
APPLICATIONS OF THE FROBENIUS DENSITY THEOREM

LUCAS MASON-BROWN

1. Polynomials

Let f(x) be a polynomial with integer coefficients, irreducible over Q. For every prime
p ∈ Z, we obtain a polynomial f̄(x) ∈ Fp[x] by reducing the coefficients mod p. We say
that f(x) is reducible everywhere if f̄(x) is reducible over Fp for every prime p not dividing
the discriminant of f .

In this section, we will prove two basic facts about such polynomials (and some other
interesting results along the way). First, that if the degree of f(x) is prime, f(x) cannot be
reducible everywhere. Second, that if n is composite, there exists a polynomial of degree
n that is reducible everywhere. To prove these facts, we will employ the Frobenius density
theorem, which relates behavior of a polynomial under reduction to the Galois group of its
splitting field. More precisely:

Frobenius Density Theorem. Let f(x) ∈ Z[x] be a monic irreducible polynomial of
degree n and G the galois group of its splitting field. Let d = (d1, d2, ..., dt) be a partition
of n, and let S be the set of primes q not dividing the discriminant of f(x) for which f(x)
modulo q has decomposition type d. Then S has natural density equal to 1/#G times the
number of σ ∈ G of cycle pattern d (identifying G in the natural way with a subgroup of
Sn).

In particular, this theorem allows us to compute the natural density of {q prime |
f̄(x) irreducible over Fq} by counting the n-cycles in the Galois group. For the purposes
of what follows, we will need to strengthen this theorem slightly:

Frobenius Density Theorem′. Let f(x) ∈ Z[x] be a monic irreducible polynomial of
degree n and G the galois group of its splitting field. Let d = (d1, d2, ..., dt) be a partition
of n, and let S be the set of primes q not dividing the discriminant of f(x) for which f(x)
modulo q has decomposition type d. Then S is either empty or of positive natural density
equal to 1/#G times the number of σ ∈ G of cycle pattern d (identifying G in the natural
way with a subgroup of Sn).

Proof. See Rosen. �

This version of the theorem has the following important consequence: an irreducible
monic polynomial f(x) ∈ Z[x] is reducible everywhere if and only if its Galois group is
n-cycle free.

Before proving the main results of this section, we will apply the Frobenius density
theorem to the following, somewhat tangential question: given integers a and n, modulo
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what proportion of primes is a an nth power? The reciprocity laws provide a partial answer
to this question. For example, if a happens to be prime, quadratic reciprocity tells us that
a is a square modulo 1 out of every 2 primes. Similarly, rational cubic reciprocity indicates
that a is a cube modulo 2 out of every 3 primes. This is a good start, but the reciprocity
laws only go so far. What if n is large? Or if a is composite? We will use the Frobenius
density theorem to answer these more general questions. But first, the following lemma:

Lemma 1.1. Let p be prime and f(x) = xp − a. Then f(x) is reducible if and only if a is
a pth power.

Proof. If a is a pth power, say a = bp, then the linear factor x − b divides f(x). Hence,
f(x) is reducible over Q.

Conversely, suppose f(x) is reducible over Q. Hence,

p−1∏
i=0

(x− ζip p
√
a) = xp − a = g(x)h(x)

for some g(x), h(x) ∈ Q[x] of degree less than p. Let d be the degree of g(x). Then

the constant term of the polynomial g(x) has form c = ω p
√
a
d

where ω is some pth root of
unity. It follows that cp = ad. Since d is prime to p, we have dr+ ps = 1 for some r, s ∈ Z.
Hence

a = adr+ps = adraps = (c)praps = (cras)p

So, a is a pth power, as desired. �

Proposition 1.1. Suppose a ∈ Z is not a cube. Then a is a cube modulo 2 out of every 3
primes.

Proof. Let f(x) = x3 − a. f(x) is irreducible by the lemma. The splitting field K for
the polynomial f(x) is formed by adjoining 3

√
a and a primitive cube root of unity to

Q. Since [Q( 3
√
a) : Q] = 3 and [Q(ζ3) : Q] = φ(3) = 2 and (3, 2) = 1, it follows that

[K : Q] = 3 · 2 = 6. The Galois group G must therefore be the full symmetric group S3.
For any prime q, a is a cube mod q if and only if f(x) is reducible mod q. It follows from

the Frobenius density theorem that the natural density of {q prime : a is a cube mod q}
is the proportion of elements of G that are not 3-cycles. As we have seen, G is isomorphic
to S3 and S3 contains two 3-cycles. Hence, the density of {q prime : a is a cube mod q} is
precisely 1− 2/6 = 2/3. �

Proposition 1.2. Suppose a ∈ Z is not a fifth power. Then a is a fifth power modulo 4
out of every 5 primes.

Proof. Let f(x) = x5 − a. f(x) is irreducible by the lemma. The splitting field K for the
polynomial f(x) is the adjunction Q( 5

√
a, ζ5). Since [Q( 5

√
a) : Q] = 5 and [Q(ζ5) : Q] =

φ(5) = 4 and (5, 4) = 1, it follows that [K : Q] = 5 · 4 = 20
Define σ : K → K by σ( 5

√
a) = ζ5 5

√
a and τ : K → K by τ(ζ5) = ζ25 . Both of these

maps define field automorphisms and are therefore elements of the Galois group G. G
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acts faithfully on the set of roots { 5
√
a, ζ5 5

√
a, ζ25

5
√
a, ζ35

5
√
a, ζ45

5
√
a}. This action induces

an injective homomorphism i : G → S5. One easily verifies that iσ = (1 2 3 4 5) and
iτ = (2 3 5 4). Since iσ has order 5, and iτ has order 4, the subgroup 〈iσ, iτ〉 has at least
20 elements. On the other hand, 〈iσ, iτ〉 has at most 20 elements, since it is a subgroup of
iG, which has order [K : Q] = 20. It follows that 〈iσ, iτ〉 = iG.

The elements of 〈(1 2 3 4 5), (2 3 5 4)〉 can be enumerated explicitly (I have organized
them by cycle-type):

{e, (1 2)(3 5), (1 3)(4 5), (1 4)(2 3), (1 5)(2 4), (2 5)(3 4),

(1 2 4 3), (1 2 5 4), (1 3 2 5), (1 3 4 2), (1 4 3 5), (1 4 5 2), (1 5 2 3), (1 5 3 4), (2 3 5 4), (2 4 5 3),

(1 2 3 4 5), (1 3 5 2 4), (1 4 2 5 3), (1 5 4 3 2)}

All elements but the 5-cycles fix at least one root. There are four 5-cycles in iG and so it
follows from Frobenius that the density of {q prime | a is a fifth power mod q} is precisely
1− 4/20 = 4/5 �

In fact, this pattern continues. More explicitly:

Proposition 1.3. Suppose p is a prime and a ∈ Z is not a pth power. Then a is a pth
power modulo p− 1 out of every p primes.

