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Abstract

The notion of (unoriented, oriented, ...) cobordism yields an equivalence relation on closed
manifolds, and can be used to construct generalized (co)homology theories. In 1954, Thom
[15] determined the structure of the unoriented cobordism ring by reducing the problem to
a question in stable homotopy theory. We provide an exposition of this approach, introducing
basic concepts in cobordism theory and covering the computations of the unoriented and complex
cobordism rings.

1 Introduction

In the construction of singular homology of spaces, two singular n-chains yield the same homology
class if and only if their difference is the boundary of a singular (n+1)-chain. The analogous relation
for closed manifolds is known as cobordism: two closed n-manifolds are said to be cobordant if their
disjoint union is the boundary of a compact (n+ 1)-manifold. (For our purposes, all manifolds are
assumed to be smooth manifolds.)

The set of cobordism classes of closed manifolds forms a graded ring (with disjoint union as
addition and Cartesian product as multiplication), known as the unoriented cobordism ring. We
can also define various additional flavors of cobordism, by considering oriented manifolds, weakly
almost complex manifolds, etc. In full generality, given a fibration f : B → BO, we have a notion
of (B, f)-cobordism and can define the corresponding cobordism ring. The structure of these rings
is known in many cases, including the unoriented (BO → BO), oriented (BSO → BO), and
complex (BU → BO) cases. We consider only the unoriented and complex cases, and avoid the
full generality of (B, f)-cobordism.

As with singular homology, the notion of (B, f)-cobordism can be used to define a generalized
(co)homology theory, in which the homology of a point is the (B, f)-cobordism ring. The Brown
representability theorem tells us that every generalized (co)homology theory is represented by a
spectrum, and in fact, the Thom-Pontryagin Theorem says that the generalized (co)homology
theory of (B, f)-cobordism is represented by a Thom spectrum consisting of Thom spaces. As
a result, letting E denote the appropriate Thom spectrum, the (B, f)-cobordism ring is π∗(E).
Therefore, the calculation of cobordism rings corresponds exactly to the calculation of homotopy
groups of Thom spectra.

We demonstrate the calculation of unoriented and complex cobordism rings, or equivalently
π∗(MO) and π∗(MU), following the approaches in [4] and [9]. To do so, we determine the structure
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of H∗(MO;Z/2) and H∗(MU ;Z/p) as modules over the Steenrod algebras A2 and Ap, and show
how the Adams spectral sequence can be used to deduce information about stable homotopy groups
from information about cohomology as a module over the Steenrod algebra. Ultimately we show
that the unoriented cobordism ring is Ωunoriented

∼= Z/2[wk : k 6= 2`−1] and the complex cobordism
ring is Ωcomplex

∼= Z[x2k : k ∈ N].
The exposition is split into 11 sections. Section 2 begins our treatment of cobordism, explicitly

defining the generalized homology theory of cobordism and the cobordism ring. In Section 3,
we discuss the connection between generalized (co)homology theories and spectra, which can be
summarized by the fact that every spectrum yields an generalized (co)homology theory and every
generalized (co)homology theory comes from a spectrum. Our goal then is to determine a spectrum
which yields the homology theory of cobordism, and to describe this spectrum we need to discuss
Thom spaces of vector bundles. In Section 4, we review basic facts about vector bundles and
introduce the Thom isomorphism, a key tool. Section 5 covers the Thom-Pontryagin isomorphism,
which is at the heart of the computation of cobordism rings, as it expresses cobordism rings
as homotopy rings of Thom spectra. In particular, the unoriented cobordism homology theory
corresponds to a spectrum MO, the complex cobordism homology theory corresponds to a spectrum
MU , and we have isomorphisms of cobordism rings R∗ ∼= π∗(MO) and Rcomplex

∗ ∼= π∗(MU).
From here, we use techniques in stable homotopy theory to compute π∗(MO) and π∗(MU).

In Section 6, we give some motivation for the computation of these homotopy groups via the
computation of H∗(MO;Z/2) and H∗(MU ;Z/p), as well as their structures over certain algebras
known as the Steenrod algebras. In Section 7, we discuss these Steenrod algebras Ap. A crucial fact
about the Steenrod algebras, which simplifies computation, is that they form a bialgebra (in fact,
a Hopf algebra) and their dual algebras have a simple commutative structure. In computations,
determining the structure of an Ap-module M is equivalent to determining the structure of M∗ as
an A∗p-comodule, which is typically easier due to the simple description of A∗p.

Finally, the remaining sections delve into stable homotopy theory to compute R∗ ∼= π∗(MO)

and Rcomplex
∗ ∼= π∗(MU). Section 8 gives an outline of the computation and uses the Thom

Isomorphism theorem to compute the homology and cohomology of MO with mod 2 coefficients,
as well as the mod p homology and cohomology ofMU . Since the mod 2 Steenrod algebraA2 acts on
H∗(MO;Z/2), we can describe H∗(MO;Z/2) as an A2-module; for each prime p, we also consider
H∗(MU ;Z/p) as an Ap-module. Since we are working over a field, homology is the graded dual of
cohomology, so H∗(MO;Z/2) is an A∗2-comodule and H∗(MU ;Z/p) is an A∗p-comodule. We prove
in Section 9 that the comodule structure of H∗(MO;Z/2) is “cofree,” implying that H∗(MO;Z/2)
is a free A2-module. In Section 10, we find that the comodule structure of H∗(MU ;Z/p) over A∗p is
not cofree over Ap, but we find a description of the comodule, and then point out how the Adams
spectral sequence can be used to compute the homotopy groups of MU , i.e. the complex cobordism
ring.

