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Chapter 1

Introduction

Given a closed curve in the plane, a tripod configuration is a choice of one
point in the interior of the curve, and three points on the curve, such that the
normal lines to the curve at those points form 120◦ angles and all intersect
at a single point. This paper represents a survey of much of the current
state of the study of tripod configurations. The purpose of this paper is to
provide the most current results on the tripod configurations of curves, as
well as to provide sufficient background for the interested reader to pursue
the study of these configurations in greater depth.

1.1 Motivations

The study of special points related to and configurations associated with
curves has yielded many interesting questions upon which to test the tools
of topology, differential geometry, and other older kinds of geometries. Such
inquiries have proved fruitful in the study of binormals, and more recently
have begun to yield results in the study of tripod configurations.

Tripod configurations possess several natural contexts. These config-
urations are perhaps best thought of as solutions to a kind of constrained
optimization problem, where one desires to minimize certain quantities while
constraining solutions to specific curves. For example, if a point had three
springs with one end attached to it and the other ends attached to three
distinct points on a curve, then tripod configurations would represent the
nontrivial critical points of the total force function. Similarly, if these springs
obeyed a constant, as opposed to a linear, force law then the tripod points
would represent equilibrium configurations of the system.

Besides these motivations, tripod configurations also have a deep con-
nection with the classical Fermat-Torricelli point of a triangle, being a kind
of generalization of this point to curves. Through this connection, tripod
configurations are also then related to the Steiner Tree problem from com-
puter science. These motivations, however, will be further explored in the
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Section 2.1, in Chapter 2, where we will find them tremendously helpful in
deciding upon the proper higher dimensional generalization.

1.2 Definitions

We’ll now introduce the three most important definitions in the study of
tripod configurations. But first, we’ll need the definition of a support line.

Definition 1 (Support Line): A support line of a curve, γ, in the plane,
is a line `, such that ` contains at least one point of γ, but γ lies entirely on
one side of `.

Support lines are thought of as a generalization of the notion of tangent
lines. The key aspect of the definition is that a support line cannot cut a
curve into two pieces.

We now introduce the definition of a tripod configuration:

Definition 2 (Tripod Configuration): Given a curve, γ : S1 → R2, a
tripod configuration on that curve is a choice of three support lines such
that the lines normal to the support lines passing through their points of
intersection with γ all intersect at a single point and form 120◦ angles.

(a) Tripod Configura-
tion on a Smooth Curve

(b) Tripod Configuration on a
Polygon

(c) Tripod Configuration on a
Piecewise Smooth Curve

Figure 1.1: Tripod Configurations on different classes of Curves
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The definition I’m presenting here generalizes the existing definitions in
the literature. This definition takes its inspiration from a definition for-
mulated by Sergei Tabachnikov for the tripod configurations of a polygon,
which the authors use in [5]. This more general notion allows for the study
of tripod points on curves that are piecewise smooth, and unifies all the pre-
existing notions under one concept. In figure 1.1, 1.1(a) illustrates a smooth
curve, 1.1(b) illustrates the definition for polygons, and 1.1(c) provides an
example of a tripod configuration under the general definition that does not
fall into either of the previous two cases.

Note that the lines normal to the support lines are considered without
respect to orientation, and that they will also necessarily form 60◦ angles
with one another, due to the fact that they are lines and not line segments.
From now on, we will also refer to the lines normal to the support lines
simply as normals or normal lines.

We make two more definitions for convenience:

Definition 3 (Tripod Point): Given a tripod configuration on γ, the
tripod point for that configuration is the point, q, of intersection of the
normals at p1, p2, and p3.

Thus, a tripod point represents a single actual point, whereas the con-
figuration is the entire setup.

Definition 4 (Tripod Feet): The feet of the tripod configuration on the
curve γ, are the points p1, p2, and p3 on the curve.

tripod foot

tripod foot

tripod foot

tripod point

Tripod Configuration

Figure 1.2: Different parts of a tripod configuration

1.3 Previous Results

In this section, we provide a summary of previous results on tripod configu-
rations, and various citations. The most important and interesting of these

4



results are re-proven in later sections.
The study of tripod configurations began when Sergei Tabachnikov first

defined the notion in his 1995 paper, “The Four Vertex Theorem Revisited -
Two Variations on the Old Theme”. He initiated their study in the context
of studying the four vertex theorem, and in that paper proved the following
existence result:

Theorem 1. Every C2 convex closed curve in the plane has at least two
tripod configurations. [7]

His approach utilized a support function defined on the curve which took
on zero values precisely at one of the feet of a tripod point. Because this
function was the derivative of another function, it had to take on at least
two zero values, proving the existence of two tripod points for the curve.

In the summer of 2013, Tabachnikov directed three undergraduates, Eric
Chen, Nakul Luthra and myself, in research during an REU at the Institute
for Computational and Experimental Research in Mathematics. During this
time and under his suggestion, they applied a Morse theoretical approach
to extend the results about tripod existence to alternative geometries. They
derived the following result from this technique:

Theorem 2. In both spherical and hyperbolic geometries, every C2 convex
curve that is a sufficiently small perturbation of a circle possesses at least
two tripod configurations. [5]

Simultaneously, they took a recent result from Lien-Yung Kao and Ai-
Nung Wang bounding from below the number of tripod configurations a
locally convex curve must have, and improved the lower bound to obtain
the following result:

Theorem 3. Let n be the turning number of a closed C2 locally convex
curve γ, then γ has at least 2dn2+2

3 e tripod configurations. [5]

Lastly, they offered a result extending existence of tripod configurations
for general C2 curves in the plane:

Theorem 4. Every C2 closed curve in the plane has at least one tripod
configuration. [5]

Note that there is also a notion of tripod configuration defined for poly-
gons in [5], and a few interesting results are obtained for it; however, this
definition is not covered in this paper.
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Chapter 2

Geometric and Analytic
Foundations

Tripod configurations have many relations to classical geometry, and often
we’ll need theorems form classical geometry in order to prove the results we
seek. This section develops that necessary geometric background. Moreover,
as the study of tripod configurations has yielded some fruitfulness in the 2-
dimensional case, people may find interest in higher dimensional analogues.
When attempting to generalize a notion, it’s only natural to return to its
roots. Thus, in order to foreground the journey into the higher dimensional
analogues of the tripod configuration, we’ll begin by examining its motiva-
tion from classical geometry: the Fermat-Torricelli point, and some of the
Fermat-Torricelli point’s higher dimensional analogues.

2.1 Motivations

The Fermat-Torricelli point is a kind of geometric center defined for a spe-
cific class of triangles. Namely, this important point was discovered as the
solution to a simple problem posed by Pierre de Fermat in a letter to Evan-
gelista Torricelli: given three vertices in the plane, what point minimizes the
sum of the distances from that point to each vertex? Torricelli afterwards
resolved this problem, in what has been called the first interesting discovery
associating a point to a triangle since the geometry of the Ancient Greeks.
[1]

This problem is really a specific instance of the more general Euclidean
Steiner Tree problem, which given n points in the plane seeks to connect
them with straight line segments of minimal total length such that every
point is part of the same connected component. This problem is extremely
important and has wide ranging applications, though it is in general NP-
hard. [2]

While ultimately what the proper higher dimensional analogue should
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be will remain unclear at the end of our discussion, one would imagine that
such an analogue should remain faithful to the motivation coming from the
Steiner tree problem, minimizing the sum of distances from n+ 1 points to
a single point in Rn. Let us now define and prove the important property
of the Fermat-Torricelli point.

2.2 The Fermat-Torricelli Point

We’ll begin with the obvious and appropriate definition:

Definition 5 (Fermat-Torricelli Point): The Fermat-Torricelli Point of
a triangle is the (unique) point inside of the triangle which minimizes the
sums of the distances from that point to the vertices of the triangle. That
is to say, F is the Fermat-Torricelli point of 4ABC is F lies in the interior
of 4ABC and d(A,F ) + d(B,F ) + d(C,F ) is at a minimum.

In order to lay the proper context for the Fermat-Torricelli point, we
must explore the notion of the isogonic centers of a triangle.1

Definition 6 (First Isogonic Center): The first isogonic center of a
triangle 4A1A2A3 is constructed by forming an equilateral triangle at each
of the sides and externally to the triangle, if we call the vertices of these
equilateral triangles that were not contained in the original triangle, P3, P1

and P2 respectively, then the line segments A1P1, A2P2, A3P3 all intersect
at a single point, I1, and this point is known as the first isogonic center.
Moreover, this point satisfies the condition:

∠A1I1A2 = ∠A1I1A3 = ∠A2I1A3 = 120◦

and is unique.