Proof. Let f(x) = xp − a. f(x) is irreducible by the lemma.The splitting field K for the
polynomial f(x) is the adjunction Q( p

√
a, ζp). Since [Q( p

√
a) : Q] = p and [Q(ζp) : Q] =

φ(p) = p− 1 and (p, p− 1) = 1, it follows that [K : Q] = p(p− 1).
Consider the set of automorphisms S = {σ(m,n) : p

√
a 7→ ζmp

p
√
a, ζp 7→ ζnp | m ∈ Z/pZ, n ∈

(Z/pZ)∗}. Since distinct pairs (m,n) give rise to distinct automorphisms, S has p(p − 1)
elements. Since S ⊆ Gal(K/Q) and #Gal(K/Q) = [K : Q] = p(p − 1), S must therefore

be the entirety of Gal(K/Q). Let Gal(K/Q) act on { p
√
a, ζp p
√
a, ..., ζp−1p

p
√
a} in the usual

way. Under what conditions does the automorphism σ(m,n) have a fixed point?

Let ζxp
p
√
a be a root. We have σ(m,n)(ζ

x
p

p
√
a) = ζnx+mp

p
√
a. Hence, σ(m,n) has a fixed point

if and only if the equation nx+m = x has a solution mod p. If n 6≡ 1 mod p, then n− 1
is a unit mod p. In this case, nx+m = x mod p is solvable and indeed x = −m(n− 1)−1

is a solution. If n ≡ 1 mod p, then nx+m = x has a solution mod p if and only if m ≡ 0
mod p. Therefore, σ(m,n) has a fixed point for every (m,n) except the following p − 1:
(1, 1), (2, 1), ..., (p−1, 1). It follows from Frobenius that {q prime | a is a pth power mod q}
has density equal to 1− p−1

p(p−1) = 1− 1
p = p−1

p , as desired.

�

We can generalize this result to arbitrary exponents. To do so, we will need the following
two lemmas:

Lemma 1.2. Let a, t ∈ Z and f(x) = xt − a irreducible. If K is a splitting field for f(x)
over Q, then Gal(K/Q) is isomorphic to the matrix group Gt = {

(
m n
0 1

)
| m ∈ (Z/tZ)∗, n ∈

Z/tZ}.
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Proof. For every m ∈ (Z/tZ)∗ and n ∈ Z/tZ, there is an automorphism σ(m,n) : ζt 7→
ζmt ,

t
√
a 7→ ζnt

t
√
a. Define the map φ : Gt → Gal(K/Q) by φ

(
m n
0 1

)
= σ(m,n). One easily

verifies that φ is a group homomorphism. Since field automorphisms preserve algebraic
equations, every element σ ∈ Gal(K/Q) takes ζt to some primitive tth root of unity and
t
√
a to some tth root of a, i.e. σ(ζt) = ζmt and σ( t

√
a) = ζnt

t
√
a, for some m ∈ (Z/tZ)∗ and

n ∈ Z/tZ. The map σ 7→
(
m n
0 1

)
is an inverse of φ. Thus, φ is a group isomorphism.

�

Lemma 1.3. For any prime power pl, the number of pairs (m,n) ∈ (Z/plZ)∗ × Z/plZ for
which the equation mx+ n ≡ x mod pl has a solution is given by

p2l+2 − 2p2l+1 + p2l−1 + p− 1

p2 − 1

Proof. We can, equivalently, consider the solvability of the equation (m−1)x ≡ −n mod pl.
There are two cases to consider.

Case 1. m− 1 is a unit
If m − 1 is a unit mod pl, then the equation is solvable for all values of n. m − 1 is a

unit for all but pl−1 values of m. That is, pl− 2pl−1 values of m. Thus, Case 1 contributes
pl(pl − 2pl−1) = p2l − 2p2l−1 pairs.

Case 2. m− 1 is not a unit
In this case, m− 1 = kpr for 1 ≤ r ≤ l and p † k. For a particular choice of r, there are

ϕ(pl−r) such m in (Z/plZ)∗. For each of these, the equation is solvable if and only if n ≡ 0
mod pr. There are pl−r such n in Z/plZ. Thus, Case 2 contributes a total of

l∑
r=1

ϕ(pl−r)(pl−r) = p2l−2 − p2l−3 + p2l−4 − p2l−5 + ...+ 1

pairs.
Hence, the total number of pairs (m,n) ∈ (Z/plZ)∗ × Z/plZ for which mx + n ≡ x

mod pl is solvable comes to

p2l − 2p2l−1 + p2l−2 − p2l−3 + p2l−4 − p2l−5 + ...+ 1 = −p2l−1 +
l∑

i=0

(p2)i − p
l−1∑
i=0

(p2)i

= −p2l−1 +
p2l+2 − 1

p2 − 1
− pp

2l − 1

p2 − 1

=
p2l+2 − 2p2l+1 + p2l−1 + p− 1

p2 − 1

�
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Proposition 1.4. Let t be an integer with prime factorization t =
∏s
i=1 p

li
i . Suppose the

polynomial f(x) = xt−a is irreducible over Q. Let S = {q prime | a is a tth power mod q}.
Then the natural density of S equals

s∏
i=1

p2li+2
i − 2p2li+1

i + p2li−1i + pi − 1

p2li+2
i − p2li+1

i − p2lii + p2li−1i

Proof. This follows straightforwardly from the previous two lemmas and the Chinese Re-
mainder Theorem. Let K be a splitting field for f(x) over Q. Since f(x) is irreducible,
lemma 1.3 implies that Gal(K/Q) is isomorphic to the matrix group Gt = {

(
m n
0 1

)
| m ∈

(Z/tZ)∗, n ∈ Z/tZ}. The order of Gal(K/Q) is thus tϕ(t) =
∏s
i=1 p

li
i (plii − pli−1i ) =∏s

i=1 p
2li
i − p

2li−1
i . The action of an element

(
m n
0 1

)
on the set of roots {ζxt t

√
a | x ∈ Z/tZ}

is described by the equation
(
m n
0 1

)
(ζxt

t
√
a) = ζmx+nt

t
√
a. Hence,

(
m n
0 1

)
has a fixed point

if and only if mx + n ≡ x mod t has a solution in x. Let ki denote the number of pairs
(solutions mod plii . By the Chinese Remainder Theorem, the number of solutions mod t is
given by the product

∏s
i=1 ki. Therefore, by Frobenius, the natural density of S is

∏s
i=1 ki

#Gal(K/Q)
=

s∏
i=1

p2li+2
i − 2p2li+1

i + p2li−1i + pi − 1

(p2i − 1)(p2lii − p
2li−1
i )

=
s∏
i=1

p2li+2
i − 2p2li+1

i + p2li−1i + pi − 1

p2li+2
i − p2li+1

i − p2lii + p2li−1i

�

We now shift our attention to the main focus of this section: namely, the connection
between degree and everywhere-reducibility. We begin by considering polynomials of prime
degree.

