
Cryptography based on Finite Field Isomorphisms

Jasper Liu

April 30, 2022

Abstract

Given a prime number q and a positive integer n, all finite fields of order qn are isomorphic,
and can be viewed as Fq[x]/f(x), where f is some degree n irreducible polynomial mod q. As
the elements of finite fields can be viewed as polynomials, they can further be considered as vectors
with entries mod q, and the isomorphisms between finite fields can be treated as matrices with
entries mod q. The goal of this thesis is to construct an efficient digital signature scheme based on
the hardness to recover the secret isomorphism between two finite fields. The final objective is to
minimize the size of public keys and signatures, as well as preserving security against combinatorial
or lattice-based attacks.

Keywords: Finite Field Isomorphisms, lattice based cryptography, digital signature scheme

1 Introduction

1.1 Digital Signature
Digital signature is a crucial part in cryptography. When we talk about digital signatures, we

usually use the following setup:

• Alice publishes some public keys, and keeps secret some private keys.

• Bob sends a document for Alice to sign.

• Alice uses her private keys and the document to produce a signed document (the signature).

• Bob then runs a verification function using the signature and the public keys, verifying that it’s
indeed Alice who produced the signature.

In this process, there will be a third person, Eve, who will try to attack the system. There will be
two paths for Eve to work on. The first is to recover the secret keys given a list of signatures and
the public key, and the second is to forge signatures that will pass the verification process. So the
most important feature of a digital signature scheme is to make sure that the signature and public

1

keys don’t leak information about the private key, and to ensure that it’s hard to forge a new signature
from previous signatures.

A digital signature scheme is said to have bit-security k if it takes the attacker (Eve) at least 2k
tries when she attacks on the signature scheme by brute force. In other words, the probability that a
random try by Eve will pass the verification process is less than 2−k. The signature scheme that I will
introduce in this thesis is expected to have bit security of 256.

1.2 Setups
Let q be a prime and n be an integer, then any two finite fields of order qn are isomorphic, and any

finite field of order qn can be represented as Fq[x]/(f(x)), where f(x) is an irreducible polynomial
mod q of degree n.

Let X = Fq[x]/(f(x)) and Y = Fq[y]/(F (y)), where f(x) and F (y) are two monic irreducible
polynomials mod q. Elements in X,Y are polynomials of degree less than n. For clarity we assume
that the coefficients are all between −q/2 and q/2. These polynomials can also be viewed as vectors,
where the entries of the vectors are just the coefficients of the polynomials (But note that the vector
multiplication is defined as polynomial product mod f or F). By Finite Field Theory, X and Y are
isomorphic. There exists isopmorphisms ϕ : X → Y and Φ : Y → X. Note that ϕ and Φ can be
represented by n by n matrices. For clarity, polynomials represented by capital letters will represent
polynomials in Y, and lowercase letters represent polynomials in X

Further, we define a matrix γ, with dimension m by n, where m is smaller than n (For example,
m = 163 is a good choice to ensure combinatorial security). One example of the matrix γ is a
permutation of the m×m identity matrix adjoined by a block of 0’s on the right.

For a vector a in X, we define it to be short if it satisfies one of the following criteria

• the L∞ norm of a is smaller than some β, where (2β
q
)n < 2−256

• the L1 norm is smaller than some β, where the probability that a random polynomial in X has
a smaller L1 norm than β is smaller than 2−256.

The first criteria is easy to calculate, while the second one is harder. We refer to the Irwin-Hall
Distribution, that is, the cumulative density function of the sum of n independent variables uniformly
distributed in [0, 1] is

gn(x) =
1

n!

⌊x⌋∑
k=0

(−1)k
(
n

k

)
(x− k)n

We will manipulate this equation, and the function UniformSumDistribution in Mathematica will be
used for the calculation. These two criteria are set to ensure combinatorial security of the signature
scheme, making the probability that a random polynomial in X is short to be smaller than 2256.

2

1.3 Finite Field Isomorphism Problem
The Finite Field Isomorphism Problem can be treated in two perspectives: the decisional FFI

problem and the computational FFI problem. The statements of the problem are listed below

• Computational FFI Problem: Let a1, a2, ..., ak be a list of short polynomials in X, and let
A1, A2, ...Ak be their images under isopmorphism ϕ in Y. The computational FFI problem
asks if it’s possible to recover X = Fq[x]/(f(x)) and/or a1, a2...ak.