This is both a definition and a theorem, so we offer the following proof.

Proof. Consider a triangle, 4A1A2A3. Then, choose the points P1, P2, P3

such that we can construct equilateral triangles from the sides of 4A1A2A3

as indicated in figure 2.2
First, notice that 4P2A1A2 is similar to 4A3A1P3 by a 60◦ rotation

through A1, since A1A3 has the same length as A1P2, and similarly for
A1A2 and A1P3. This implies that ∠P3I1A2 = 60◦, or that ∠A2I1A3 =
120◦. Repeating this argument, we see that all three lines A1P1, A2P2 and
A3P3 form 120◦ angles with one another. Thus, I1 must lie on the circle
circumscribing 4P1A2A3, since ∠A2P1A3 = 60◦ implies that A2A3 cuts a
240◦ arc out of this circle.

1Most of the material on isogonic centers to follow is adapted directly from [1]
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I1
A1

A2

A3

P1

P2

P3

Figure 2.1: Construction of the First Isogonic Center

It is easy to see that the circles circumscribing 4P1A2A3, 4P2A1A3,
and 4P3A1A2 must intersect at a point. Moreover, since all the intersection
points of the lines A1P1, A2P2, A3P3 must lie on all three of these circles,
the points must coincide and equal I1.

Thus the result is proven. Moreover, I1 is the unique point satisfying
the equiangular condition because were there another point satisfying this
equiangular condition, I ′1, it would have to lie on all of the three aforemen-
tioned circles, but since their intersection point is unique this would imply
that I1 = I ′1.

Remark - To satisfy the curiosity of those wondering why it is called
the first isogonic center, there is a similarly defined second isogonic center
which is constructed exactly the same as the first isogonic center, except
with the equilateral triangles constructed internally or facing inwards to the
triangle, instead of externally. For a full treatment of the isogonic centers,
see [1].

Now we stop to prove what will turn out to be a very important property
of the first isogonic center, though in order to understand the property we’ll
need a definition, borrowed from [5].

Definition 7 (The antipedal triangle to a point): Given a triangle
4ABC and a point P , the antipedal triangle with respect to P is the triangle
formed by the lines orthogonal to PA,PB, and PC at the points A,B, and
C respectively.

Theorem 5. Given a triangle 4ABC, an equilateral triangle T circum-
scribing 4ABC is maximal if and only if it is the antipedal triangle with
respect to the first isogonic center.
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The following proof is borrowed from [10].

Proof. Given a triangle4ABC, construct a 240◦ circular arc on every side of
4ABC such that the side is the chord defining the arc. Then any equilateral
triangle circumscribing 4ABC has its vertices lying on these circular arcs,
by the fact that each vertex of an equilateral triangle forms a 60◦ angle.

60o
A

B C

Figure 2.2: Every circumscribing equilateral triangle’s vertices lie on the
circular arcs

Moreover, a choice of a single side of the equilateral triangle determines
the entire triangle. Therefore, finding an equilateral triangle of maximal
area reduces down to finding the longest line segment whose endpoints are
determined by the circular arcs.

A

B C

O1

O2

O3

M
N

Q

R

Figure 2.3:

Letting O1, O2, and O3 be the centers of the circular arcs, we then take
perpendicular of QR going through O1 and O2 and call these line segments
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O1M and O2N respectively. See figure 2.2. O1M must bisect QA because it
is a radial line segment perpendicular to the chord, and likewise with O2N
and RA.

Thus, QR is maximized when MN is, since QR is twice the length of
MN . Moreover, MN is shorter than O1O2 unless they are parallel, in which
case they are equal. Therefore, QR must be parallel to O1O2 and likewise
with the other sides of the maximal circumscribing equilateral triangle.

The lines perpendicular to the sides of the circumscribing equilateral
triangle at A,B, and C then must form 120◦ angles with each other and thus
is P is the point of intersection of two of them, P must form 120◦ angles
with all the vertices of 4ABC. Thus, P must lie on the circles centered at
O1, O2, and O3, but we’ve already discussed this point of intersection and it
is precisely the first isogonic center, and thus the claim is proven.

This theorem has an important corollary, key to the proof that every
closed curve has a tripod configuration in Theorem 11.

Corollary 1. If T is the equilateral triangle of maximal area circumscribing
the triangle 4ABC, then the normals to the sides of T at A,B, and C all
intersect at a point.

One more geometric object that we will encounter in our later proofs is
the cyclic quadrilateral. We provide a brief discussion of them here.

Definition 8 (Cyclic Quadrilateral): A cyclic quadrilateral is a quadri-
lateral of four of whose vertices my be placed upon a circle.

a

b

c
d

Figure 2.4: A cyclic quadrilateral

Take figure 2.2 as a typical example of a cyclic quadrilateral, then we are
primarily interested in two facts about cyclic quadrilaterals that are both
necessary and sufficent (thus the facts are equivalent).

1 Opposite angles are supplementary.
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2 ∠dac = ∠dbc

Recall that an inscribed angle, such as ∠dac, is half of the center angle
that defines the same arc length. Since the arcs defined by opposite angles
sum to the whole circle, the sum of the angles must be 360◦

2 = 180◦. Likewise,
since ∠dac and ∠dbc define the same chord, they must be equal as angles.

The content of the following theorem gives the relation between the
Fermat-Torricelli point and the first isogonic center.

Theorem 6. Let F be the point which minimizes d(A,F )+d(B,F )+d(C,F )
for points A,B, and C.

If 4ABC contains no angle greater than 120◦, F is the first isogonic
center of 4ABC, otherwise F is the vertex of 4ABC that has an angle of
120◦ or greater.

The following proof is adapted from [3]

Proof. Let f(P ) = d(A,P ) + d(B,P ) + d(C,P ).
First, we’ll prove that should a minimum exist, it must lie inside 4ABC

(implying that the minimum does exist, since the triangle is compact). Next,
we will characterize the critical points of f inside 4ABC. Lastly, we will
show that if 4ABC contains an angle of 120◦ or greater, that vertex is the
Fermat-Torricelli point, and otherwise the Fermat-Torricelli point is the first
isogonic center.

The Minimum must lie inside 4ABC
Assume that P lies outside of 4ABC. Then for some vertex, v, the side

of the triangle not containing v must extend to a line such that P lies on
the opposite side of this line as the vertex, otherwise P would lie inside of
4ABC.

p

v

Projecting P onto the side opposite v reduces all three quantities, d(A,P ), d(B,P ),
and d(C,P ). Therefore, it reduces f(P ).
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Therefore, the Fermat-Torricelli point must lie inside of the triangle.
Note also, that since the triangle is compact and f is continuous, this also
proves the existence of a minimum.

Characterization of the critical points of f
f is smooth everywhere except for when P = A, P = B or P = C.

Thus, as long as P does not lie on the vertices of 4ABC, we have the
critical points exist where ∇f(P ) = 0.

FixingA,B and C, notice that∇f(P ) = ∇d(A,P )+∇d(B,P )+∇d(C,P ).
In general, ∇d(X,P ) is the unit vector pointing away from X along the
line XP . Therefore, if a, b, and c are the unit vectors in the directions
AP,BP ,CP , then the condition that ∇f(P ) = 0 is equivalent to a+b+c =
0. In general, the sum of three unit vectors in the plane can only be zero if
they form 120◦ angles with each other.

Finding the Fermat-Torricelli Point
Assume 4ABC has no angles of 120◦ or greater.
For contradiction, assume without loss of generality that A is the Fermat-

Torricelli point. Then consider the directional derivative along the bisector
of ∠BAC. This cannot possibly be positive if A < 120◦. This proves that
the vertex cannot be a Fermat-Torricelli point since moving inwards slightly
would reduce the value.

Since the Fermat-Torricelli point must be in the interior of the triangle
and must satisfy the equiangular condition, then by the uniqueness of the
first isogonic center, the first isogonic center must be the Fermat-Torricelli
point.

If 4ABC has an angle of 120◦ or greater, then the minimum cannot
be achieved in the interior and so, since the extrema of a convex function
on a convex set must occur at the extreme points of the convex set, the
Fermat-Torricelli point must occur at one of the vertices. Since the longest
side of the triangle is opposite the 120◦ or greater vertex, then obviously
this vertex must minimize the sum of the distances function.