Proposition 1.5. Let f(x) be a polynomial with integer coefficients, irreducible over Q.
Furthermore, suppose f(x) has prime degree, p. Then f(x) is irreducible modulo infin-
itely many primes. In particular, {q prime | f̄(x) irreducible over Fq} has positive natural
density.

Proof. Let {α1, α2, ..., αp} be the roots of f(x) in an algebraic closure, and let K =
Q(α1, α2, ..., αp). The galois group Gal(K/Q) acts faithfully on {α1, α2, ..., αp}. This action
induces an injective homomorphism i : Gal(K/Q)→ Sp

By the Frobenius density theorem, it suffices to show that iGal(K/Q) contains a p-cycle.
Since the action of Gal(K/Q) on {α1, α2, ..., αp} is transitive, p must divide the order of

Gal(K/Q). Hence, iGal(K/Q) contains an element of order p. Let σ be one such element.
Suppose σ has cycle type (d1, d2, ..., dm). That is, σ can be written as the product of m
disjoint cycles of lengths d1, d2, ..., dm. We have

p = order(σ) = lcm{di}mi=1

Hence, p divides
∏m
i=1 di . Since p is prime, this means p divides dj for some j ≤ m. On

the other hand, dj ≤ p. Thus, dj = p. It follows that σ is a p-cycle.
�
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Of course, the proof of this theorem relies crucially on the primality of degf(x). The
theorem is in general false for polynomials of composite degree, as we will soon see.

Example 1.1.

Let f(x) = x4 + 1. The roots of f(x) in C are precisely eπi/4, e3πi/4, e5πi/4, and e7πi/4.
Suppose f(x) is reducible in Q[x]. Since f(x) has no rational roots, f(x) must therefore
split as the product of integer quadratic polynomials, i.e. there are integers a, b, c, and d
such that x4+1 = (x2+ax+b)(x2+cx+d) = x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd.
Clearly a + c = 0 and either b = d = 1 or b = d = −1. Hence, b + d + ac = 0 implies
a2 = ±2, a contradiction. It follows that f(x) is irreducible over Q.

Let K be the splitting field for f(x). Clearly, K = Q(ζ8), where ζ8 is a primitive eight
root of unity. It follows that Gal(K/Q) ∼= (Z/8Z)∗ ∼= Z/2Z×Z/2Z. However, Z/2Z×Z/2Z
has no elements of order 4, and is therefore 4-cycle free as a subgroup of S4. It follows
from the Frobenius density theorem that f(x) is reducible everywhere.

One useful criterion for everywhere-reducibility is provided by Rosen. Let Let f(x) ∈
Z[x] be an irreducible polynomial with roots {α1, α2, ..., αn} in C. Let K = Q(α1, α2, ..., αn)
and L = Q(α1). Furthermore, let G = Gal(K/Q) and H = Gal(K/L). A cyclic subgroup
C ⊆ G is a cyclic complement of H in G if G = CH and C ∩H = {1}.

Proposition 1.6. f(x) is reducible everywhere if and only if H does not admit a cyclic
complement in G.

Proof. For simplicity, identify G with its image in Sn. Suppose f(x) is not reducible
everywhere. Hence, G contains an n-cycle, σ. Since every element of H fixes α1, H is
n-cycle-free. Hence, 〈σ〉 ∩ H = {1}. Keeping in mind that the index of H in G is n,we

have #〈σ〉H = #〈σ〉#H = n(#Gn ) = #G. Hence, G = 〈σ〉H, i.e. H admits a cyclic
complement.

Conversely, suppose H admits a cyclic complement, C, in G. Let σ generate C. Since
G is a transitive subgroup of Sn, we have Gα1 = {α1, α2, ..., αn}. But Gα1 = CHα1 =
Cα1 = 〈σ〉α1. It follows that σ is an n-cycle. �

The next lemma establishes sufficient conditions for the existence of everywhere-reducible
polynomials of a given degree n 1 :

Lemma 1.4. Let n ∈ Z and G a group. Suppose G satisfies the following three properties:

(1) G ∼= Gal(K/Q) for some field extension K/Q
(2) G contains a subgroup of index n
(3) G contains no elements of order divisible by n

Then there is a an irreducible polynomial f(x) ∈ Z[x] of degree n that is reducible every-
where.

1This lemma is a modified form of Lemma 2.1 appearing in [1]. The conditions in the original lemma
are too weak to establish the claim. The proof, however, is essentially the same.
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Proof. Let H ⊆ G be a subgroup of index n. Let Q(α) ⊆ K be the fixed field of H
(identifying G with the galois group Gal(K/Q)). Let f(x) be a minimal polynomial for α
over Q and L ⊆ K its splitting field. Since L/Q is normal, Gal(K/L) is a normal subgroup
of Gal(K/Q) and

Gal(L/Q) ∼= Gal(K/Q)/Gal(K/L)

The relationship between Gal(K/L) and H is given by

Gal(K/L) =
⋂
σ∈G

σHσ−1

. Suppose σ̄ ∈ Gal(K/Q)/Gal(K/L) is an element of order n. Then σ ∈ Gal(K/Q) has
order divisible by n, which contradicts condition 3). It follows that Gal(L/Q) contains no
elements of order n. The result follows from Frobenius.

�

As it turns out, such a G exists for every composite n. To see this, we will examine the
square-free and non-square-free cases separately.

Proposition 1.7. If n is divisible by a square, there is an irreducible polynomial f(x) ∈
Z(x) of degree n, which is reducible everywhere.

Proof. Let n = p2m, and let G = Z/pZ⊕ Z/pZ⊕ Z/mZ. G is abelian and thus realizable
as a galois group. The trivial subgroup has index n, and G has no elements of order n,
since G is non-cyclic. It follows from the lemma that there is a polynomial f(x) ∈ Z(X)
of degree n, which is reducible everywhere. Since H is trivial, the galois group of f(x) is
G. �

Proposition 1.8. If n is square-free, there is an irreducible polynomial f(x) ∈ Z(X) of
degree n, which is reducible everywhere.

Proof. Let n = pm with p prime. Since n is square-free, m is prime to p. Hence, p̄ ∈ Z/mZ∗.
Let t denote the order of p̄ in Z/mZ∗. Let A denote the additive group of the finite field
Fpt and µm ⊂ Fpt the m mth roots of unity. µm acts on A by multiplication. We define G
as the semi-direct product Ao µm under this action.
G is solvable and therefore realizable as a galois group. Furthermore, if H ⊂ A is a

hyperplane (i.e. a Fp-subspace of codimension 1), H has index pm = n in G. Hence, G
satisfies conditions 1) and 2) of the lemma. It is left for us to show that no element of G
has order divisible by n.

