→∞

∑
(j,k)∈Γ,

max(|j|,|k|)≤n

f̂(j, k)zj1z
k
2 ,

where the series converges in the Lp norm. This gives another characterization of Hp(db(H)).

Denote the projection map from L2(db(H)) to H2(db(H)) by S , which is called the Szegő
projection. In next section, we will prove that S can be extended to a bounded operator from
Lp(db(H)) to itself for 1 < p <∞.
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3.2 Boundedness of the Szegő Projection

Let m1,m2 be the normalized Lebesgue measure on T. Their product m1×m2 is the normalized
Lebesgue measure on T2.

Theorem 3.3 (Monguzzi). For 1 < p <∞, S densely defined on L2(db(H))∩Lp(db(H)) can be
extended to a bounded operator S : Lp(db(H)) → Lp(db(H)).

Proof. We will follow Monguzzi’s proof and elaborate the details. Define two functions m1,m2 :
R2 → R as follows:

m1(ξ, η) =
1 + sgn(ξ)

2
,

m2(ξ, η) =
1 + sgn(ξ + η + 1)

2
.

We can then decompose S into several operators:

T1f(z1, z2) =
∑

(j,k)∈Z2

m1(j, k)f̂(j, k)z
j
1z

k
2 ,

T2f(z1, z2) =
∑

(j,k)∈Z2

m2(j, k)f̂(j, k)z
j
1z

k
2 ,

T3f(z1, z2) =
1

2

∑
k≥0

f̂(0, k)zk2 ,

T4f(z1, z2) =
1

2

∑
j≥1,j+k+1=0

f̂(j, k)zj1z
k
2 ,

T5f(z1, z2) =
3

4
f̂(0,−1)z−1

2 .

For any trignometric polynomial f(z1, z2) defined on the torus T2, Tif is well-defined and

Sf = T2(T1f) + T3f + T4f + T5f.

Therefore, it suffices to show that ∀1 ≤ i ≤ 5, Ti is a bounded operator on Lp. T5 is bounded
because

∥T5f∥Lp = (

ˆ
T2

|3
4
f̂(0,−1)|pdm1dm2)

1
p

=
3

4
|f̂(0,−1)|

=
3

4
|
ˆ

T2

f(z1, z2)z
−1
2 dm1dm2|

≤ 3

4
∥f∥Lp ,

where the last inequality follows from Hölder’s inequality. I will show boundedness of other
operators in the following lemmas.

Definition 3.3. Let t0 ∈ R2. A bounded function m on R2 is called regulated at the point t0 if

lim
ε→0

1

ε2

ˆ
|t|≤ε

(m(t0 − t)−m(t0))dt = 0.
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Definition 3.4. Let 1 < p < ∞ and m be a bounded function on R2. It is called an Lp

multiplier on R2 if the operator
Tmf := F−1(mFf)

is bounded from Lp(R2) to Lp(R2). If m is a bounded function on Z2, then it is an Lp multiplier
on T2 if the operator

Tmf(z1, z2) :=
∑

(j,k)∈Z2

m(j, k)f̂(j, k)zj1z
k
2

is bounded from Lp(T2) to Lp(T2).

Remark. By using this definition, the boundedness of T1 and T2 from Lp(T2) to Lp(T2) is equiv-
alent with the statement that T1 and T2 are Lp multipliers.

Lemma 3.4 (Transference of Multipliers). Suppose that m : R2 → C is a regulated function at
every point (j, k) ∈ Z2 and that m is an Lp multiplier on R2 for some 1 < p < ∞. Then the
sequence (m(j, k))(j,k)∈Z2 is an Lp multiplier on the torus.

Proof. See (7).

Lemma 3.5 (Halfplane Multiplier). Let x = (x1, x2) ∈ R2 and ν ∈ R2 a nonzero vector. Define
mx,ν : R2 → R by

mx,ν(ξ, η) = sgn((ξ − x1, η − x2) · ν).

Then (mx,ν(j, k))(j,k)∈Z2 is an Lp multiplier for 1 < p <∞.