• Decisional FFI Problem: Let a1, a2, ...ak and A1, A2, ...Ak be as above, and let B1, B2 be in
Y, with one of them being the image of a short polynomial in X. Given the list A1, A2, ...Ak,
identify which is the image with a probability larger than 1/2.

In the digital signature scheme that I worked on, security is mainly based on the computational FFI
problem. In the next section, I will introduce attacks on the Finite Field Isomorphism Problem.

2 Attacks on the FFI
In this section, I will introduce two possible attacks. The first one is building a field X′ ”similar

to X, and the second one is based on the lattice reduction problem.

2.1 Uniqueness of X
First, I will give a proof that the attacker cannot build a new field, X′ = Fq[x]/f

′(x), such that all
the images in Y of short polynomials in X are also images of short polynomials in X′. In addition, in
the signature scheme that I will mention later, all signatures will be images in Y of polynomials with
L∞ at most 1. This means, I will prove there cannot be X and X′, with isomorphism Φ : X → X′,
such that all polynomials with entries in −1, 0, 1, will be mapped to polynomials with L∞ norm at
most C for some 0 < C < q/4.

Suppose there exists two finite fields X and X′, with a constant C and isomorphism Φ : X → X′,
satisfying for any polynomial f(x) with coefficients in {−1, 0, 1} in X, Φ(f(x)) has L∞ norm smaller
than C. We denote X = Fq[x]/F (x) and X′ = Fq[x

′]/G(x′), where F and G are irreducible degree
n polynomials.

By assumption, for any positive integer i, Φ(xi) = Φ(x)i has L∞ norm smaller than C. So we
examine Φ(x) in X′.

Suppose Φ(x) has degree larger than 1 in X′. Then there exists integer k such that deg(Φ(x)k) >
n (Here let the calculation take place in Fq[x

′]). WLOG we can let k be even, or we can just take k+1.
Then, by assumption, the L∞ norm of Φ(xk/2) is smaller than C, but when we square it, modulus
G(x′) will happen since deg(Φ(xk)) > n. This will, with a high probability, lead to a polynomial
with a L∞ norm larger than C, as C is small compared to q. Note that, more than one such k exists,
so the probability that deg(Φ(x)) < 1 will be further lowered.

3

Thus deg(Phi(x)) = 1. So let Φ(x) = ax′ + b. By assumption, |a|, |b| < C. If |a| ̸= 1, then
∃k < n such that |a|k > C, which indicates that the L∞ norm of Φ(xk) = Φ(x)k = (ax′ + b)k will
be larger than C, contradiction. The same arguments applies to b. If |a| = |b| = 1, we can also reach
a contradiction by binomial expansion. Since |a| ̸= 0, we have |b| = 0, which indicates that the only
possible Φ will be Φ(x) = ±x′. If Φ(x) = x′, then Φ is the identity, F = G. If Phi(x) = −x′, we
can see that F (x) = G(−x), which indicates that finding such an X ′ is as hard as solving X . This
completes the proof.

2.2 Lattice Attack
This attack is is formulated as a conjecture in a paper by Hoffstein, Silverman, Doroz and Sunar[2].

The tools to calculate the difficulty of it is formulated in the paper by Chen and Nguyen [1].
Suppose we have a list of signatures A1,A2, ...AN , and n× n matrix M , with coefficients mod q,

with the property that
MAi mod q are small for all i = 1, 2, ..., N .

In this attack, we will try to recover some row of M . Let m be a row of M , and we denote
bi = m · Ai for i = 1, 2, ..., N .

If we have that m is the jth row of M , then define
A = (A1|A2|...|AN)
bj = (b1, b2, ...bk)

Then we can construct the matrix D

D = D(q,N, c, n) =


A1 · · · AN

qIN

 ,

where N ≥ n.
Consider the lattice L(D), which is spanned by the rows of D (i.e. the space of integer combinations
of all row vectors of D). As bi = m ·Ai for i = 1, 2, ..., N , we have that the vector bj will be a linear
combination of the rows of D. Also, with a high probability, bj will be significantly shorter (in L2

norm) than any other vectors in the lattice. Thus, if we have a lattice reduction algorithm (an algorithm
which will recover the shortest vector in a lattice), then we will recover bj . Given the construction of
the matrix A, this will automatically give us m, which is a row of the secret isomorphism.