Let (a, b) ∈ Ao µm. If b = 1 then (a, b) ∈ A so o(a, b) divides p. Otherwise, we have
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(a, b)1 = (a, b)

(a, b)2 = (a+ ab, b2)

(a, b)3 = (a+ ab+ ab2, b3)

...

(a, b)m = (a+ ab+ ...+ abm−1, bm) = (a
bm − 1

b− 1
, bm) = (0, 1)

Hence, the order of an element of G divides either m or p. In particular, its order is not
divisible by n. �

It is less clear in the square-free case what the galois group of f(x) looks like. However,
it turns out the galois group of f(x) is G. We will prove this fact, but first the following
lemma:

Lemma 1.5. The mth roots of unity span Fpt as a vector space over Fp.

Proof. Let ζm ∈ Fpt be a primitive mth root of unity. Since Fpt/Fp is galois, it suffices
to show that Gal(Fpt/Fp(ζm)) = {1}. The galois group Gal(Fpt/Fp) is cyclic, generated
by the Frobenius automorphism x → xp. Suppose σ ∈ Gal(Fpt/Fp) fixes ζm. Hence

ζp
k

m = ζm for some integer k. In other words, pk ≡ 1 mod m. Hence, k is divisible by t,
the order of p modulo m, i.e. k = at for some positive integer a. But for any x ∈ Fpt , we

have xp
at

= x(xp
at−1) = x(x(p

t−1)(1+pt+p2t+...+p(a−1)t))) = x(xp
t−1)1+p

t+p2t+...+p(a−1)t
= x.

Hence, σ is the identity automorphism, which completes the proof. �

Proposition 1.9. In Proposition 1.8, The galois group of f(x) is G.

Proof. Since the galois group of f(x) is the quotient

G/
⋂
σ∈G

σHσ−1

we need to show that
⋂
σ∈G

σHσ−1 = {(0, 1)}. Let (h, 1) ∈ H and x ∈ µm. Then

(0, x)(h, 1)(0, x)−1 = (0, x)(h, 1)(0, x−1)

= (xh, x)(0, x−1)

= (xh, 1)

Hence,
⋂
σ∈G

σHσ−1 ⊆
⋂
x∈µm

xH.

Suppose r ∈
⋂
x∈µm

xH and r 6= 0 . Then r ∈ xH for every x ∈ µm. Or, in other words,

x ∈ Hr−1 for every x ∈ µm. Therefore, Hr−1 contains the subspace spanned by the
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mth roots of unity, which is Fqt by the lemma. This is a contradiction, since Hr−1 is a

hyperplane. It follows that
⋂
σ∈G

σHσ−1 = {(0, 1)}, as desired. �

2. Galois Sets

Let k be any perfect field and k̄ an algebraic closure. For the purposes of this paper, k
will either be Q or Fp. As usual, let Pr(k̄) denote the projective space of dimension r over
k̄. Let Gal(k̄/k) act on Pr(k̄) in the natural way, i.e. by σ[α0, α1, ...αr] = [σα0, σα1, ...σαr].

Definition 2.1. A Galois set over k is a finite subset of Pr(k̄) which is invariant under
the action of Gal(k̄/k).

A Galois set is reducible if it is the union of two disjoint nonempty Galois subsets.
Clearly, S is irreducible if and only if G acts transitively on S.

Proposition 2.1. A finite subset S ⊂ Pr(k̄) is Galois if and only if it is the vanishing set
of a finite collection of homogenous polynomials with coefficients in k. In other words, a
set is Galois if and only if finite and algebraic .

Proof. Suppose S is the vanishing set of a finite collection of homogenous polynomials with
coefficients in k. Clearly, S is finite, and if s ∈ S is a root of the polynomial f(x), so is σs
for any σ ∈ Gal(k̄/k), since f(σs) = σf(s) = σ0 = 0. Hence, S is a Galois set.

Conversely, suppose S is a Galois set. Since the union of algebraic sets is algebraic, we
can assume without loss of generality that S is irreducible. We know that Pr(k̄) is the
disjoint union of affine spaces k̄rt k̄r−1t ...t{0}. Since each of these affine spaces is closed
under the action of Gal(k̄/k) and S is assumed irreducible, S must be contained in one of
them. Thus, we can reduce to the affine case.

Let I = {f(x) ∈ k[x1, x2, ..., xr] | f(s) = 0, ∀s ∈ S}. I is an ideal in the polynomial ring
k[x1, x2, ..., xr]. Now let s be an element of S with coordinates (s1, s2, ..., sr). Evaluation
at s defines a surjective ring homomorphism

φ : k[x1, x2, ..., xr] −→ k[s1, s2, ..., sr] = k(s1, s2, ..., sr)

with kernel equal to I. Hence, φ induces an isomorphism φ̄ : k[x1, x2, ..., xr]/I ∼=
k(s1, s2, ..., sr). Since k(s1, s2, ..., sr) is a field, I is a maximal ideal.

Suppose p is a point in k̄r satisfying every polynomial in I. Let p = (p1, p2, ..., pr).
Evaluation at p, once again, defines a surjective ring homomorphism

ψ : k[x1, x2, ..., xr] −→ k[p1, p2, ..., pr] = k(p1, p2, ..., pr)

The kernel of this map is an ideal containing I. But we know that I is maximal. Hence,
kerψ = I and ψ induces a field isomorphism ψ̄ : k[x1, x2, ..., xr]/I ∼= k(p1, p2, ..., pr).

Composing ψ̄ with the inverse of φ̄ yields a field isomorphism

ψ̄ ◦ φ̄−1 : k(s1, s2, ..., sr) −→ k(p1, p2, ..., pr)
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which we will call σ. From definitions it is obvious that σ(si) = pi for all i ≤ r.
Moreover, since both k(s1, s2, ..., sr) and k(p1, p2, ..., pr) are subdfields of k̄, σ extends to a
field automorphism k̄ → k̄. Thus, p is an element of S, which completes the proof.

�

A morphism in the category of Galois sets is a map f : U → V which commutes with
the action of Gal(k̄/k), i.e. such that f(σ(u)) = σ(f(u)) for every σ ∈ Gal(k̄/k) and every
u ∈ U . Since morphisms respect the Galois action, isomorphic Galois sets have the same
orbit structure. In particular, if U is irreducible and U ∼= V , then V is irreducible as well.

Clearly, any map between Galois sets defined by polynomials is a morphism, in the sense
defined above. As it turns out, any morphism between Galois sets is defined by polynomials
(piecewise, on irreducible components). In other words, the category of irreducible Galois
sets over k is precisely the category of irreducible zero-dimensional projective algebraic
sets.

Proposition 2.2. Let U and V be irreducible Galois sets over k and φ : U → V a
morphism. Then φ is defined by a collection of homogenous polynomials of equal degree
with coefficients in k. In other words, φ is a morphism of projective algebraic sets.

Proof. Pt(k̄) is the disjoint union of affine spaces k̄tt k̄t−1t ...t{0}, each closed under the
action of Gal(k̄/k). Since U and V are irreducible, each is contained in an affine space,
say k̄r and k̄s, respectively.