Proof. mx,ν is regulated at every point of the set R2−{(ξ, η) : (ξ−x1, η−x2) ·ν = 0} because it
is locally constant on this set. Let (ξ0, η0) be a point such that (ξ0 − x1, η0 − x2) · ν = 0 and let
B be a square around it. The portion of B equal to −1 is the same as the portion of B equal
to 1. Thus, the integral over B is zero and mx,ν is regulated at (ξ0, η0). We conclude that mx,ν

is regulated everywhere.

By Lemma 3.4, it suffices to show that mx,ν is an Lp multiplier for R2. Let m := m(0,0),(1,0).
Notice that for any x, ν, there exists a rigid motion R : R2 → R2 defined by R(ξ, η) = A((ξ, η)−
b) = A(ξ, η)−Ab, where A is an orthogonal matrix and b ∈ R2 is a vector, such thatmx,ν = m◦R.
We first show that the Lp boundedness of mx,ν follows from the Lp boundedness of m(0,0),(1,0).
Let f be a compactly supported C∞ function on R2. We will use the following properties of
(inverse) Fourier transform:

F(τ bf)(ξ, η) = e−2πib·(ξ,η)F(f)(ξ, η),

F(f ◦A)(ξ, η) = F(f)(A(ξ, η)),

F−1(τ bf)(ξ, η) = e2πib·(ξ,η)F−1(f)(ξ, η),

F−1(f ◦A)(ξ, η) = F−1(f)(A(ξ, η)).

Also recall that the Lebesgue measure (and thus the value of integral) is invariant under rigid
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motions. If we assume that m is an Lp multiplier, then we have

∥F−1(mx,νFf)∥Lp = ∥F−1((m ◦R)Ff)∥Lp

= ∥F−1((m ◦R)F(f ◦R−1 ◦R))∥Lp

= ∥F−1((m · F(f ◦R−1)) ◦R)∥Lp (define g := m · F(f ◦R−1))

= ∥F−1(g ◦R)∥Lp

= ∥F−1(τ b(g ◦A))∥Lp

= ∥e2πib·(ξ,η)F−1(g ◦A)∥Lp

= ∥F−1(g) ◦A∥Lp

= ∥F−1(g)∥Lp

= ∥F−1(m · F(f ◦R−1))∥Lp

≲ ∥f ◦R−1∥Lp (since we assume that m is an Lp multiplier)

= ∥f∥Lp .

This calculation shows that mx,ν is an Lp multiplier. Therefore, our goal now is to prove
that m(ξ, η) = sgn(ξ) is an Lp multiplier. Denote the Hilbert transform on R by H. It is
known that H is a bounded operator from Lp(R) → Lp(R) (see (7)). For all z1, z2 ∈ R, define
fz2(z1) = f(z1, z2). Denote the one dimensional Fourier transform and inverse Fourier transform
on R by ̂ and ∨. We can then do a formal calculation by using Fubini’s theorem and the Fourier
inversion theorem:

F−1(mFf)(ξ, η) =
ˆ

R

ˆ
R
sgn(y1)Ff(y1, y2)e2πi(y1ξ+y2η)dy1dy2

=

ˆ
R

ˆ
R
sgn(y1)

ˆ
R

ˆ
R
f(z1, z2)e

−2πi(z1y1+z2y2)dz1dz2e
2πi(y1ξ+y2η)dy1dy2

=

ˆ
R

ˆ
R

ˆ
R

ˆ
R
sgn(y1)f(z1, z2)e

−2πiz1y1e−2πiz2y2e2πiy1ξe2πiy2ηdz1dz2dy1dy2

=

ˆ
R

ˆ
R

ˆ
R
sgn(y1)

ˆ
R
fz2(z1)e

−2πiz1y1dz1e
−2πiz2y2e2πiy1ξe2πiy2ηdz2dy1dy2

=

ˆ
R

ˆ
R

ˆ
R
sgn(y1)f̂z2(y1)e

−2πiz2y2e2πiy1ξe2πiy2ηdz2dy1dy2

=

ˆ
R

ˆ
R

ˆ
R
sgn(y1)f̂z2(y1)e

2πiy1ξdy1e
−2πiz2y2e2πiy2ηdz2dy2

=

ˆ
R

ˆ
R
(sgn(y1)f̂z2(y1))

∨(ξ)e−2πiz2y2e2πiy2ηdz2dy2

=

ˆ
R

ˆ
R
(iHfz2)(ξ)e

−2πiz2y2e2πiy2ηdz2dy2 (define s(z2) := (iHfz2)(ξ))

=

ˆ
R

ˆ
R
s(z2)e

−2πiz2y2dz2e
2πiy2ηdy2

=

ˆ
R
ŝ(y2)e

2πiy2ηdy2

= (ŝ)∨(η)

= s(η)

= (iHfη)(ξ).