3 Digital Signature Scheme
In this section I will first give a precise way of constructing an isomorphism between two finite

fields. This method is first formulated in the paper by Hoffstein, Silverman, Doroz and Sunar[2].
Then, I will introduce the prototype of the digital signature scheme. Later in the thesis, I will

go over the experiments that we have run to optimize the parameters, and to improve the signature

4

scheme.

3.1 Construction of the isomorphism
Recall that in the setup section, we had two finite fields, X = Fq[x]/(f(x)), Y = Fq[y]/(F (y)),

where f and F are degree n monic irreducible polynomials mod q. Now I will describe how to find
an isomorphosm between the two fields. Note that to obtain the two way isomorphisms, we need the
following:

• ϕ(y) ∈ Y which is the image of polynomial x in X

• Φ(x) ∈ X which is the image of polynomial y in Y

• F (y) | f(ϕ(y)), or in other words, ϕ(y) is a root of polynomial f in the finite field Y

• Similarly, f(x) | F (Φ(x))

• ϕ(Φ(x)) ≡ x (mod f)

In order to achieve these objectives, the following algorithm is devised in the paper by Hoffstein,
Silverman, Doroz and Sunar[2].

1. Find a root of f in the finite field Y = Fq[y]/(F (y)) ≃ Fqn , and lift this to a polynomial
ϕ(y) ∈ Fq[y] with degree less than n.

2. Construct a unique polynomial Φ(x) ∈ Fq[x] with degree less than n such that Φ(ϕ(y)) ≡ y

(mod F)

3. Return Φ(x) and ϕ(y)

In step 2, we need to find a root of f in the finite field Y. Note that in our setup, f is monic
irreducible mod q of degree n. Thus, any of its roots generates Fqn . Also, given that F(q

n)/Fq is a
Galois extension, any irreducible polynomial mod q with 1 root in Fqn must split completely. And, as
X and Y are isomorphic, we know that f must also split completely in Y. We can set ϕ(y) to be any
of these roots, and, there is a polynomial time algorithm to find ϕ(y).

In step 3, we need to construct Φ(x). In the paper by Hoffstein, Silverman, Doroz and Sunar[2],
3 methods are included. Here I will list two of them. Although both methods are efficient, the second
turns out to work faster than the first one.

• Compute the roots of F in the finite field X. Similar to step 2, there will be n distinct roots,
and one of these n roots will be the desired Φ(x).

• Compute a root of ϕ(y)− x in the field X.

A note on the second method: here y is simply a notation of variable. The solution to this equation
will be a unique polynomial in X.

5

3.2 Signature Scheme Prototype
I will use the traditional Alice-Bob-Eve notations in this paper, i.e., Bob produces a document for

Alice to sign, and Eve will try to forge Alice’s signature.

3.2.1 Public Key

Alice publishes the field Y = Fq[y]/(F (y)) and the matrix γΦ. Note that this is the product of
the two matrices in the setup, and this matrix will not give information about the isomorphism.

3.2.2 Private Key

Alice keeps secret X = Fq[x]/(f(x)), ϕ, and Φ.

3.2.3 Signing

For a document message to sign we apply the Hash function to it such that Hash(message)

is am dimensional vector of 0’s and ±1’s. Recall thatm is the row-dimension of the matrix γ. Then,
Alice finds a vector a in X, satisfying:

• γ(a) ≡ Hash(message) (mod 3)

• a has 163 coefficients taking values from −1, 0, 1. All other coefficients of a are 0.

Alice then publishes A = ϕ(a) in Y as the signature.

3.2.4 Verification

For Bob to verify the signature, he checks:

• γΦ(A) ≡ Hash(message) (mod 3)

• γΦ(A) is short in L∞ norm

• γΦ(A2) is also short.in L∞ norm.

4 Experiments and Optimization of the Prototype
First of all, we discuss the necessity of checking γΦ(A2) is short. As Eve can always solve the linear

equation γΦ(A) = Hash(m), the solution to this equation will automatically satisfy the first two
conditions. However, according to our experiments using Mathematica, the square of a polynomial
in X is short if and only if the polynomial itself is very short. This fact guarantees the security of the
scheme. However, this is an observation confirmed by extensive experiments, but proving this remains
to be an open question.