Let U = {P1, P2, ..., Pm}. We will use superscripts to pick out coordinates. Hence P1 =
(P 1

1 , P
2
1 , ..., P

r
1 ). Let H = Gal(k̄/k(P 1

1 , P
2
1 , ..., P

r
1 )). For every σ ∈ H we have σφ(P1)

1 =
φ(σP1)

1 = φ(P1)
1. Since φ(P1)

1 is fixed by every element of H and k̄/k(P 1
1 , P

2
1 , ..., P

r
1 )

is Galois, φ(P1)
1 must be an element of the base field, k(P 1

1 , P
2
1 , ..., P

r
1 ). But the P j1 are

algebraic, so k(P 1
1 , P

2
1 , ..., P

r
1 ) = k[P 1

1 , P
2
1 , ..., P

r
1 ]. Hence, φ(P1)

1 ∈ k[P 1
1 , P

2
1 , ..., P

r
1 ]. It

follows that there is a polynomial f ∈ k[x1, x2, ..., xr] such that f(P1) = φ(P1)
1.

Since U is irreducible, for every Pi ∈ U there is a σ ∈ Gal(k̄/k) such that Pi = σP1.
Hence

f(Pi) = f(σP1) = σf(P1) = σφ(P1)
1 = φ(σP1)

1 = φ(Pi)
1

Thus, we have shown that the first coordinate function of φ is a polynomial map. One
can similarly show, replacing 1 with i, that every coordinate function is a polynomial map.
Thus, φ is defined by a collection of polynomials. We can homogenize these polynomials
to obtain a collection of homogenous polynomials of equal degree.

�

Given any polynomial f(x) ∈ k[x] with roots α1, α2, ..., αn ∈ k̄, the set of points S =
{[α1, 1], [α2, 1], ..., [αn, 1]} forms a Galois subset of the projective line. In fact, any Galois
subset of P1(k̄) can be described in this fashion.

Proposition 2.3. Suppose S ⊂ P1(k̄) is a Galois set. Then S is the vanishing set of some
homogenous polynomial f(x1, x2) with coefficients in k.
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Proof. We can assume without loss of generality that S is irreducible. Indeed, if every irre-
ducible component is the vanishing set of a homogenous polynomial, then S is the vanishing
set of their product. Since for any automorphism σ, σ[1, 0] = [1, 0], the point at infinity is
fixed under the action of G. Thus, either S = {[1, 0]} or S = {[α1, 1], [α2, 1], ..., [αn, 1]} for
some collection of algebraic numbers α1, α2, ..., αn transitive under the action of Gal(k̄/k).
In the first case, S is the vanishing set of the homogenous polynomial f(x1, x2) = x2. In
the second case, we can construct f(x1, x2) explicitly.

Let g(x1) =
∏n
i=1(x1 − αi). I claim g(x1) has coefficients in k. Indeed, for any σ ∈

Gal(k̄/k)

σg(x1) =

n∏
i=1

(x1 − σαi) =

n∏
i=1

(x1 − αi)

with the final equality following from transitivity. Since the coefficients are fixed by
Gal(k̄/k) and k̄/k is Galois, they must be contained in k. Let f(x1, x2) denote the homog-
enization of g(x1). f(x1, x2) is a homogenous polynomial whose vanishing set is S. �

Thus, the category of Galois sets provides a more general setting for the theory developed
in Section 1. Ultimately, we will show that the important theorems from the first section
generalize to all Galois sets.

First we must extend the notion of reduction mod p to Galois sets over Q. Let S be a
Galois set contained in Pr(Q̄). By Proposition 2.1, S is the vanishing set of a finite collection
of rational homogenous polynomials, say f1(x), f2(x), ..., fn(x). For a fixed prime p, let
f̄i(x) denote the polynomial formed by

(1) Clearing the denominators in fi(x) so that all coefficients are integers
(2) Dividing out by all common factors so that the coefficients are coprime
(3) Reducing the resulting coefficients mod p

The f̄i(x) are homogenous polynomials defined over Fp. Their vanishing set is a Galois
subset of Pr(Fp), which we will call Sp or the reduction of S mod p. In general of course, Sp
may not be irreducible. However, in the special case where S ⊂ P1(Q̄), S is the vanishing
set of a rational polynomial and its behavior under reduction is governed by the theorems
from Section 1. In particular, if #S is prime, then Sp is irreducible for infinitely many p
(Proposition 1.5).

It is important to note that Galois isomorphisms reduce to Galois isomorphisms mod
p. Indeed, if φ : U → V is a Galois isomorphism, both φ and φ−1 are polynomial maps
defined over Q (Proposition 2.2). Hence, φ̄ and ¯φ−1 are polynomial maps defined over Fp,
inverse to one another.

We will now show that every Galois set is isomorphic to a Galois subset of the projective
line. To do this, we will appeal to the following general fact about vector spaces over
infinite fields

Lemma 2.1. Let V be a vector space over an infinite field F . Then the union of finitely
many proper subspaces of V is a proper subset of V .



12 LUCAS MASON-BROWN

Proof. We proceed by induction on n. If n = 1, the claim is trivially satisfied. Now suppose
that for every collection of n− 1 proper subspaces of V , their union is proper as well.

Let {U1, U2, ..., Un} be a collection of proper subspaces of V . We can assume, without
loss of generality, that there are no containments among the Ui. Otherwise,

⋃n
i=1 Ui is

the union of some collection of n− 1 Ui’s, which is a proper subset of V by the induction
hypothesis.

For each i ≤ n, the set {Ui ∩ Uj | i 6= j} is a collection of n− 1 proper subspaces of Ui.

Hence, by the induction hypothesis, their union is a proper subset of Ui. Denote by Ũi the
nonempty set Ui −

⋃
i 6=j Ui ∩ Uj .

We will now suppose that
⋃n
i=1 Ui = V and derive a contradiction. Let x1 ∈ Ũ1, x2 ∈ Ũ2

and consider the set S = {αx1 + x2 | α ∈ F}. For every α ∈ F we have αx1 ∈ U1 and
x2 /∈ U1. Thus, αx1 + x2 cannot be an element of U1. It follows that every element of S
is contained in some Ui for i 6= 1. Since F is infinite, there are infinitely many vectors in
S. Thus, by the pigeonhole principle, there are distinct elements αx1 + x2 and βx1 + x2
contained in the same Ui. Hence, (α− β)x1 = (αx1 + x2)− (βx1 + x2) ∈ Ui, from which it
follows that x1 ∈ Ui, a contradiction. We conclude that

⋃n
i=1 Ui is a proper subset of V .

�

Proposition 2.4. Let S be a Galois set contained in Pr(Q̄). Then there is a Galois set S′

contained in P1(Q̄) such that S ∼= S′.