This provides the main results from classical geometry on the Fermat-
Torricelli point. Relating them back to tripod configurations, these results
show that for a given tripod configuration, the tripod point actually is the
Fermat-Torricelli point of the feet, provided that the feet do not form a very
obtuse triangle. This motivation also hints at the relationship between tri-
pod points and the sum distances function that may be used to study them.
Importantly, the idea is that the sum of the distnaces from a point inside a
curve to 3 points on the curve provides a the foundation for a Morse Theo-
retical approach to proving the existence of tripod configurations, which is
developed in [5]. One appeal of this approach is that it should generalize
in a fairly straightforward manner to an arbitrary number of dimensions,
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though there do exist some technical difficulties2. Lastly, this key relation-
ship with classical geometry plays an important role in the proof that every
closed curve in the plane has a tripod configuration. Now, we’ll turn a
generalization of the Fermat-Torricelli point from the literature.

2.3 Solid Angle and the Fermat-Toricelli Point of
Tetrahedra

First, we’ll explore the most geometric generalization of the Fermat-Toricelli
point. This generalization of the Fermat-Toricelli point to tetrahedra goes
back to Lorenz Lindelöf, who in 1867 solved the problem of minimizing the
sum of the distances from 4 points in R3 to a point P . [3][8]

In order to understand this generalization, we must first understand
the notion of solid angle, once armed with that understanding we review a
modern proof that this minimum does indeed satisfy an equiangular property
similar to that of the Fermat-Toricelli point in the plane.

2.3.1 Solid Angles

Using radians, we think of angles in terms of the ratio of the circumference
of a circle that two lines or, more generally, the projection of some object,
takes up on the unit circle. If one imagines living in the plane, then the
size of a connected object would be the angle made in one’s vision by the
endpoints of that object. Thus, this is the natural perspective to take when
generalizing angles to R3. This inspires the following definition:

Definition 9 (Solid Angle): Let S2 = {x ∈ R3 | ‖x‖ = 1} be the unit
sphere, µ : S2 → R≥0 be the measure of the surface area of a subset of S2.
Then the solid angle of a submanifold M ⊂ R3 is the measure, µ, of the
radial projection of M onto the unit sphere.

The notion of the solid angle of an object makes rigorous the idea of
how large something appears in our field of vision. Intuitively, solid angle
corresponds to how much of our view an object takes up.

The key distinction between the three and two dimensional cases for
angles is that while the projection of any connected object onto the circle
can be described with two lines, the projection of an object onto the sphere
cannot. Thus, we cannot always think of a solid angle as being defined by 3
vectors, as certain shapes will create much more complex projections onto
S2.

2which is why we chose not to explore the Morse Theoretical approach in this paper,
seeing great technical impediments to furthering or generalizing it. See the discussion at
the end of section 2.4
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That said, the aforementioned more general notion provides an obvious
definition for the measure of the angle that 3 vectors make in R3:

Definition 10 (Solid Angle of Three Vectors): Given three vectors
x, y, z ∈ R3, the solid angle between them from point p, (p, abc) is the
measure, µ, of the spherical triangle made by the intersection points of the
rays pa, pb, pc with the unit sphere at p.

It is also worth noting, that in spherical coordinates there exists a very
simple formula for computing the solid angle of a surface, name, letting
sr(S) denote the solid angle of the surface S:

sr(S) =

∫∫
S

sin θdθdφ

See [11] to read more about solid angles.

2.3.2 Fermat-Torricelli Point of Tetrahedra

The minimization problem from which we derive the definition of the Fermat-
Torricelli point of a triangle, has an obvious generalization to tetrahedra:

Definition 11 (Fermat-Torricelli Point of a Tetrahedron): The Fermat-
Torricelli point of a tetrahedron defined by four points, A,B,C,D ∈ R3 in
general position, is the point inside the tetrahedron which minimizes the
sum, f(P ) = d(A,P ) + d(B,P ) + d(C,P ) + d(D,P ).

Since we have motivated our generalization using the minimization defi-
nition of the Fermat-Torricelli point, it is only natural to ask if our equian-
gular condition will be satisfied as well in three dimensions. The answer to
this question is the content of the next theorem:3

Theorem 7. Let ∆ABCD be a tetrahedron, and P be the point minimizing
the function:

f(P ) = d(P,A) + d(P,B) + d(P,C) + d(P,D)

Then if ∆ABCD has a vertex of solid angle π or greater, that vertex
is P , otherwise every pair of line segments PA,PB,PC, and PD form the
same angles and every triple has solid angle π.

Proof. Let A,B,C, and D be four points in R3, and let

f(P ) = d(P,A) + d(P,B) + d(P,C) + d(P,D)

3For the original proof and a more complete treatment, see [3]. You may compare this
generalization to the one in 4
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First, we attempt to find the point minimizing the sum of these distances.
We prove a lemma.

Lemma 1. The point minimizing f must lie inside the tetrahedron ∆ABCD.

Proof. Assume the minimum, P , lies outside of ∆ABCD. Then there must
exist some side of ∆ABCD that when extended to a plane separates P and
some vertex of ∆ABCD on opposite sides. WLOG, assume this vertex is A
and the side is the plane, BCD.

The orthogonal projection of P onto BCD reduces all three quantities
d(P,A), d(P,B), d(P,C) and d(P,D). Therefore, P cannot be the minimum
of f , a contradiction. This implies that the minimum must exist inside
(including the boundary) of ∆ABCD.

Since ∆ABCD is compact and f is continuous, this implies the existence
of a minimum and that the minimum must lie inside the tetrahedron.

The minimum can only occur where either ∇f = 0 or where ∇f does
not exist, namely A,B,C, or D.

Again, the components of the gradient are unit vectors pointing in the
directions, PA,PB,PC, and PD. Thus, denoting these unit vectors as
a,b, c, and d respectively, the minimum condition where ∇f exists is:

a + b + c + d = 0

Thus, the key to understanding the Fermat-Torricelli points of a tetra-
hedron is simply understanding when four unit vectors may add to zero in
R3. The following lemma describes when this occurs:

Lemma 2. If four unit vectors, a, b, c,d ∈ R3, add to the zero vector, then
any three of the unit vectors must form a solid angle of π if the four vectors
are in general position. Moreover, it is always the case that if we measure
the angle of any two of the vectors in the plane that they form, this is equal
to the angle formed by the other two vectors.

Proof. First observe that:

a + b + c + d = 0 =⇒
a + b = −(c + d)

(a + b) • (a + b) = −(c + d) • −(c + d)

2 + 2a • b = 2 + 2c • d

a • b = c • d

15



We can do this with all pairs to obtain that:

a • b = c • d, a • c = b • d, a • d = b • c

Which proves that any two vectors has the same angle as the other two
vectors; however, this is not to say that all the possible pairs of vectors for
the same angle, only complementary pairs5.

We may then calculate:

(a + b + c + d)2 = 0

4 + 2(a • b + a • c + a • d + b • c + b • d + c • d) = 0

4 + 4(a • b + a • c + b • c) = 0

a • b + a • c + b • c = −1

When the vectors a,b, and c are in general position, this condition
then means that the vectors a,b, c form a solid angle of π. Of course, this
condition then holds for all of the triples of vectors. Thus, the four vectors
together divide the sphere up into equal are triangular regions.

Now we’ll prove that the vertices cannot be minima of the function if
they have a solid angle less than π.

Since (A,BCD) < π, we have that 1 + b • c + b • d + c • d > 0. Thus:

|b + c + d|2 = 3 + 2(b • c + b • d + c • d) > b • c + b • d + c • d > 1

Thus we have |b + c + d| > 1. The directional derivative of f at A along
b + c + d is then, if we introduce the unit vector e = b+c+d

t :

∇f • (b + c + d) = 1 + e • (−b− c− d) = 1− t < 0

Thus, A could not possibly be a minimum.
This discussion then gives us two cases. In the first case, no vertex of

ABCD has solid angle greater than or equal π, and thus the minimum must
occur in the interior of the tetrahedron where the vectors PA,PB,PC, and
PD satisfy the conditions given by lemma 2. Otherwise, if there is a vertex
with solid angle greater than or equal to π, then no interior point can satisfy
the angular condition, and thus that vertex with a solid angle of π is the
only eligible point to be the minimum.