6

In this section, I will discuss the experiments I have done to optimize various factors, such that
the size of signatures and public keys can be optimized (as small as possible).

In the following subsections, we will forget about q first, and take a look at the behavior of norms
of the square of a short polynomial mod f in Z[x]. The norms will be significantly smaller when we
consider then mod q, but the general pattern will remain the same.

4.1 Verification and Public Keys
As mentioned earlier, we have the conjecture that the square of a polynomial (mod f) is short (in

either L1 or L∞ norm) if and only if the polynomial itself is very short. In our case, it must be that
the polynomial’s coefficient list consists only with −1, 0, 1 such that its square can be short. Here, we
make a stronger argument:
Given a short and sparse polynomial c (the coefficients consists only of −1, 0, 1 and there are way
more 0′s than ±1’s), then for a polynomial a, the product ac is short if and only if a is very short
itself, consisting of 0’s and ±1’s.

Similar to the original conjecture, this is verified by mass experiments. However, we do not know
approaches to rigorously prove it. Using this conjecture, we can add in several ”verification polyno-
mials” in the public key, and in the verification process, instead of testing whether the square of the
signature is short, Bob would calculate the products of the signature and the verification polynomials.
Suppose there are k verification polynomials, then we need the probability that a random polynomial
would pass the test of each verification polynomial to be less than 2−256/k. In this way, the prime q
needed will be further reduced for each n.

There is also a requirement on the verification polynomials. We set a verification polynomial to
have d 1’s and d (−1)’s in its coefficient list, where d is the smallest integer such that(

n

d

)(
n− d

d

)
≥ 2256

With this criteria, the probability that someone would randomly discover a verification polynomial is
less than 2−256, which can be considered minimal.

4.2 Setting up Criteria for Short Polynomials
Let β0 and β1 be the criteria for short polynomials with respect to L∞ and 1 norms, i.e., we classify

a polynomial to be short in the verification process if its product with all the verification polynomials
has L∞ norms smaller than β0, or smaller L1 norms smaller than β1. The most trivial way to set up
the β’s is to find a value such that the products of short polynomials and verification polynomials will
always have L∞ and L1 norm smaller than the corresponding β’s, while the probability that a random
polynomial has norm smaller than this value is close to 0. However, we can improve this, by setting
β’s to be values such that about 50 percent of short polynomials, when multiplied with each of the
verification polynomials, will have a small norm, and the probability that a random polynomial has
smaller L1 norm is smaller than 2−256. In this way, Alice would have to verify if the signature she

7

produces is indeed short in the signing process, but it wouldn’t be too hard as there will be n − m

solutions to the equation γx = Hash(message), and approximately half of them would satisfy the
criteria. In this way, we can further reduce q needed for each specific n.

4.3 Choice of f
In this section we will discuss how the choice of f may affect the L∞ norm results. According to

the paper by Hoffstein, Silverman, Doroz and Sunar[2], polynomials with complex roots of smaller
norm will be more suitable choices for f , i.e. they will lead to smaller norms for products of short
polynomials.

As this result is already verified in the paper by Hoffstein, Silverman, Doroz and Sunar[2], I only
did a simple verification for n = 300, in the following way:

• Construct 10 verification polynomials satisfying the criteria mentioned in Section 4.1. Then,
construct 100 testing signature polynomials, each with 163 random coefficients chosen ran-
domly in −1, 0, 1 and all other coefficients 0.

• Set up 50 different irreducible f ’s of the form xn +
∑162

i=0 a
ixi.

• for each f , calculate the maximum of the norms of all its complex roots

• Calculate the product of verification polynomials and testing signature polynomials mod f .
Record the coefficient lists as vectors, and calculate the L∞ and L1 norms of these vectors. The
mean and median of these norms are recorded.

• Plot the mean and median of the norms with respect to the maximum of the the norms of the
polynomials’ complex roots.

The results are recorded in Figures 1-4.
It can be seen from the results that, as the maximum norm of the complex roots of f decreases,

the resulting L1 and L∞ norms are smaller. This relation is not linear. However, if we choose an f

with maximum norm of complex roots smaller than 1.016, the norms of products of short polynomials
mod f will, with a high probability, be smaller than the results from an f with maximum roots larger
than 1.017. In the following sections of this paper, we refer the f ’s with roots of small maximum
norms as ”carefully chosen”.