Proof. We proceed by induction on r. If r = 1, the claim is trivially satisfied. Now suppose
every Galois subset of Pr−1(Q̄) is isomorphic to a Galois subset of the projective line, and
let S be a Galois subset of Pr(Q̄). It suffices to exhibit an isomorphism f from S onto a
Galois subset of Pr−1(Q̄).

We regard Pr−1(Q̄) as a subset of Pr(Q̄) under the natural identification [x1, x2, ..., xr] 7→
[x1, x2, ..., xr, 0]. We construct the desired isomorphism f by projecting onto Pr−1(Q̄) from
an appropriately chosen rational point in Pr(Q̄).

Let S = {P1, P2, ..., Pn} and Pi = [P 1
i , P

2
i , ..., P

r+1
i ] for each i ≤ n. There are finitely

many lines (at most
(
n
2

)
) connecting pairs of points in S. For each of these lines, we can

intersect with Pr(Q) to obtain a proper subspace of Pr(Q). Let U denote the union of these
subspaces. By Lemma 2.1, there is a point P0 ∈ Pr(Q) not contained in U or Pr−1(Q).
Let P0 = [P 1

0 , P
2
0 , ..., P

r+1
0 ]. We define f(Pi) to be the (unique) point in the intersection

P0Pi ∩Pr−1(Q̄). Since P0 is collinear with no two points in S, f is one-to-one. All we need
to show is that f is a morphism, i.e. that it respects the Galois action.

The line connecting P0 and any Pi is the set of points {[aP 1
0 +bP 1

i , aP
2
0 +bP 2

i , ..., aP
r+1
0 +

bP r+1
i ] | a, b ∈ Q̄}. Hence, P0Pi intersects Pr−1(Q̄) if and only if aP r+1

0 + bP r+1
i = 0 and

not both a and b are 0. Since P0 /∈ Pr−1(Q̄) by assumption, we have that P r+1
0 6= 0. Thus,

one can solve for a in the equation above: a = −bP
r+1
i

P r+1
0

. Hence

f(Pi) = [bP 1
i − bP 1

0

P r+1
i

P r+1
0

, bP 2
i − bP 2

0

P r+1
i

P r+1
0

, ..., bP ri − bP r0
P r+1
i

P r+1
0

, 0]
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where b 6= 0. We can write this out more compactly by dividing all coordinates by b and
multiplying by P r+1

0

f(Pi) = [P 1
i P

r+1
0 − P 1

0P
r+1
i , P 2

i P
r+1
0 − P 2

0P
r+1
i , ..., P ri P

r+1
0 − P r0P r+1

i , 0]

= [det
( P 1

i P 1
0

P r+1
i P r+1

0

)
, det

( P 2
i P 2

0

P r+1
i P r+1

0

)
, ...,det

( P r
i P r

0

P r+1
i P r+1

0

)
, 0]

Let σ ∈ G. Since P0 is rational and, hence, fixed by σ we have

f(σPi) = [σP 1
i P

r+1
0 − P 1

0 σP
r+1
i , σP 2

i P
r+1
0 − P 2

0 σP
r+1
i , ..., σP ri P

r+1
0 − P r0σP r+1

i , 0]

= σ[P 1
i P

r+1
0 − P 1

0P
r+1
i , P 2

i P
r+1
0 − P 2

0P
r+1
i , ..., P ri P

r+1
0 − P r0P r+1

i , 0]

= σf(Pi)

Hence, f commutes with the action of G and is therefore an isomorphism onto its
image. �

We are now prepared to generalize the results from Section 1 to arbitrary Galois sets.

Proposition 2.5. Let S be an irreducible Galois set of prime cardinality p. Then Sq is
irreducible for a positive density of primes.

Proof. By Proposition 2.4, there is a Galois set S′ contained in P1(Q̄) such that S ∼= S′.
As noted above, the isomorphism S ∼= S′ induces an isomorphism Sq ∼= S′q for every prime
q. Hence, Sq is irreducible if and only if S′q is irreducible. By Proposition 2.2, S′ has form
{[α1, 1], [α2, 1], ..., [αp, 1]} where α1, α2, ..., αp are the roots of some irreducible polynomial
f(x) ∈ Z[x] of prime degree p. Clearly, S′q is irreducible if and only if f(x) is irreducible mod
q. Hence, applying Proposition 1.5: density{q prime | Sq irreducible} = density{q prime |
S′q irreducible} = density{q prime | f(x) irreducible mod q} > 0 �

Proposition 2.6. Let n be any positive composite integer.Then there is an irreducible
Galois set S of cardinality n such that Sq is reducible for all but finitely many primes.

Proof. By Propositions 1.7 and 1.8, there is an irreducible polynomial f(x) ∈ Z[x] of
degree n which is reducible everywhere. Let g(x, y) be the homogenization of f(x) and S
the vanishing set of g(x, y). Then S has cardinality n and Sq is reducible for every prime
q not dividing the discriminant of f . �

Next, we would like to generalize the Frobenius density theorem to arbitrary Galois
sets. For this, we will need to introduce some notation. For every polynomial there is an
associated group, the Galois group over Q of its splitting field. For Galois sets, there is an
analogous construction. As usual, let S be a Galois set and G = Gal(Q̄/Q). The action of
G on S induces a group homomorphism G → Perm(S). Let K denote the kernel of this
map and let GS = G/K. We will call GS the Galois group of S. If S is a subset of P1(Q̄)
its points are the roots of some rational polynomial. In this case, the Galois group of the
polynomial is the Galois group of S. Indeed, suppose S = {[α1, 1], [α2, 1], ..., [αn, 1]} where
α1, α2, ..., αn are the roots of some f(x) ∈ Q[x]. If an element of G fixes every [αi, 1], it
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fixes the field Q(α1, α2, ..., αn) and vice versa. Hence, K = Gal(Q̄/Q(α1, α2, ..., αn)), from
which it follows that GS = G/K = Gal(Q(α1, α2, ..., αn)/Q) which is the Galois group of
f(x).

Proposition 2.7. Let S be an irreducible Galois set with n elements. Let d = (d1, d2, ..., dt)
be a partition of n, and let R be the set of rational primes q for which the reduction Sq has
orbit structure d. Then R is either empty or of positive natural density equal to 1/#GS
times the number of σ ∈ GS of cycle pattern d (identifying GS in the natural way with a
subgroup of Sn).

Proof. By Proposition 2.4, there is a Galois set S′ contained in P1(Q̄) such that S ∼= S′.
By Proposition 2.2, S′ has form {[α1, 1], [α2, 1], ..., [αn, 1]} where α1, α2, ..., αn are the roots
of some irreducible degree-n polynomial f(x) ∈ Z[x]. As noted above, GS is simply the
Galois group of f(x).