5see the discussion following this proof

16



For people familiar with chemistry and the VESPR theory of chemical
bonding, the tetrahedral molecular geometry is an example of a shape that
the line segments PA,PB,PC, and PD could form. Methane, or CH4,
is one example of a molecule with this geometric structure. Someone who
recalls this theory, might also recall that the angles formed by these ligands
are cos−1(−1

3) ≈ 109.5◦.
This relationship to chemistry, of course, is no coincidence, as such

molecules take this shape because it spreads the ligands as far apart as
possible. It is tempting to wonder if the minimization of the sum of dis-
tances to the vertices of the tetrahedron is not somehow related to this
notion of maximal separation of the ligands, and tripod configurations on
surfaces could have some connection to chemical models.

Of course, this shape is not the only one that such a minimization could
take at the Fermat-Torricelli point. Intuitively, one could always place unit
vectors in pairs, and for whatever angle you want between the unit vectors,
and then pair the other 2 unit vectors at the same angle, placing them with
opposite orientation to the first pair. See figure 2.5 for an illustration. In
fact, our lemma basically says that this is the only way for the vectors to
sum to zero.

Figure 2.5: Four unit vectors summing to zero in two configurations

2.4 Tetrapod Configurations

As we saw in the previous section, the geometric motivation for tripod config-
urations, namely the Fermat-Torricelli point, becomes more complex when
examining it in higher dimensions. Namely, while some equiangular condi-
tions hold on the Fermat-Torricelli point, perfect symmetry does not hold.

Because of this complication, one might expect that we should weaken
the definition for the three dimensional case. This motivates the following
definition:

Definition 12 (Tetrapod Configuration): Given a closed surface, σ ⊂
R3, a tetrapod configuration of of σ is a choice of four lines orthogonal to
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supporting planes of σ at the points of intersection with σ, such that the
lines all coincide at a single point and every triple of vectors forms a solid
angle of π.

It is important to remark that in the proof of Theorem 7, we established
that for a given surface σ, the function

f : σ4 × R3 → R

defined by, letting u, x, y, z ∈ σ and p ∈ R3

(u, x, y, z, p) 7→ d(u, p) + d(x, p) + d(y, p) + d(z, p)

has critical points exactly at the tetrapod configurations of σ. Thus,
one could imagine using a Morse Theoretical approach to prove existence
of tetrapod configurations similar to that taken in [5]; however, such an
approach will need to be more complex than the treatment in [5]. Unlike in
the two dimensional case, one runs into the existence of dense submanifolds
of critical points in the 3-dimensional case when adapting the approach used
in [5].

The other approach one might take to proving the existence of tetrapod
configurations would be to adapt the geometric methods presented in this
papers proof of Theorem 11. In Chapter 5, we’ll outline the difficulties
in trying to adapt these geometric methods to the three dimensional case.
Because of the complications in the geometry of the tetrahedron introduced
by having a third dimension, it is the belief of the author that tetrapod
configurations do not exist as generally as do tripod configurations.

But for now, we return to tripod configurations in the plane.
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Chapter 3

Tripod Configurations in the
Plane

3.1 Tripod Configurations for Closed Convex Curves

In this section, we’ll present the original result proved by Sergei Tabachnikov
when he defined the notion of a tripod configuration. This result establishes
the existence of at least 2 tripod configurations for closed convex curves in
the plane. Quite importantly, it establishes the relationship between tripod
configurations and the area of the circumscribing equilateral triangle of the
curve. Namely, we’ll see that the points of contact between the largest
and smallest area triangles and the curve are precisely the feet of a tripod
configuration.

This property will play a key role in the following section, where we’ll
explore curves with dense tripod configurations. We now present the first
result:

Theorem 8 (Convex Tripod Configuration Theorem). Every C2 closed
curve has at least two tripod configurations.

Proof. Let γ : S1 → R2 be a closed convex curve. We’ll use the variable, s
to represent arc length, and α to represent the angle made by γ′(s) with a
fixed direction. It is a standard result in differential geometry that a convex
curve may be parametrized by arc length or angle, thus we’ll consider γ to
be parametrized by both arc length and angle, respectively denoted by γ(s)
and γ(α).

Define `(α) to be the line normal to γ at α. Define a support function
p : S1 → R by choosing some point O and defining p(s) = d(`(α), O), the
signed distance between the line `(α) and the point O.

Recall that if we denote the tangent and normal to γ at s by t(s) and

n(s) respectively, then t(s) = γ′(s) and n(s) = γ′′

‖γ′′‖ . Letting v1 ∧ v2 denote
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the determinant of vectors v1, v2, we have:

p(α) = γ(α) ∧ n(α)

Notice that p is actually derivative of a function, q:

q(α) = γ(α) ∧ t(α) =⇒ p(α) =
dq

dα
=
γ ∧ γ′′

‖γ′′‖
There are convenient geometric interpretations of these two functions,

which then make the result immediate. Namely, the tangent lines at α, α+
2π
3 , and α+ 4π

3 form a large equilateral triangle, and the normal lines form
a smaller equilateral triangle. Then if an is the area of the smaller triangle
defined by the normals and At is the area of the larger triangle defined by
the tangents, we have:

an =
1√
3

[
p (α) + p

(
α+

2π

3

)
+ p

(
α+

4π

3

)]2

At =
1√
3

[
q (α) + q

(
α+

2π

3

)
+ q

(
α+

4π

3

)]2
This is because the sum of the distances from a point inside an equilateral

triangle to the sides of the equilateral triangle is the height of the triangle.
Moreover since if h is the height and b is the side length of an equilateral
triangle, then b = 2√

3
h and so a = 1

2bh = 1√
3
h2.

o

Figure 3.1: The sum of the signed distances’ relation to area of triangle

Since p = dq
dα , the above equations imply that At achieves a maximum

precisely when an = 0. The size of At varies continuously around γ, and γ is
compact, therefore there must exist some αmax, αmin at which At achieves
a maximum and a minimum respectively. At these points, we must corre-
spondingly have that an = 0, which precisely says that the normals
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n (α) , n

(
α+

2π

3

)
, n

(
α+

4π

3

)
all intersect at a single point when α = αi or αj . Since these normals

form 120◦ angles by construction, this precisely says that there exist at least
two tripod configurations for γ.

It is crucially important to note the relation established between the
equilateral triangle that the tangents make, and the triangle formed by the
normals. In particular, tripod configurations exist exactly when the trian-
gle formed by these tangents, that is to say the circumscribing equilateral
triangle, has maximal or minimal area.

(a) Tripods exist when the
circumscribing equilateral
triangle has maximal or
minimal area

an
At

(b) illustration of At and an

Figure 3.2: The Tangent and Normal Equilateral Triangles

This relationship between circumscribing equilateral triangles and tripod
configurations will play a key role when we seek to prove that every C2 closed
curve in the plane has a tripod configuration, and when we examine curves
which have dense tripod configurations.

It may be tempting to try and generalize this method of proof to alterna-
tive geometries, the complication however comes from the support function.
Because of the presence of spherical excess and analogous phenomena in non-
planar geometries, the areas of the triangles, At and an posses complications
and it is unclear exactly how to adapt these methods.

Of course, due to the necessity of the ability to parametrize the curve by
angle in this method of proof, it cannot be easily adapted for general non-
convex curves; however, one may still parametrize a curve by the angle of
the tangent line if that curve is not convex but instead only locally convex,
and we review results exploring exactly this possibility in the next section.

I shall make one final remark before we begin the next section. It is
not known whether the preceeding bound is sharp for C2 convex curves.
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Conducting computational experiments with families of ellipses, it seems to
be the case that every ellipse has four tripod configurations, two for each
diameter or binormal of the curve. The diameters are normals of the curve
which intersect the curve perpendicularly at both points of intersection.

(a) 1st Tripod Configuration (b) 2nd Tripod Configuration

(c) 3rd Tripod Configuration (d) 4th Tripod Configuration

Figure 3.3: Tripod Configurations of the Ellipse

A rigorous proof of this fact for ellipses, as well as an example proving
whether or not the bound of two tripod configurations for any given curve is
sharp, remain open questions to be solved; however, if tripod configurations
do appear in pairs for every binormal (as they obviously do when the curve
is symmetric about the binormal), then because binormals always appear in
pairs, the number of tripod configurations would always be divisible by 4.
The Morse theoretical approach to bounding the number of tripod configu-
rations on a curve from below strongly suggests that there is indeed some
deep relationship between binormals and tripod configurations. Exploring
this relationship would again be a fruitful area for potential study.