4.4 Choice of Norm
In this section, I will discuss the experiment used to determine whether L1 or L∞ norm would be a

better measure in determining whether a polynomial is short. Recall that the bit-length of a signature
is n log2 q, so given any degree number n, the measure that requires a smaller prime q should be
adopted.

8

Figure 1: mean of L∞ norms

Figure 2: median of L∞ norms

9

Figure 3: mean of L1 norms

Figure 4: median of L1 norms

10

4.4.1 Design of Experiment

The experiment is designed for n’s ranging from 280 to 565, in intervals of 10. For each n, we
conduct the following:

• Construct 50 monic irreducible polynomials, each of the form xn +
∑162

i=0 aix
i, where ai are

all uniformly distributed in −1, 0, 1. Then, find the polynomial f whose complex roots have
smallest maximum root. Fix this polynomial f with the corresponding n.

• Construct 8 verification polynomials satisfying the criteria mentioned in Section 4.1. Then,
construct 250 testing signature polynomials, each with 163 random coefficients chosen ran-
domly in −1, 0, 1 and all other coefficients 0.

• Take the products of testing polynomials and verification polynomials mod f . The coefficient
list of each product is then viewed as a n-dimensional vector, and the L∞ and L1 norms of
these 2000 vectors are recorded.

• Then, take the 160th largest L∞ norm and L1 norms, and use them as criteria for short poly-
nomials for the corresponding n’s.

• Use the methods discussed below to evaluate the prime q needed for each n using L∞ and L1

norms.

Note: There are 8 verification polynomials in our case. Recall that in section 4.1, we stated that the
probability that a short polynomial would pass the verification should be at least 50%. As the 160th
largest norm is the 92% cutoff of the norms of products, and 0.925 ≈ 0.5, it’s set as the criteria for
short polynomials.

4.4.2 Formulas to calculate q

For any fixed n, let β0 and β1 be the criteria obtained from the experiment for L∞ and L1 norms,
respectively. Then, as there are 8 verification polynomials, we would need the probability that a
random polynomial pass the test of each verification polynomial to be (2−256)1/8 = 2−32

We want prime q0 such that a random polynomial mod q0 has probability less than 2−32 to have
a smaller L∞ norm than β0. As the coefficient list of a random polynomial mod q0 can be viewed
as a n dimensional vector with each coefficient uniformly distributed in [−

⌊
q0
2

⌋
,
⌊
q0
2

⌋
]. Then, each

coefficient has a probability of β0

⌊ q0
2 ⌋

to be smaller than β0, and the probability that the vector has a

smaller L∞ norm than β0 is then (β0

⌊ q0
2 ⌋

)n = (2β0

q0−1
)n. We want q0 to be the smallest prime such that

the probability is smaller than 2−32, that is,

q0 > 2
32
n
+1β0

For L1 norms, we want a prime q1 such that a random polynomial mod q1 has probability less
than 2−32 to have a smaller L1 norm than β1. Recall that in section 1.2, we introduced the cumulative

11

density function of the Irwin-Hall distribution with x ∈ [0, n]:

gn(x) =
1

n!

⌊x⌋∑
k=0

(−1)k
(
n

k

)
(x− k)n

which is the distribution of sum of n variables uniformly distributed in [0, 1]. Let x0 be the solution
to gn(x0) = 2−32. Then, consider the sum of n independent variables each distributed uniformly in
[o,

⌊
q1
2

⌋
]. x0

⌊
q1
2

⌋
would give value of 2−32 for the cumulative density function of this distribution.

Then, we have that q1 should be the smallest prime satisfying

x0

⌊q1
2

⌋
> β1

As q1 is odd, this is equivalent to x0
q−1
2

> β1, and thus

q1 ≥
2β1

x0

+ 1

4.4.3 Results and Analysis

The results are shown in Figure 5, 6, and 7. Figure 5 and 6 plots the β1 and β0, respectively for
different n’s. Figure 7 plots the calculated primes q0’s and q1’s for different n’s, using the methods
mentioned in the previous section. The yellow line represents q0’s while the blue line represents q1’s.
It can be seen from this experiment that L1 norms would allow for much smaller prime q’s for a fixed
n, which will make n log2 q smaller. So we will adopt L1 norms to measure short polynomials in
Section 5 of this paper.