The isomorphism S ∼= S′ induces an isomorphism Sq ∼= S′q for every prime q. Hence,
Sq and S′q have the same orbit structure. Of course, the orbit structure of S′q is the
decomposition type of f(x) mod q. Thus, the set of primes q for which Sq has orbit
structure d is precisely the set of primes for which f(x) mod q has decomposition type d.
The result follows from Frobenius. �

For every element s of a Galois set S, define the stabilizer subgroup Stab(s) = {σ̄ ∈ GS |
σ(s) = s}. If S is irreducible, the orbit of s is the entirety of S. Thus, the index of Stab(s)
in GS is the cardinality of S. We have the following proposition:

Proposition 2.8. Let S be an irreducible Galois set with n elements, including the element
s. Then the set of primes q for which Sq is irreducible has positive natural density if and
only if Stab(s) admits a cyclic complement in GS.

Proof. This is almost exactly the proof of proposition 1.6. For simplicity, identify GS
with its image in Sn. Suppose the set of primes q for which Sq is irreducible has positive
natural density. By Proposition 2.7, GS must contain an n-cycle, σ. Since every element
of Stab(s) fixes s, Stab(s) is n-cycle-free. Hence, 〈σ〉 ∩ Stab(s) = {1}. Keeping in mind

that [GS : Stab(s)] = n, we have #〈σ〉Stab(s) = #〈σ〉#Stab(s) = n(#GS
n ) = #GS . Hence,

GS = 〈σ〉Stab(s), i.e. Stab(s) admits a cyclic complement in GS .
Conversely, suppose Stab(s) admits a cyclic complement, C, in GS . Let σ generate C.

Since GS is a transitive subgroup of Sn, we have (GS)s = S. But (GS)s = C Stab(s)s =
Cs = 〈σ〉s. It follows that σ is an n-cycle. Then by Proposition 2.7, the set of primes q for
which Sq is irreducible has positive natural density. �

3. An Application to Elliptic Curves

Let E be an elliptic curve defined over Q with no complex multiplication. For any prime
`, let E[`] denote the `-torsion subgroup, i.e. the set of points on E of order dividing
`. Algebraically, E[`] is a two-dimensional vector space over F`. Since addition on E is
defined by polynomial equations, E[`] is a Galois set.
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The Galois groupGE[`] acts on E[`] in the natural way. Fixing an isomorphism E[`] ∼= F2
` ,

we obtain a faithful representation:

ψ` : GE[`] ↪→ GL2(F`)
In fact, ψ` is an isomorphism for all but finitely many ` (see [3]). For now, select ` so that

ψ` is an isomorphism. In this case, E[`]−O is irreducible, since GL2(F`) acts transitively
on F2

` − 0. Denote by S` the set of primes modulo which E[`]−O is irreducible. Rosen has
demonstrated in [2] that S` has positive natural density.

Proposition 3.1. Suppose ` is a prime for which ψ` is an isomorphism (since E has
no complex multiplication, this is true for all but finitely many `). Then, S` has positive
natural density.

Proof. Our proof will closely follow Rosen’s. Under the chosen isomorphism E[`] ∼= F2
` , the

column vector ( 1
0 ) corresponds to an element of E[`]−O. Let H denote its stabilizer. H

is the set of all matrices
(
a b
c d

)
such that:(

a b
c d

)(
1
0

)
=

(
1
0

)
Hence, H is the set of all matrices (

1 b
0 d

)
where b ∈ F` and d ∈ F∗` . By Proposition 2.8, it suffices to show that H admits a

cyclic complement in GL2(F`). Note that H has order `(` − 1). Since GL2(F`) has order
(`2−1)(`2−`), the index of H in GL2(F`) is `2−1. Thus, if H admits a cyclic complement,
it must have order `2 − 1. The non-split Cartan subgroup is one such cyclic subgroup. To
define this group, select a basis for F`2 as a vector space over F`. For any x ∈ F∗`2 ,
multiplication by x defines an invertible linear map F`2 → F`2 . Let Mx be the matrix
associated to this map with respect to the selected basis. The assignment x 7→Mx defines
an injective group homomorphism F∗`2 → GL2(F`). The image of this homomorphism,
which we will denote by C, is the non-split Cartan subgroup. Since C is cyclic of order
`2 − 1, it suffices to show that C ∩H = {I}.

Let C = 〈M〉. Since M has order `2 − 1, its eigenvalues are distinct primitive elements
of F∗`2 . Hence M = T

(
α 0
0 β

)
T−1 for some T ∈ GL2(F`2) and α, β primitive in F∗`2 . Since 1

is an eigenvalue of every element of H, if Mn ∈ H, `2 − 1 divides n, from which it follows
that Mn = I. Thus, C ∩H = {I}, as desired.

�

Having established that the density of S` is positive, the question then becomes: can
we evaluate this density precisely? In other words, modulo what proportion of primes is
E[`] −O irreducible? In this section, we will derive an explicit formula for the density of
S`.
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We begin by analyzing the conjugacy classes in GL2(F`). We will consider four separate
cases, which together partition GL2(F`):

Case 1: M is diagonalizable over F` with two distinct eigenvalues
Case 2: M is diagonalizable over F` with one repeated eigenvalue
Case 3: M is non-diagonalizable over F` with one repeated eigenvalue in F`
Case 4: M is non-diagonalizable over F` with two distinct, conjugate eigenvalues in

F`2
Since the diagonalizability and eigenvalues of a matrix are preserved under conjugation,

each case is a union of conjugacy classes. In each case, we will compute: the number of
conjugacy classes, the size of each class, the order of a centralizer, and the maximal order
of an element.

Case 1 . These are matrices conjugate to
(
α 0
0 β

)
, where α and β are distinct elements of

F∗` . Hence, conjugacy classes correspond to sets {α, β} of distinct, nonzero eigenvalues, of
which there are (` − 1)(` − 2)/2. Moreover, since α, β ∈ F∗` , the order of every element
divides `− 1, with equality iff lcm(o(α), o(β)) = `− 1.

The centralizer of the matrix
(
α 0
0 β

)
is the subgroup of GL2(F`) consisting of all diagonal

matrices, which has order (` − 1)2. Thus, the order of each conjugacy class is given by
(` − 1)(`2 − `)/(` − 1)2 = `(` + 1) Multiplying the number of classes by the order of each
class, we see that Case 1 contributes a total of (`−2)(`−1)`(`+1)/2 matrices to GL2(F`).

Case 2 . These are matrices conjugate to ( α 0
0 α ), where α ∈ F∗` . Thus, Case 2 contains `− 1

conjugacy classes, one for each nonzero eigenvalue. Moreover, since α ∈ F∗` , the order of
every element divides `− 1, with equality iff α is primitive.

The centralizer of ( α 0
0 α ) is the entirety of GL2(F`). Hence, every conjugacy class in Case

2 is a singleton (In other words, Case 2 corresponds to the center of GL2(F`)). Hence,
Case 2 contributes `− 1 matrices to GL2(F`).