3.2 Tripod Configurations for Locally Convex Curves

The previous proof suggests that one could potentially relate the number of
tripod configurations of a curve to the rotation number of the curve, that
is, the number of times the tangent vector to the curve spins in a complete
circle. For locally convex curves, the proof provides a very clear approach of
forming this relation. This approach was first taken up by Kao and Wang
in [6], and then improved in [5]. We present this second result, as it fully
elucidates the relation between rotation number and tripod configurations:

Theorem 9. Let γ be a C2 closed locally convex curve with rotation number
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n, then γ has at least 2n2 tripod configurations.

Proof. Given a closed locally convex C2 plane curve γ, parametrize it by
the angle that the tangent vector makes with a fixed direction. We’ll denote
this parametrization again by γ(α). The proof of Theorem 8 shows that
there exists a tripod configuration whenever

p(α) + p

(
α+

2π

3

)
+ p

(
α+

4π

3

)
= 0

More generally, this motivates us to define the family of functions:

Pi,j,k(α) = p

(
α+ i

2π

3

)
+ p

(
α+ j

2π

3

)
+ p

(
α+ k

2π

3

)
where i, j, k ∈ {0, 1, . . . , n−1} and i ≡ 0, j ≡ 1, k ≡ 2 mod 3. This con-

dition on the moduli of i, j, and k guarantees that the normals will intersect
at 120◦ angles. From our previous proof, we can see that these functions
equal zero precisely when there is a tripod configuration.

We want to identify two functions, Pi,j,k and Pi′,j′,k′ , when the triple of
normal angles {x+ i, x+ j, x+k} can be rotated into the triple {x′+ i′, x′+
j′, x′ + k′}. Since rotation corresponds to a change in the x or x′ variable,
this condition is equivalent to the differences of all the components all being
equal, or:

(x+ i)− (x′ + i′) = (x+ j)− (x′ + j′) = (x+ k)− (x′ + k′)

Since we’re only considering triples {i, j, k} we can reduce this to the
condition:

i− i′ = j − j′ = k − k′

In other words, when {i, j, k} = {i′+m, j′+m, k′+m} mod 3n, where
again n is the rotation number of the curve, and for some m ∈ Z. Each
of these equivalence classes of functions then identifies at least two distinct
distinct tripod configurations.

Thus, we turn ourselves to counting the number of equivalence classes
{i, j, k}. WLOG, we may assume that i = 0, since every other equivalence
class may be obtained as an integer translation of these representative ele-
ments.

Thus, we want to know when j − j′ = k − k′ = i − i′ in this class, but
i − i′ = 0 for all these representatives, therefore, j = j′ and k = k′. This
proves uniqueness. Then, we must simply count the number of choices for j
and k, but there are exactly n choices for j and n choices for k. Therefore,
there are n2 choices of elements {0, j, k}. Since every choice provides a
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unique function that yields two distinct tripod configurations, that means
the γ has 2n2 distinct tripod configurations.

As with our previous theorem, it remains an open question whether or
not these bounds are sharp. We now, in our final section, move on to the
most general current result about tripod configurations for curves in the
plane.

3.3 Tripod Configurations for General Closed Curves

We at last turn our attention to general curves in the plane. In this sec-
tion, we’ll see that every curve in the plane contains at least one tripod
configuration. The original proof of this theorem is due to [5]. Their proof
utilizes the ideas from the proof of Theorem 8, particularly the relationship
proven between the maximal area circumscribing equilateral triangles and
tripod configurations on C2 curves. Using this concept, they show that all
C2 curves in the plane have at least one tripod configuration; however, it
turns out that the analytic techniques utilized in the proof of Theorem 8
are unnecessary, and this lemma about the maximal circumscribing equilat-
eral triangle can actually be replaced with a purely geometric version which
holds for any closed curve in the plane.

Thus, while in [5] they were able to show the following:

Theorem 10. Every C2 closed curve in the plane has at least one tripod
configuration

We will extend their ideas, removing the differentiability condition and
proving:

Theorem 11. Every closed curve in the plane has a tripod configuration

Proof. Let γ be a closed curve in the plane.

Lemma 3. If T is a maximal equilateral triangle circumscribing γ and in-
tersecting γ at points A,B,C, then T is also a maximal equilateral triangle
circumscribing 4ABC.

Proof. By A(X), denote the area of the figure X.
Let Tmax be a maximal equilateral triangle circumscribing γ and inter-

secting γ at points A,B,C. Let T be the maximum equilateral triangle
circumscribing 4ABC. Then since A,B, and C are all points on the curve
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γ, either T is a triangle circumscribing γ, or at least one of the sides of T
intersects γ at more than one point, in which case by translating these sides
outwards, we can form an equilateral triangle T ′ that both circumscribes γ
and contains T in its interior. Thus, T ′ has area greater than or equal to
the area of T , and T ′ is a circumscribing triangle of γ.

T'
T

Tmax

A

B
C

Figure 3.4: Tmax is contained in an equilateral triangle circumscribing γ

Therefore, we either have that T is a circumscribing triangle of γ and
thus:

A(T ) ≤ A(Tmax)

since Tmax has maximal area among the equilateral triangles circum-
scribing γ. Or, we have T is contained in T ′ and therefore,

A(T ) ≤ A(T ′) ≤ A(Tmax) =⇒ A(T ) ≤ A(Tmax)

Similarly, since T has maximal area among the equilateral triangles cir-
cumscribing 4ABC, we have:

A(Tmax) ≤ A(T )

∴ A(Tmax) = A(T )

Recall that any triangle has a unique equilateral triangle of maximal
area circumscribing it, and that is the antipodal triangle of the first isogonic
center. Then, the previous theorem implies that any triangle of maximal
area circumscribing a plane figure is precisely the antipodal triangle of the
first isogonic center of its points of intersection with the curve. Since the
sides of the circumscribing equilateral triangle are all support lines of γ,
this statement precisely says that the points of intersection are the feet of a
tripod configuration.
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Thus, it is the case that every closed curve in the plane has a tripod
configuration as a very simple geometric fact, regardless of differentiabil-
ity. Even fractal curves and nowhere differentiable curves such as the Koch
Snowflake must have at least one tripod configuration in the general sense.

Figure 3.5: A Tripod configuration of the Koch Snowflake

By analogy to the case for convex tripods, one may hope that there
is another tripod configuration for any general curve corresponding to the
circumscribing equilateral triangle of minimal area, although how such a
relationship or proof would be teased out is not obvious.

As a final note, it seems highly probably that for C1 curves, tripod
configurations always come in pairs. We’ll formally state this conjecture in
the final section, but it’s unclear whether or not the general case should also
have this parity condition.

For the better behaved case of C2 locally convex curves, the tripod con-
figurations should generically appear in pairs because they are the critical
points of a function defined on the circle. The Morse theoretical results con-
firm this fact for tripod configurations in alternative geometries on curves
sufficiently similar to a circle1. We will also provide some discussion on the
parity of tripod configurations for the general C1 case in the plane as well
in Chapter 5, where we’ll outline the approach for a proof–though technical
details remain unfinished.

If the general case were to have a parity condition on the tripod con-
figurations, that would certainly be very interesting, but now we turn our
attention to topic besides existence, that is to say, analyzing the possibilities
for dense tripod configurations in a curve.

1see [5]
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Chapter 4

∆-curves and Dense Tripod
Configurations

The circle presents an interesting example of a curve, for the study of tri-
pod configurations. While the circle has only a single tripod point, it has
infinitely many tripod configurations. In fact, rather obviously, every point
on the circle is a foot of some tripod configuration.

Figure 4.1: The circle has infinitely many tripod configurations

Moreover, it can rather easily be shown that the circle is the only curve
with this property, which is the content of the following proposition:

Proposition 1 (Tripod Configuration Characterization of a Circle). If γ :
S1 → R2 is a closed C1 curve with a single tripod point, p, and the feet of
the tripod configurations at p are dense in γ, then γ is a circle centered at
p.

This result is mostly just a straightforward application of a standard
result from differential geometry saying that if all the normals of a curve
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intersect at a point, then the curve has constant curvature.
We’ll prove the characterization of the circle in two lemmas, the first

lemma proves the differential geometry result, the second lemma proves the
proposition. The proposition immediately follows, but first we’ll make a
quick definition:

Definition 13: Given a closed curve γ, and a subset S ⊂ γ, then by FS
we’ll denote the set of points q ∈ S such that q is the foot of some tripod
configuration of γ.

We now proceed with our two lemmas:

Lemma 4. If every normal to a C1 curve passes through a single point,
then that curve has constant curvature.