Note that, this experiment is quite coarse and does not determine the final choices of q’s for each
n. If the coefficient lists of products of polynomials mod f are taken mod q before the norms are
calculated, the results may be different. The final choices of (n, q) pairs will be determined in Section
5.

5 Updated Signature Scheme and Optimization
In this section I will write up the new signature scheme after all the optimizations listed above.

After that, I will introduce the numerical experiments used to determine (n, q) pairs.

5.1 Signature Scheme

5.1.1 Updated Public Key

• the field Y

• the matrix γΦ

12

Figure 5: Cutoff of L1 norms

Figure 6: Cutoff of L∞ norms

13

Figure 7: Primes needed for L1 and L∞norms

• the list of images of short polynomials Ci’s. The preimage of each Ci, denoted by ci, will be
polynomials in X space with d coefficients from 1 and d coefficients −1, and rest 0. Here d is
the smallest value such that

(
n
d

)(
n−d
d

)
> 2128. This is set to make the verification polynomials

combinatorically hard to solve.

5.1.2 Private Key

Alice keeps secret X = Fq[x]/(f(x)), ϕ, and Φ, together with the ci’s.

5.1.3 Signing

For a document message to sign we apply the Hash function to it such that Hash(message)

is am dimensional vector of 0’s and ±1’s. Recall thatm is the row-dimension of the matrix γ. Then,
Alice finds a vector a in X, satisfying:

• γ(a) ≡ Hash(message) (mod 3)

• γ(a ∗ ci) is indeed short for each i

• a has 163 coefficients taking values from −1, 0, 1. All other coefficients of a are 0.

5.1.4 Updated Verification

For a signature A, Bob verifies:

• γΦ(A) ≡ Hash(m) (mod 3)

• γΦ(A) is short in L1 norm

• γΦ(A ∗ Ci) is short for all i, where ∗ is polynomial multiplication.

14

5.2 Experiment on different f ’s and Resulting q
Here I will write about the experiments I did for thickening f , and the impact it has on the choice

of n and q.

5.2.1 Experiment

For each n and for c = 1, c = 2, and c = 3, I constructed f = f0 + xn, where f0 =
∑r

i=1 aix
i,

with r being the smallest integer satisfying (2c+1)r > 2256, and ai is chosen randomly from integers
in range [−c, c]. Then a list of 20 testing polynomials are constructed. Such a polynomial has degree
n, and has d 1’s and d −1’s, with d being the smallest integer such that

(
n
d

)(
n−d
d

)
> 2128.

100 signature polynomials are then constructed. One such polynomial has 163 coefficients from
{−1, 0, 1} and 0 for the rest. A prime q around 1000 is chosen. The 2000 products of test polynomials
and signature polynomials are calculated. The products are reduced mod f , and then coefficients are
reduced mod q and modified to the [−q/2, q/2] interval. The L1 norms of the 2000 modified vectors
are calculated, and I took the 160th largest norm as the L1 norm cutoff. Call this cutoff B.

The probability that sum of n random polynomials uniformly distributed between [−q/2, q/2] is
smaller than B is calculated. We need this probability to be approximately 2−32, and we switch to a
larger q if this probability is too large, and smaller q if the probability is too small, until we get the
optimal choice of q.

5.2.2 Some Explanations

According to previous experiments, L1 norm is a better criteria for testing, as it allows for smaller
prime q’s for a given n.

As explained in the previous sections, there will be 8 test polynomials, such that 2−32×8 = 2−256.
This is the reason to set the 160th largest norm as B, as for each testing polynomial, 92 percent of
signatures will pass the test, and 0.928 > 0.5, which means it won’t be too hard for Alice to construct
a valid signature.

In the results below, I have included the optimal (n, q) pairs . The L2 norms of the products mod
f are also recorded. However I didn’t include those data here, as they are used solely for calculating
HRF’s.