Case 3 . These are matrices conjugate to ( α 1
0 α ). Hence, Case 3 contains ` − 1 conjugacy

classes. Since (
α 1
0 α

)n
=

(
αn nα
0 αn

)
the order of every matrix divides `(`−1), with equality iff α is primitive. Suppose

(
a b
c d

)
commutes with ( α 1

0 α ). Hence

(
aα a+ bα
cα c+ dα

)
=

(
a b
c d

)(
α 1
0 α

)
=

(
α 1
0 α

)(
a b
c d

)
=

(
aα+ c bα+ d
cα dα

)
Thus, c = 0 and a = d. It follows that the centralizer of ( α 1

0 α ) is the set of matrices(
a b
0 b

)
, where a ∈ F` and b ∈ F∗` . Thus, the centralizer of a Case 3 matrix has order `(`−1).

It follows that each conjugacy class has order `2 − 1. So, Case 3 contributes a total of
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(`− 1)2(`+ 1) matrices to GL2(F`).

Case 4 . Conjugacy classes in Case 4 correspond to irreducible characteristic polynomials,
of which there are (`2− `)/2. The order of a matrix divides `2−1, since the eigenvalues are
contained in F∗`2 . Equality is obtained iff either eigenvalue is primitive (in this case, both
eigenvalues are primitive, since the eigenvalues are conjugates of another). Since Cases
1 through 4 partition GL2(F`), we can compute the total contribution from Case 4 by
subtracting the contributions from Cases 1 through 3 from the order of GL2(F`):

(`2 − 1)(`2 − `)− [(`− 2)(`− 1)`(`+ 1)/2 + (`− 1) + (`− 1)2(`+ 1)] =
`2(`− 1)2

2
Hence, each class in Case 4 has order

(`2(`− 1)2

2

)/(`2 − `
2

)
= `2 − `

Thus, the order of a centralizer is (`2 − 1)(`2 − `)/(`2 − `) = `2 − 1.

These results are summarized in the following table:

Case # of Classes Class Size Order of a Centralizer Total Contribution
1 (`− 1)(`− 2)/2 `(`+ 1) (`− 1)2 (`− 2)(`− 1)`(`+ 1)/2
2 `− 1 1 (`2 − 1)(`2 − `) `− 1
3 `− 1 `2 − 1 `(`− 1) (`− 1)2(`+ 1)
4 (`2 − `)/2 `2 − ` `2 − 1 `2(`− 1)2/2

We are now prepared to compute the density of S`. Let D denote the number of `2 − 1
cycles in GL2(F`). By Frobenius (Proposition 2.7), the density of S` is D divided by the
order of GL2(F`).

First, note that every generator of C is an `2 − 1 cycle. Indeed, if x is a generator,
〈x〉 ( 1

0 ) = 〈x〉H ( 1
0 ) = CH ( 1

0 ) = GL2(F`) ( 1
0 ) = F2

` − 0. Hence, D is at least ϕ(`2 −
1), where ϕ is the Euler phi-function. But we can do better. Let B be any subgroup
conjugate to C. Since the order of C is not in general prime, the intersection B ∩ C may
be nontrivial. However, no generator in one is also contained in the other. Being conjugate
to the generators of C, the generators of B must also be `2 − 1 cycles. Thus, if k is the
number of subgroups conjugate to C, D is at least kϕ(`2−1). We now proceed to compute
the integer k.

Lemma 3.1. Z(C) = C

Proof. Since C is abelian, C ⊆ Z(C). Hence, `2 − 1 ≤ #Z(C). On the other hand,
Z(C) ⊆ Z(x) for every x ∈ C. Suppose x generates C, so that its order is `2 − 1. Thus,
x is diagonalizable over F`2 with distinct, primitive eigenvalues. In particular, x is Case 4,
and its centralizer has order `2−1. Thus, #Z(C) ≤ `2−1, which forces Z(C) = `2−1. �
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Proposition 3.2. #N(C) = 2(`2 − 1)

Proof. Let x be an element of the normalizer. Conjugation by x induces a group automor-
phism λx : C → C. Since C ∼= F∗`2 , λx corresponds to a group automorphism F∗`2 → F∗`2 ,
which extends to a field automorphism F`2 → F`2 , since λx respects addition. Thus, we
obtain a group homomorphism:

λ : N(C) −→ Gal(F`2/F`) = 〈σ` : t 7→ t`〉
The kernel of this map is the centralizer of C, which, by the lemma, is simply C. I claim,

in addition, that this map is surjective. Let M generate C, so that

M = T

(
α 0
0 α`

)
T−1

for T ∈ GL2(F`2) and α primitive in F∗`2 . Hence

σ`(M) = M ` = T

(
α` 0

0 α`
2

)
T−1 = T

(
α` 0
0 α

)
T−1

Since M and σ`(M) have the same set of eigenvalues, namely α and α`, they must
belong to the same conjugacy class. In other words, there is a matrix Q ∈ GL2(F`) such
that σ`(M) = QMQ−1. For any Mn ∈ C we have

σ`(M
n) = (σ`M)n = (QMQ−1)n = QMnQ−1

So, in fact, λQ = σ`. Thus, λ is surjective, and the following sequence is exact:

0 −→ C → N(C) −→ Gal(F`2/F`) −→ 0

Hence, N(C) = 〈C,Q〉 and #N(C) = #Gal(F`2/F`)#C = 2(`2 − 1).
�

The number of subgroups conjugate to C is the index of its normalizer in GL2(F`). Since
#N(C) = 2(`2 − 1), there are

[GL2(F`) : N(C)] =
(`2 − 1)(`2 − `)

2(`2 − 1)
=
`2 − `

2

subgroups conjugate to C. As noted above, each conjugate contributes ϕ(`2 − 1) `2 − 1
cycles. Thus, D is bound by

D ≥ (`2 − `)ϕ(`2 − 1)

2
On the other hand, D is bound above by the number of elements in GL2(F`) of order

`2 − 1.

Proposition 3.3. GL2(F`) contains (`2−`)ϕ(`2−1)
2 elements of order `2 − 1.
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Proof. Let R denote the set of matrices of order `2 − 1. R is invariant under conjugation,
and is thus a union of conjugacy classes. Each conjugacy class in R corresponds to a set
{α, β} of conjugate, primitive eigenvalues in F∗`2 , of which there are ϕ(`2−1)/2. Moreover,

each conjugacy class has order `2 − ` (see table on previous page). Thus, R has order
(`2−`)ϕ(`2−1)

2 . �

Thus, the number of `2 − 1 cycles in GL2(F`) is exactly (`2−`)ϕ(`2−1)
2 (note: we have

inadvertently shown that every matrix of order `2 − 1 is an `2 − 1 cycle!). It follows from
Proposition 2.7 that the density of S` is given by

D

#GL2(F`)
=

(`2 − `)ϕ(`2 − 1)/2

(`2 − 1)(`2 − `)
=
ϕ(`2 − 1)

2(`2 − 1)
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