Proof. Assume every normal to a curve, γ, passes through the point P . Let
P be the origin of our coordinate system, then consider that:

d

ds
(γ(s) • γ(s)) =

d

ds
γ(s) • γ(s) + γ(s) • d

ds
γ(s) = 2γ(s) • d

ds
γ

But since all the normals pass through the origin, the tangent d
dsγ is

always orthogonal to γ(s), therefore:

d

ds
(γ(s) • γ(s)) = 0

So in particular, ‖γ(s)‖ is constant, which proves that γ is circular.

Lemma 5. If a closed C1 curve, γ, has only one tripod point but dense
tripod configurations, then that curve is the circle.

Proof. On the dense set of tripod feet in the curve, the normal lines all
intersect at the singular tripod point. By continuity, this implies that all
normal lines of the curve must intersect the tripod point. Thus, by our
previous lemma, γ must have constant curvature and be the circle.

Notice that the preceding proposition also has the simple, but somewhat
interesting, corollary:

Corollary 2 (Constant Curvature Corollary). If p is a tripod point of γ,
and S ⊂ γ is the set of feet of p, then each connected component of the
closure of S has constant curvature.
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In the above corollary, we must say along each component of the closure
of S because S could potentially consist of pieces of multiple concentric
circles as in figure 4.

the curve
S

Figure 4.2: A typical example of a curve satisfying the hypothesis of corollary
2

This corollary, while immediate from the preceeding proposition, is worth
mentioning because it is the first result which really makes explicit any kind
of relationship between the curvature of a curve and the study of its tripod
configurations. Interestingly, because of the nature of tripod configurations,
this relationship between tripods and curvature has a kind of three fold
symmetry, and it would be reasonable to hope that further study of tripod
configurations may yield deeper interactions between these configurations
and curvature. Any results of this nature would by necessity have this kind
of three-fold symmetry baked in, which might lead to some interesting and
surprising ideas. This example, then, motivates our further study of curves
with dense sets of tripod points and feet.

4.1 Motivation and Curves of Constant Width

It is, to many, one of the great surprises of mathematics that the circle is
not the only curve upon which you may role a board and keep it level. That
is to say, there are many (infinitely many in fact) curves of constant width
besides the circle. In order to make sense of what it means to be a curve of
constant width we, of course, need the following definition:

Definition 14 (width of a curve): The width of a closed curve, γ, along
the direction ı̂, is the distance between the two support lines of γ perpen-
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dicular to ı̂.

i

Figure 4.3: The width of a closed curve, γ

A curve of constant width, then, is defined in the obvious way. Curves
of constant width have been classically well studied , though perhaps the
most interesting result is Barbier’s Theorem, which we will state here but
whose proof is beyond the scope or interest of this article. This result was
discovered by Joseph-Émile Barbier in 1860:

Theorem 12 (Barbier’s Theorem). A given curve of constant width, h,
necessarily has perimeter, πh.

One of the simplest examples of these curves in terms of its construction
and the ease with which one can prove its constant width property, is the
Reuleaux triangle.1 This triangle is constructed from an equilateral triangle
by replacing each one of its sides with a 60◦ circular arc centered at the
opposite vertex. Another way to think of this construction, is that one
places a circle with radius equal to the side lengths of the triangle at each
vertex of the triangle, and then choose the sides of the new curve to be
the circular arcs whose chords are the sides of the triangle. This method of
construction is illustrated in figure 4.1.

The Reuleaux triangle has constant width because any two parallel sup-
port lines will touch the curve at a vertex, and a side opposite the vertex.
Because we constructed the Reuleaux triangle from these circular arcs, this
necessarily means that the lines are of distance r apart, where r is the radius
of these circular arcs, the side length of our original equilateral triangle.

Now, if one takes support lines perpendicular to the original support
lines, then a square is obtained, and in fact it is easy to see that an equivalent
definition of having constant width is that the curve can be continuously
rotated within this square such that it always touches all four sides in at
least one point.

Thus, we may think of curves of constant width as those which can be
rotated continuously in the square in this way. This inspires a generalization
of a curve of constant width, and the definition of a new kind of dimension

1the material in this section is adapted from [9]
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Figure 4.4: Construction of the Reuleaux Triangle

r

(a) The Reuleaux
Triangle has con-
stant width

(b) The Reuleaux
Triangle can rotate
in a square

Figure 4.5: Properties of the Reuleaux Triangle

31



for a curve to have. Namely, we might ask ourselves, what kinds of curves
may be continuously rotated within an equilateral triangle such that the
curve always touches all three sides of the triangle in at least one point?
The circle, as with curves of constant width, comes to mind as an obvious
example, and in general the class of curves with this property are known as
∆-curves, or delta curves.

4.2 The Theory of Delta Curves

Taking our inspiration from curves of constant width as those curves which
can be rotated in the square such that they always touch all four sides, we
can also make a definition of ∆-curves as those which can be continuously
rotated in the equilateral triangle such that they always touch all three
sides. We can also define this class of curves in an analogous way, that
is more reminiscent of the original inspiration of curves of constant width,
that is to say the invariance of their notion of width as defined for a curve.
Namely, we can think of ∆-curves as curves of constant height, by defining
the appropriate notion:

i

(a) height of the triangle
along i

i

(b) height of the triangle
along −i

Figure 4.6: Height of Equilateral Triangle along Opposite Directions

Definition 15 (height of a curve): The height of a curve, γ, along a
direction ı̂ is the height of the smallest equilateral triangle circumscribing
γ, such that the line connecting its base to one of its vertices goes along the
direction of ı̂ with the same orientation.

Notice that, in general, the height along ı̂ is not the same as the height
along −ı̂. This fact can be seen by examining an equilateral triangle, whose
height along the vector pointing inwards along one of the sides is the usual
height of the triangle, but whose height along one of the vectors pointing
outwards along a side is twice the usual height of the triangle.

Just as the Reuleaux triangle gives a simple first example of a curve of
constant width, the curve known as a bi-angle or the lens, provides a nice
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starting point for studying ∆-curves. The lens is constructed by taking a
60◦ arc and reflecting it about the chord that defines it on the circle. Of
course, in order to obtain such a 60◦ arc, one could use an equilateral triangle
with a circle centered at one of its vertices. This method of construction is
illustrated in figure 4.2.

Figure 4.7: Construction of the Lens Delta Curve

Now we’ll prove that this curve has constant height, and therefore can be
rotated in the equilateral triangle while maintaining contact with all sides.2

Proposition 2. The biangle is a ∆-curve.

Proof. In figure 4.2, let 4ABC be an equilateral triangle circumscribing
the biangle, and O be the center of the circular arc used to construct the
biangle. The key to the proof lies in showing that AO is parallel to CB, and
thus OP is equal in length to height of 4ABC. Thus, every circumscribing
equilateral triangle of the biangle has height r, where r is the radius of the
circle used to construct the biangle.

To prove that AO and CB are parallel, notice that ∠rap = ∠rop =
60◦; therefore, raop is a cyclic quadrilateral, and so ∠rao and ∠opr are
supplementary, thus ∠rao = 120◦. Since ∠qca = 60◦, this implies that AO
and CB are parallel.

Thus, the biangle is truly, as claimed, a ∆-curve. The biangle is, as one
would expect, not the only ∆-curve besides the circle. In fact, there are
infinitely many.

We will remark here two results which will provide a key understanding of
the limitations of ∆-curves, and be useful in the next section, where we will

2The following proof, as most of the material on ∆-curves, is adapted directly from [9]
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a

bc

o

p

r

q

Figure 4.8: Proof that the Lens is a ∆-curve

Figure 4.9: the Lens rotating inside an equilateral triangle

prove the results, when asking questions about dense tripod configurations
and ∆-curves. The first result is:

Proposition 3. Every support line of a ∆-curve intersects that curve at a
single point.

The second result is a corollary of the first,

Corollary 3. Every ∆-curve is convex.

In light of this corollary, another way of understanding the first propo-
sition is that every point of a ∆-curve is an extremal point of the convex
figure it encloses.

Lastly, we include what is perhaps the most interesting extent result on
∆-curves currently:

Theorem 13 (Barbier’s Theorem for ∆-curves). Every ∆-curve of height
h, has length 2π

3 h.
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For one of the most in-depth resources on ∆-curves, see [10].