Notice that in the last part of our calculations, we assume that the Fourier inversion holds for
s. We justify it by showing that both s and ŝ are in the Schwartz class S(R) in the next several
lemmas.
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Lastly, we can show the Lp boundedness of m:

∥F−1(mFf)∥Lp(R2) = (

ˆ
R

ˆ
R
|(iHfη)(ξ)|pdξdη)

1
p

= (

ˆ
R
∥Hfη∥pLpdη)

1
p

≲ (

ˆ
R
∥fη∥pLpdη)

1
p

= (

ˆ
R

ˆ
R
|fη(ξ)|pdξdη)

1
p

= (

ˆ
R

ˆ
R
|f(ξ, η)|pdξdη)

1
p

= ∥f∥Lp(R2).

Since compactly supported functions are dense in Lp(R2) for 1 < p < ∞, the above inequality
is true for any f ∈ Lp(R2).

Before going through the lemmas, let’s first introduce Grafakos’ notation. Let u be any tempered
distribution and f ∈ S(R).

For all n,m ≥ 0, ∥f∥n,m := ∥xnf (m)(x)∥L∞

⟨u, f⟩ := u(f),

f̃(x) = f∼(x) := f(−x),
For all ξ ∈ R, τ ξf(x) := f(x− ξ).

Lemma 3.6. Fix ξ ∈ R. The maps f 7→ f̃ and f 7→ τ ξf are continuous endomorphisms on
S(R).

Proof. S(R) is a Fréchet space. Hence, continuity of a function follows from the control of each
seminorm by a finite collection of seminorms. For all n,m ≥ 0,

∥f̃∥n,m = ∥xn(f̃)(m)(x)∥L∞

= ∥(−x)nf (m)(−x)∥L∞

= ∥xnf (m)(x)∥L∞

= ∥f∥n,m,
∥τ ξf∥n,m = ∥xn(τ ξf)(m)(x)∥L∞

= ∥xnf (m)(x− ξ)∥L∞

= ∥(x+ ξ)nf (m)(x)∥L∞

≤
n∑

k=0

(
n

k

)
|ξ|n−k∥xkf (m)(x)∥L∞

=

n∑
k=0

(
n

k

)
|ξ|n−k∥f∥k,m.

Lemma 3.7. Let f be a smooth compactly supported function defined on R2. Then for each
z2 ∈ R,

fz2+h − fz2
h

− (∂yf)z2
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converges to 0 in S(R) as h goes to 0, where ∂yf is the partial derivative of f with respect to
the second variable.

Proof. Let ∂xf be the partial derivative of f with respect to the first variable. For each n,m ≥ 0
and u ∈ R, by the Mean value theorem, there exists some y0 ∈ [z2, z2 + h] such that

un
[fz2+h − fz2

h
− (∂yf)z2

](m)
(u) = un

[(∂mx f)z2+h − (∂mx f)z2
h

− (∂mx ∂yf)z2

]
(u)

= un
[(∂mx f)(u, z2 + h)− (∂mx f)(u, z2)

h
− (∂mx ∂yf)(u, z2)

]
= un

[
(∂mx ∂yf)(u, y0)− (∂mx ∂yf)(u, z2)

]
.

Since the function (a, b) 7→ an(∂mx ∂yf)(a, b) is uniformly continuous and the distance between
y0 and z2 decreases as h→ 0, we have

∥fz2+h − fz2
h

− (∂yf)z2∥n,m = ∥un
[fz2+h − fz2

h
− (∂yf)z2

](m)
(u)∥L∞

= ∥un
[
(∂mx ∂yf)(u, y0(u))− (∂mx ∂yf)(u, z2)

]
∥L∞

→ 0.