Another thing to mention is that, in the real signature scheme, the L1 norms are measured after
the product vectors mod f are multiplied by the m × n matrix γ. Recall that γ can be treated as
a permutation of the m × m identity matrix adjoined by columns of zeroes. So we did numerical
experiments, calculating the sum of the absolute value of the firstm coefficients in the product vector,
and the result turns out to be approximately m/n of the L1 norm of the vector. This experiment
verifies that the (n, q) pair we obtained from this experiment is justified in the signature scheme.

15

5.2.3 Results

The following chart illustrates how the thickness (c, as mentioned on the previous page) would
affect the choice of (n, q) pairs

n q for c = 1 q for c = 2 q for c = 3

210 3413 907 733
220 1987 733 601
230 1291 733 541
240 829 631 463
250 761 439 409
260 659 349 313
270 541 349 281
280 439 313 281
290 379 257 257
300 313 257 229
310 293 229 197
320 281 197 197
330 257 191 197
340 223 173 199
350 197 163 173
370 181 163 173
390 149 137 173
410 131 113 151
430 113 109 139
450 103 109 131

It can be seen that a larger c behaves better when n is very small, but the corresponding q turns out
to be similar for n large enough. To find the optimal choice of q, we will first check the security on
all these (n, q) pairs.

6 Analysis of Attacks
Recall that in earlier sections, we talked about the lattice attack on the FFI problem, using the

lattice generated by the rows of

D = D(q,N, c, n) =


A1 · · · AN

qIN

 ,

16

Figure 8:

where N ≥ n. So each signature Ai ∈ Y is the image of a polynomial ai ∈ X , whose coefficients can
be viewed as uniformly and randomly distributed between −1 and 1. This means that detD ≈ qN−n,
and the shortest vector has L2 norm

λ1(D) ≈
(
N

3
(0)2 +

2N

3
(1)2

)1/2

=

(
2N

3

)1/2

.

This means that the HRF for D is

HRF = HRF (q,N, c, n) =
λ1(D)1/N

(detD)1/N2 =

(
2N
3

)1/2N
q(N−n)/N2 .

This calculation is based on the formulae given in the paper by Chen and Nguyen [1].
for each (n, q) pair, we computed the least N > n for which λ1(D) < Gaussian expected SV,

because if the attacker wants a good chance of getting λ1(D) (as this would give a slice of ϕ) then
they need λ1(D) < Gaussian expected SV.

Also mentioned in the paper by Chen and Nguyen [1], the algorithm called BKZ is used in high
dimensional lattice attacks. And we have the relation between the block size and Hermite root factor.
In the paper, it was mentioned that the block size of BKZ multiplied by 0.265 is a well-estimated
upper bound on the bit security of the lattice.

Hermite Root Factor 1.01n 1.009n 1.008n 1.007n 1.006n 1.005n

Approximate Blocksize 85 106 133 168 216 286

Note that our lattice is of dimension N , so we can form a relationship between the N th root of the
Hermite Root Factor and the blocksize. It can be seen that for either c = 1, c = 2, or c = 3, the
upper bound on the bit security increases as n increases. As we require a bit security of at least 128

17

Figure 9:

Figure 10:

18

(We used combinatorial bit security of 256 to avoid an attack based on some collision algorithm) and
we are treating with some large n’s, it’s sufficient to use the case c = 1. The (n, q) pairs that would
satisfy our criteria are

n 390 410 430 450

q 149 131 113 103

7 Conclusions
So we have devised the digital signature scheme, and found several optimal choices of n and q to

serve as parameters. There are still many topics in this scheme that needs further study. For example,
it remains unknown if there exists a rigorous proof that in field F[x], the square of a polynomial has
short L1 or L∞ norm if and only if the polynomial is itself short. Or, there may be other functional
lattice attacks on the FFI problem, and the upper bound on the bit-security may be improved. As
many topics related to the FFI problem remain unsolved, this thesis serves as a possible way of utilizing
it in cryptography.

19

References
[1] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”. In: Ad-

vances in Cryptology – ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–20. ISBN: 978-3-642-25385-0.

[2] Yarkın Doröz et al. “Fully Homomorphic Encryption from the Finite Field Isomorphism Prob-
lem”. In: Public-Key Cryptography – PKC 2018. Ed. by Michel Abdalla and Ricardo Dahab.
Cham: Springer International Publishing, 2018, pp. 125–155. ISBN: 978-3-319-76578-5.

20