4.3 Delta Curves and Tripod Configurations

Now that we have built up sufficient (and interesting) background, we’re pre-
pared to return to our original examination of dense tripod configurations
and curves with infinitely many tripod configurations. Of course, because
any closed plane curve is compact, in order to have infinitely many tripod
configurations, the feet of these configurations must have at least one accu-
mulation point. Thus, one may see that the property of having infinitely
many configurations and having a dense configurations are closely related.
To make rigorous this informal discussion, and this notion of dense tripod
configurations, we make the following definition:

Definition 16 (Density of Tripod Configurations): Given a closed curve
γ, a subset S ⊂ γ is said to have dense tripod configurations if FS = S.

The obvious example of a closed curve with dense tripod configurations,
then, is the circle; however, recall from our original proof for the existence
of tripod configurations of convex curves in the plane, that if we drop three
normals from a convex curve such that the normals form 120◦ angles with
each other, then the area of the equilateral triangle they form is related to
the derivative of the area of the equilateral triangle formed by the tangents
at those points.

an
At

Figure 4.10: an is related to the derivative of At

This relation is such that when At is either a maximum or a minimum, an
is zero, and thus the normals all intersect at a single point forming a tripod
configuration. Moreover, though, At is constant as the triangle formed by
the tangents rotates around the curve if and only if an = 0 for the entirety
of that rotation. This relationship is always true on C2 convex curves,
but this is precisely to say that every C2 convex curve with dense tripod
configurations is a ∆-curve. We’ll state this in a proposition:
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Proposition 4. Every C2 closed locally convex curve with dense tripod con-
figurations is a ∆-curve.

This observation leads to some rather natural questions. Firstly, are
there closed curves with dense tripod configurations which are not ∆-curves?
Of course, such a curve would either need to be non-convex, or not C2, as
we’ll see we can certainly find examples of curves with dense tripod con-
figurations that are not C2, but the examples we’ll present turn out to be
∆-curves. This observation, then, brings us to our second important ques-
tion. Since not all ∆-curves are C2, do all ∆-curves still have dense tripod
configurations?

We’ll provide some discussion on the first question which will answer it
in the negative, but leave many more questions open, while we’ll discover
that the answer to the second question is that all ∆-curves do indeed posses
dense tripod configurations.

The next theorem proves that tripod configurations are dense in all ∆-
curves, and will also allow us to prove the convexity properties of ∆-curves
discussed in the previous section.3

Proposition 5. The normals at the three points of contact between a ∆-
curve and its circumscribing equilateral triangle all coincide at a point.

Figure 4.11: Every circumscribing equilateral triangle defines a tripod con-
figuration

There are many ways to see this fact. Borrowing ideas from kinematics
and classical mechanics, one could think of the ∆-curve as rotating inside
the equilateral triangle, realize that the motion of the points of contact
between the curve and the triangle must be tangent to the triangle, and thus
recall that the instant center of rotation is the single point through which
the perpendicular lines to each velocity vector intersect. Thus, since the

3much of the material in this section is adapted from [10]
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perpendiculars to the curve are in particular perpendicular to the velocity
vector, they must all intersect at the instant center of rotation.

Another way approach to proving this problem, would be to take a se-
quence of smooth curves approximating the delta curve, and to show that
the proper values converge correctly; however, we do not need to work so
hard as any of these, because we have actually already proven the previous
proposition. Namely, recall the proof of theorem 11 in which we proved that
every closed curve has a tripod point in the plane. The proposition stated
that for any closed curve in the plane, every maximal circumscribing equi-
lateral triangle defines a tripod configuration. Since every circumscribing
equilateral triangle of a ∆-curve has the same area, they are all in partic-
ular maximal, thus the preceeding proposition is immediate. Moreover, by
the proposition, the sides of this equilateral triangle must intersect the curve
in only one point. Since every support line of the curve defines an equilateral
triangle, this proves the proposition from the previous section:

Proposition 6. Every support line of a ∆-curve intersects that curve at a
single point.

and of course, the corollary is immediate.

Corollary 4. Every ∆-curve is convex.

Since the ∆-curve is convex, every point has a support line passing
through it, which implies that every point on a ∆-curve has a circumscrib-
ing equilateral triangle going through it and thus a tripod configuration by
proposition , this implies the following result:

Theorem 14. Tripod configurations are dense in every ∆-curve.

Thus, we have our positive answer to the question, does every ∆-curve
have dense tripod configurations. As an interesting remark, our charac-
terization theorem of the circle provides the immediate corollary that every
∆-curve which is not the circle must have at least 2 tripod points. Moreover,
unless the ∆-curve has piecewise constant curvature, it must have infinitely
many tripod points. An interesting topic to explore could be what kinds of
shapes the set of tripod points of a ∆-curve can make. For the ∆-biangle, the
tripod points all lie on a continuous closed curve with two non-differentiable
points–the same number of non-differentiable points as the ∆-biangle itself.

Now, we will return to our other motivating question for some discussion,
before closing this chapter. The other question we asked was, are there
any closed curves with dense tripod configurations which are not ∆-curves.
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The answer turns out to be yes, there do exist curves with dense tripod
configurations which are not ∆-curves. While a general theory of these
curves seems to be more difficult, we provide some examples, to elucidate
some of the possibilities.

Firstly, there exist C0 convex curves with dense tripod configurations
which are not ∆-curves. For example, consider an (appropriately sized)
equilateral triangle and a circle, whose centers of mass are coincident. Con-
sider the curve which forms the boundary of their intersection. Given a
point initially on the boundary of the triangle, we can find a tripod configu-
ration by seeing where it’s normal line intersects the perpendicular bisector
of one of the other sides, and choosing the final normal line by symmetry.
Likewise, all of the points originally on the circle have tripod configurations
going through the center of the circle.

(a) Tripod Configurations are
dense

(b) the curve is not a ∆-curve

Figure 4.12: A C0 curve with dense Tripod Configurations that is not a
∆-curve

Simultaneously, this curve is clearly not a ∆-curve, as can be seen by
taking the initial equilateral triangle as the minimal circumscribing triangle,
and examining a circumscribing triangle of the initial circle.

Thus, we have that C0 is enough to break our theorem. If we use normals
to the curve, as opposed to normals to support lines of the curve, to form
our tripod configurations, then we can do even better than this. Namely,
we can form a C1, locally convex curve which is not a delta curve but has
dense tripod configurations:

The curve in figure 4.3 is traversed around a large circle, half way around
the small circle, then around the other large circle. Clearly this curve has
continuously varying tangents, but it cannot be C2 because the curvature
changes discontinuously at the points between the large outer circles and
the small inner circle.

Whether or not local convexity is a necessary condition for proposition
?? remains an open question. Of course, since all ∆-curves are convex,
whether or not local convexity is necessary for proposition is equivalent
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Figure 4.13: C1 curve with Dense Tripod Configurations, but not a ∆-curve

to the question of whether or not there exist C2 curves with dense tripod
configurations which are not locally convex.
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Chapter 5

Conjectures and Conclusions

In this concluding chapter, we begin by summarizing our results and some
open questions for curves with dense tripod configurations, and then move
on to state a conjecture, and provide the beginnings of a proof for it, which
requires more technical detail than I can currently pursue.

5.1 Dense Tripod Configurations: Open Questions
and Summary

Recall that we began our discussion of dense tripod configurations by ob-
serving the fact of the constant curvature corollary:

Corollary 5 (Constant Curvature Corollary). If p is a tripod point of γ,
and S ⊂ γ is the set of feet of p, then each connected component of the
closure of S has constant curvature.

which of course implies the tripod configuration characterization of the
circle, that if γ has one tripod point and tripod configurations are dense,
then γ is a circle.

In developing the theory of dense tripod configurations, we realized that
every C2 locally convex curve with dense tripod configurations is a ∆-curve,
and that every ∆-curve has dense tripod configurations; however, there are
C0 and C1 locally convex curves with dense tripod configurations. Thus, for
sufficiently differentiable curves, density of tripod configurations and being a
∆-curve are analogous, but for rougher curves, the notions begin to diverge
with dense tripod configuration curves being a superset of ∆-curves.

Of course, many questions were left open.
While [10] gives some methods of constructing different ∆-curves (this

resource really containing most of the available literature in English on ∆-
curves to date), it does not explicitly provide any examples of smooth ∆-
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curves besides the circle. In order for our theorem that all C2 curves with
dense tripod configurations are ∆-curves to be meaningful, there should be
more examples of C2 ∆-curves than just the circle, thus we may ask:

Open Problem 1: Are there smooth ∆-curves besides the circle?

and more generally,

Open Problem 2: Does there exist a CK ∆-Curve, for each K ∈ N?

These questions may be approached from the perspective of dense tripod
configurations, or from ∆-curves since for greater than or equal to C2, the
notions are equivalent.