Lemma 3.8. Let f be a smooth compactly supported function defined on R2. For each ξ ∈
R, s(z2) := (Hfz2)(ξ) is also smooth and compactly supported. Thus, s and ŝ are Schwartz
functions, and the Fourier inversion theorem holds for s.

Proof. For z2 large enough, fz2 ≡ 0. Hence, Hfz2 ≡ 0, which implies that s is compactly
supported.

We now show that
s′(z2) = (H(∂yf)z2)(ξ).

If this is true, then the smoothness of s follows from induction (replace f by ∂yf in this formula).
By Lemma 3.6 and Lemma 3.7, we have the following convergence in S(R):

lim
h→0

τ ξ(
fz2+h − fz2

h
)∼ = τ ξ( ˜(∂yf)z2).

We know that H is given by convolution with a tempered distribution W . We are now ready
to do the following calculation:

lim
h→0

s(z2 + h)− s(z2)

h
= lim

h→0

(Hfz2+h)(ξ)− (Hfz2)(ξ)

h

= lim
h→0

[H(
fz2+h − fz2

h
)](ξ)

= lim
h→0

⟨W, τ ξ(
˜fz2+h − fz2
h

)⟩

= ⟨W, lim
h→0

τ ξ(
˜fz2+h − fz2
h

)⟩

= ⟨W, τ ξ( ˜(∂yf)z2)⟩
= (H(∂yf)z2)(ξ).
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Lemma 3.9. T1 and T2 are Lp multipliers for 1 < p <∞.

Proof. For i = 1, 2, Ti is a sum of two bounded operators.

T1f =
1

2
f +

1

2
Tm(0,0),(1,0)

f.

T2f =
1

2
f +

1

2
Tm(−1,0),(1,1)

f.

Lemma 3.10 (Line Multiplier). Let x = (x1, x2) ∈ R2 and ν ∈ R2 be a nonzero vector. Define
m : R2 → R by

mx
ν(ξ, η) =

{
1, (ξ − x1, η − x2) · ν = 0

0, Otherwise
.

Then (mx
ν(j, k))(j,k)∈Z2 is an Lp multiplier for 1 < p <∞.

Proof. We make the following observation:

mx
ν(ξ, η) = 1−m2

x,ν(ξ, η),

Tmx
ν
f = f − Tmx,ν (Tmx,νf),

where Tmx,ν is an Lp multiplier by Lemma 3.5.

Lemma 3.11 (Halfline Multiplier). Let x = (x1, x2) and y = (y1, y2) be two points in R2. Let
ν1, ν2 ∈ R2 be two nonzero vectors. Define m : R2 → R by

mx,y
ν1,ν2(ξ, η) =

{
1, (ξ − x1, η − x2) · ν1 = 0 and (ξ − y1, η − y2) · ν2 ≥ 0

0, Otherwise
.

Then (mx,y
ν1,ν2(j, k))(j,k)∈Z2 is an Lp multiplier for 1 < p <∞.

Proof. Notice that

mx,y
ν1,ν2(ξ, η) =

(my,ν2(ξ, η) + 1)

2
mx

ν1(ξ, η) +
1

2
my

ν2(ξ, η)m
x
ν1(ξ, η),

Tmx,y
ν1,ν2

f =
1

2
Tmy,ν2

(Tmx
ν1
f) +

1

2
Tmx

ν1
f +

1

2
Tmy

ν2
(Tmx

ν1
f).

where Tmx
ν1
, Tmy

ν2
are Lp multipliers by Lemma 3.10, and Tmy,ν2

is an Lp multipliers by Lemma
3.5.

Lemma 3.12. T3 and T4 are Lp multipliers for 1 < p <∞.

Proof. We write these two operators as halfline multipliers:

T3f =
1

2
T
m

(0,0),(0,0)
(1,0),(0,1)

f,

T4f =
1

2
T
m

(−1,0),(1,0)
(1,1),(1,0)

f.
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Theorem 3.13. There does not exist any bounded projection from L1(db(H)) to H1(db(H)).

Proof. See (6), (14), (15), and chapter 3 of (16).

Theorem 3.14. The following definitions of Hp(db(H)) are equivalent for 1 < p <∞.