A different way of counting the number of tripod configurations is count-
ing instead the number of distinct tripod points. One could, then, imagine
the number of tripod points as having certain interesting properties relating
to the curves that define them. In this vein, we may also ask whether or
not the condition of density of tripod configurations is necessary for our
characterization theorem of the circle, namely:

Open Problem 3: Are there curves, besides the circle, which only possess
a single tripod point?

And finally, while we determined that the differentiability condition is
necessary for the equivalence of dense tripod configuration curves and ∆-
curves, we did not answer the question of whether or not local convexity
was, this leads us to our final question:

Open Problem 4: Do there exist closed curves with dense tripod configua-
tions which are not locally convex?

5.2 Parity Conjecture for Tripod Configurations

We make the following conjecture about the parity of number of tripod
configurations for a given curve.

Conjecture 1 (Tripod Parity Theorem). Almost every C1 curve has an
even number of tripod configurations.

Recall that for convex and locally convex C2 curves, there should always
be an even number of tripod configurations, and that the Morse Theoretical
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work in [5] also confirms this result for curves sufficiently similar to a circle
in alternative geometries. For general C1 curves, in any geometry, the reason
for the parity to be even comes from the following (incomplete) argument.

Let M = (R2 × S1)3, or the space of triples of flags in the plane. We
think of an element of M as being a choice of three points in the plane with
a direction at each point. Then given a curve γ, we have an embedding of
γ into M given by:

Γ : S1 →M

by

α 7→ (γ (α) , γ′ (α) , γ

(
α+

2π

3

)
, γ′
(
α+

2π

3

)
, γ

(
α+

4π

3

)
, γ′
(
α+

4π

3

)
)

Interestingly, though unimportantly to this argument, Γ has nontrivial
homology. The first homotopy group of M is Z × Z × Z, since M is a
deformation retract of the 3 torus, and Γ is of the homotopy class (1, 1, 1).
More to the point, though, we can define an subset, S ⊂ M by taking the
set of points in M such that the lines formed by the flags all intersect at a
single point. We consider here parallel lines to intersect at infinity. Then
S is nearly a manifold, except for some singularities when two of the lines
coincide, and a couple of other points.

S intersects Γ, precisely when γ has a tripod configuration. Now, finally
notice that the homotopy class of Γ has an intersection number modulo 2 of
0 with S, this can be seen by taking three flags and rotating them around
in a circle such that they never all coincide at a point.

Since intersection number modulo 2 is a constant for all curves in general
position in a homotopy class, this implies that every curve should have an
even number of tripod configurations. In order for the argument to work,
however, the singularities of S must be dealt with, and the property of
general position for Γ must be related back to a condition on the curve γ.

Should these technical details be resolved, then it will have been proven
that tripod configurations come in pairs for any C1 curve–in spherical, hy-
perbolic, non-hyperbolic and planar geometry since the proof is purely topo-
logical.

5.3 Complications with Tetrapod Configurations

As already discussed in section 2.4, taking a Morse theoretical approach
to proving the existence of tetrapod configurations would likely run into
some technical complications fairly quickly. Namely, the approach from [5]
requires the use of Morse theory on manifolds with boundary. Using these
tools, one can relate the number of critical points of the sum distances
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function that occur on the boundary of a parameter space, to the number
of critical points that occur inside the manifold. The critical points on the
boundary turn out to be easy to count in the two dimensional case, and the
critical points inside the manifold are precisely the tripod configurations. In
three dimensions though, one cannot (in any obvious way) avoid running into
continuous sets of critical points, as opposed to some discrete number that
one could count. This, in particular, means that one would need some kind
of Morse-Bott theory on manifolds with boundary. Currently, I’m unaware
if such a theory has been developed, but in any event, it would require a
good deal more technical effort.

Adapting a geometric approach to prove the existence of tetrapod config-
urations also runs into issues. For the benefit of the interested reader that
may consider pursuing this kind of approach, we’ll outline its beginnings
here, and provide further discussion when we reach the step which does not
translate from the two to three dimensional case.

Recall our proof of theorem 11. We’ll begin adapting the argument here:
Let σ ⊂ R2 be a closed surface.

Lemma 6. Let T be a maximum circumscribing regular tetrahedron of σ,
intersecting σ at points A,B,C, and D. T is also the maximal regular
tetrahedron circumscribing ∆ABCD.

The proof works almost identically to the two dimensional case:

Proof. Let T ′ be a regular tetrahedron circumscribing ∆ABCD. T ′ is either
circumscribes σ, since each of its sides intersects σ in at least one point, or
we can move each side outwards until it intersects σ at only one point, and
thus T ′ is contained in a regular tetrahedron circumscribing σ.

Therefore, we always have that T ′ has volume less than or equal to that
of some regular tetrahedron circumscribing σ, and thus has volume less than
or equal to that of T .

The next (somewhat surprising!) lemma is the beginning at an attempt
to show that a maximal circumscribing regular tetrahedron, T , of a dif-
ferent reference tetrahedron ∆ABCD, must have be antipedal to a higher
dimensional analogue of the first isogonic center.

Lemma 7. Given a regular tetrahedron T ⊂ R3, and a point P in the
interior of the tetrahedron, the sum of the distances from P to each side of
T is the altitude of T .

Proof. Let T = ∆ABCD and let a be the area of each side of T (since all
have equal area), and d(P,ABC), d(P,ACD), d(P,ABD) and d(P,BCD)
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denote the distance from P to the respectives sides of T . Split T into the
tetrahedra

∆ABCP,∆ABPD,∆APCD, and ∆PBCD

Their volumes are

1

3
ad(P,ABC),

1

3
ad(P,ACD),

1

3
ad(P,ABD), and

1

3
ad(P,BCD)

Moreover, the sum of their volumes is the volume of T , so letting h be
the height of T we have:

1

3
a (d(P,ABC) + d(P,ACD) + d(P,ABD) + d(P,BCD)) =

1

3
ah

Therefore:

d(P,ABC) + d(P,ACD) + d(P,ABD) + d(P,BCD) = h

Let us define the tetrahedron antipedal to a point:

Definition 17 (Tetrahedron Antipedal to a Point): Given a tetrahedron
∆ABCD, the tetrahedron antipedal to a point P in the interior of ∆ABCD
is formed by taking the planes orthogonal to the line segments PA,PB, PC,
and PD at the points A,B,C and D respectively.

This last lemma shows where the two and three dimensional cases di-
verge.

Lemma 8. Let ∆ABCD be a tetrahedron with a point in its interior, P ,
such that the line segments PA,PB, PC and PD form angles of cos−1(−1

3)
with each other, pairwise (in otherwords, they may all be placed perpendic-
ularly to a different edge of a regular tetrahedron).

Then the tetrahedron antipedal P is the maximal circumscribing regular
tetrahedron of ∆ABCD.

The proof is very simple.

Proof. Let T be a regular tetrahedron circumscribing ∆ABCD. Consider
the vertex A of ∆ABCD. Then d(P,A) is greater than or equal to the
minimum distance between P and the side of T intersecting A, since A is on
that side. This argument may be repeated for all the vertices of ∆ABCD,
showing that the sum of distances from P to the vertices of ∆ABCD is
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greater than the sum of the distances from P to the sides of T . But this
is precisely to say, by our previous lemma, that the height of the regular
tetrahedron antipedal to P is greater than or equal to the height of T .

Thus, the lemma is proven.

Of course, if one could guarantee that the tetrahedron formed by the
intersection points of a maximal circumscribing tetrahedron and a surface
had a point satisfying the hypotheses of Lemma 8, then it would be imme-
diate that the surface has a tetrapod point in the strongest sense (that is,
with all the normals being equiangular in the strongest possible sense), but
herein lies the difficulty between adapting these methods. To explore this
difficulty, we offer the following open question:

Open Problem 5: When does a tetrahedron posses a point such that the
angles between the line segments connecting that point to the vertices of the
tetrahedron are all equal?

Essentially, which tetrahedra possess higher dimensional analogues of
the first isogonic center of a triangle?

It should be noted that any approach trying to use circumscribing regular
tetrahedra would only be able to find these tetrapod configurations satisfying
the strongest equiangular condition. These kinds of tetrapods, I imagine,
should be extremely rare, as opposed to the tetrapods defined in 2.4, which
I believe should be much more common. While it seems unlikely that every
sufficiently differentiable surface contains a tetrapod in the strongest sense,
the one we have used seems reasonable to expect of a reasonably nice surface.
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