1. {f ∈ Lp(db(H)) : f̂(j, k) = 0, (j, k) /∈ Γ}.

2. {f ∈ Lp(db(H)) : f = lim
n→∞

∑
(j,k)∈Γ,

max(|j|,|k|)≤n

f̂(j, k)zj1z
k
2 , which converges in Lp}.

3. The closure of the span(zj1z
k
2 )(j,k)∈Γ in Lp(db(H)).

4. The image of Lp(db(H)) under S.

Remark. This is the analogue of Theorem 2.19.

Proof. 1 ⇒ 2 See the remark in section 3.1.

2 ⇒ 3 Trivial.

3 ⇒ 4 Suppose f is in the closure of the span(zj1z
k
2 )(j,k)∈Γ such that (fn)n≥0 ⊂ span(zj1z

k
2 )(j,k)∈Γ

is a sequence that converges to f in Lp norm. By Theorem 3.3, S is bounded on Lp(db(H)).
Since we clearly have Sfn = fn, taking L

p limit on both sides gives:

Sf = S(lim fn) = limSfn = lim fn = f.

4 ⇒ 1 Suppose g = Sh for some h ∈ Lp(db(H)). By Theorem 3.3, g ∈ Lp(db(H)). We need to
show that ĝ(j, k) = 0 for (j, k) /∈ Γ. Consider the series representation of g and h:

h = lim
n→∞

∑
max(|j|,|k|)≤n

ĥ(j, k)zj1z
k
2 ,

lim
n→∞

∑
max(|j|,|k|)≤n

ĝ(j, k)zj1z
k
2 = g = Sh = lim

n→∞

∑
max(|j|,|k|)≤n,

(j,k)∈Γ

ĥ(j, k)zj1z
k
2

Again (zj1z
k
2 )(j,k)∈Z2 is a basis by Theorem 3.2, so the uniqueness of the coefficients in the series

representation implies that ĝ(j, k) = 0 for (j, k) /∈ Γ.
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3.3 Duality of Hardy Spaces of the Hartogs Triangle

Theorem 3.15. For every continuous linear functional ϕ ∈ (Hp(db(H)))∗, 1 < p < ∞, there
exists a unique g ∈ Hp′(db(H)), 1

p + 1
p′ = 1, such that

ϕ(f) =

ˆ
T2

fḡd(m1 ×m2)

for all f ∈ Hp(db(H)). For each g ∈ Hp′, denote the integral operator
´

T2(·)ḡd(m1 ×m2) by Ig,

then the map I : g 7→ Ig gives an isomorphism between Hp′(db(H)) and (Hp(db(H)))∗.

Proof. By the Hahn-Banach theorem, ϕ ∈ (Hp(db(H)))∗ can be extended to a linear functional
Φ ∈ (Lp(db(H)))∗. By the duality (Lp(db(H)))∗ ∼= Lp′(db(H)), there exists an Lp′(db(H)) function
g such that

for all f ∈ Hp(db(H)), ϕ(f) =

ˆ
T2

fḡd(m1 ×m2).

We taken a sequence (gn)n≥0 ⊂ L2(db(H))∩Lp′(db(H)) that converges to g in Lp′(db(H)). Then

for a fixed f ∈ span(zj1z
k
2 )(j,k)∈Γ ⊂ H2(db(H))∩Hp(db(H)), we can use the self-adjoint property

of S on L2(db(H)) to show that

ϕ(f) =

ˆ
T2

(Sf)ḡd(m1 ×m2) = lim

ˆ
T2

(Sf)gnd(m1 ×m2),

ϕ(f) = lim

ˆ
T2

fSgnd(m1 ×m2),

ϕ(f) =

ˆ
T2

fSgd(m1 ×m2),

where the last equality follows from the continuity of S on Lp′(db(H)). Lastly, for an arbitrary
f ∈ Hp(db(H)), we can find a sequence (fn)n≥0 ⊂ span(zj1z

k
2 )(j,k)∈Γ that converges to f in Lp

norm. Then,

ϕ(f) = limϕ(fn) = lim

ˆ
T2

fnSgd(m1 ×m2) =

ˆ
T2

fSgd(m1 ×m2).

This convergence follows from the p′-integrability of Sg and Hölder’s inequality.

Now we prove the second part. We have already shown that I is surjective, and the boundedness
of I follows easily from Hölder’s inequality. It remains to show that I is injective. Suppose
Ig = Ih for two functions g, h ∈ Hp′(db(H)). Then Ig(z

j
1z

k
2 ) = Ih(z

j
1z

k
2 ) for any (j, k) ∈ Γ. By

using the fact that (zj1z
k
2 )(j,k)∈Z2 is a basis for Lp′(db(H)), we have

Ig(z
j
1z

k
2 ) =

ˆ
T2

zj1z
k
2gd(m1 ×m2) =

ˆ
T2

zj1z
k
2hd(m1 ×m2) = Ih(z

j
1z

k
2 ),

ĝ(j, k) = ĥ(j, k),

g = lim
n→∞

∑
max(|j|,|k|)≤n,

(j,k)∈Γ

ĝ(j, k)zj1z
k
2 = lim

n→∞

∑
max(|j|,|k|)≤n,

(j,k)∈Γ

ĥ(j, k)zj1z
k
2 = h.

Definition 3.5. Define

• SL∞(db(H)) = {f : there exists g ∈ L∞(db(H)) such that f = Sg}.

• H∞
− (db(H)) = {f ∈ L∞(db(H)) : for all (j, k) ∈ Γ, f̂(j, k) = 0}.
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If g ∈ SL∞(db(H)), then
∥g∥SL∞ = inf{∥h∥L∞ : Sh = g}.

Lemma 3.16. We have the following isomorphism:

SL∞(db(H)) ∼= L∞(db(H))/H∞
− (db(H)).

Proof. By Lemma 2.23, it suffices to show that H∞
− (db(H)) = kerS ∩ L∞(db(H)) . For any

f ∈ L∞(db(H)), f ∈ L2(db(H)). Hence,

Sf = lim
n→∞

∑
max(|j|,|k|)≤n,

(j,k)∈Γ

f̂(j, k)zj1z
k
2 ,

where the series converges in L2. Therefore, Sf = 0 iff f̂(j, k) = 0 for all (j, k) ∈ Γ.

Theorem 3.17. For every functional ϕ ∈ (H1(db(H)))∗, there exists a unique coset [g] ∈
L∞(db(H))/H∞

− (db(H)) such that for all f ∈ H1(db(H)),

ϕ(f) =

ˆ
T2

fḡd(m1 ×m2).

For each g ∈ L∞(db(H)), denote the the integral operator
´

T2(·)ḡd(m1 ×m2) by Ig. [g] 7→ Ig is
then an isomorphism from L∞(db(H))/H∞

− (db(H)) to (H1(db(H)))∗. Thus, we have

SL∞(db(H)) ∼= L∞(db(H))/H∞
− (db(H)) ∼= (H1(db(H)))∗.

Proof. To show that the map [g] 7→ Ig is well-defined, we need to show that for every element
h ∈ H∞

− (db(H)), Ih is the zero functional. For each (j, k) ∈ Γ,

Ih(z
j
1z

k
2 ) = ĥ(j, k) = 0

by definition. As span(zj1z
k
2 )(j,k)∈Γ is dense in H1 by Theorem 3.1, Ih is indeed the zero func-

tional.

Ig ∈ (H1(db(H)))∗ and ∥Ig∥H1→C ≤ ∥[g]∥L∞(db(H))/H∞
− (db(H)) by Hölder’s inequality. The map

[g] 7→ Ig is surjective by the Hahn-Banach theorem. We also need to show that it is injective.
Suppose g1 and g2 are two functions in L∞(db(H)) such that Ig1 = Ig2 . Then, for each (j, k) ∈ Γ,

Ig1(z
j
1z

k
2 ) = Ig2(z

j
1z

k
2 ),

Ig1−g2(z
j
1z

k
2 ) = 0,

ĝ1 − g2(j, k) = 0.

This implies that g1 − g2 ∈ H∞
− . Hence, [g1] = [g2].

Remark. It would be desirable to also prove the analogue of Theorem 2.30, but it is not clear
how one should generalize the Riesz Brothers’ Theorem to higher dimensions, which can be a
potential research topic for the future.
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