2 Cobordism

Definition 2.1. Two closed manifolds M and N are said to be cobordant if there exists a compact
manifold with boundary W such ∂W ∼= M qN .
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In particular, M is said to be null-cobordant if M is cobordant with ∅, which is equivalent to
M being the boundary of a compact manifold.

Proposition 2.1. Cobordism is an equivalence relation on the class of closed manifolds.

Proof. Cobordism is reflexive, since for any closed manifold M , ∂(M × I) ∼= M q M . Clearly
cobordism is symmetric. The fact that cobordism is transitive relies on the “collaring theorem”,
proven in [3].

Definition 2.2. The nth cobordism group Rn is defined as the set of cobordism classes of closed
n-manifolds, with group operation given by disjoint union and identity [∅].

The group operation is well-defined, since

[M ] = [N ] =⇒ ∂W ∼= M qN =⇒ ∂(W q (P ×I)) ∼= (M qP )q (N qP ) =⇒ [M qP ] = [N qP ].

Associativity is obvious, and [∅] is an identity since M q ∅ ∼= M . The inverse of [M ] is [M ], since

∂(M × I) ∼= (M qM)q ∅ =⇒ [M qM ] = [∅].

Commutativity is also clear. Thus, Rn is in fact a Z/2-module.
The cobordism relation yields a way of defining homology in a way that seems somewhat more

“natural” than singular homology, although it turns out to differ from singular homology. When
we define singular homology of spaces, we use simplices for our model, and have an algebraic
definition for the boundary of a singular simplex (and also the boundary of a singular chain).
Recall that a singular n-simplex is a continuous map ∆n → X, the nth singular chain group is
Cn(X) = Z[Singn(X)], and the boundary map ∂n : Cn(X) → Cn−1(X) is defined on singular
n-simplices by

∂nσ =

n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn].

Another approach for defining homology is in terms of compact manifolds, with ∂n the ordinary
boundary of manifolds. That is, define a singular n-manifold as a pair (M,f) where M is a
compact n-manifold and f : M → X is continuous.

Let Ccobn (X) be the set of isomorphism classes of singular n-manifolds, which is a commutative
monoid under the disjoint union operation, having ∅ as the identity. Let ∂n : Ccobn (X)→ Ccobn−1(X)
be the boundary operator:

∂n((M,f)) = (∂M, f |∂M )

Note that

· · · ∂n+1−−−→ Ccobn (X)
∂n−→ Ccobn−1(X)→ · · · ∂2−→ Ccob1 (X)

∂1−→ Ccob0 (X)

is a chain complex of monoids, and we can define sets

Hcob
n (X) =

ker(δn)

im(δn+1)
=

{singular n-manifolds without boundary}
[(A, h|A)] ∼ [(B, h|B)] for (AqB, h|AqB) = ∂(P, h)
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These are actually groups, by the same reasoning that Rn are groups. We can also define relative
homology groups Hcob

n (X,A), for A ⊂ X, as the homology of the chain complex of monoids

. . .
∂n+1−−−→ Ccobn (X)/Ccobn (A)

∂n−→ Ccobn−1(X)/Ccobn−1(A)→ . . .
∂2−→ Ccob1 (X)/Ccob1 (A)

∂1−→ Ccob0 (X)/Ccob0 (A),

and also define reduced homology H̃cob
n (X) = Hcob

n (X, ∅). Note that if X = ∗ is a point, then a
singular n-manifold is precisely an n-manifold with its unique map to ∗, and so Hcob

n (∗) = Rn,
implying R∗ = Hcob

∗ (∗).

Definition 2.3. The (unoriented) cobordism ring is defined as a graded Z/2-module by

R∗ =

∞⊕
n=0

Rn.

With multiplication given by [M ][N ] = [M ×N ], this becomes a graded Z/2-algebra.

The multiplication operation is well-defined, since

[M ] = [M ′] =⇒ ∂W ∼= M qM ′

=⇒ ∂(W ×N) ∼= (M qM ′)×N = (M ×N)q (M ′ ×N)

=⇒ [M ×N ] = [M ′ ×N ]

This is obviously associative and commutative, with an identity [∗] (here and from now on, ∗
denotes a point). The grading structure is respected, since dim(M × N) = dim(M) + dim(N).
Finally, this multiplication is compatible with addition since, for example,

[M ]([N ] + [P ]) = [M × (N q P )] = [(M ×N)q (M × P )] = [M ][N ] + [M ][P ].

We can also define a notion of oriented cobordism, in which two oriented manifolds are cobordant
if together they form the oriented boundary for an oriented compact manifold. A similar notion
can be defined for stably almost complex manifolds (yielding complex cobordism), and for any of
a variety of additional structures placed on a manifold (i.e., (B, f) structures). There is a careful
treatment of general (B, f)-cobordism in [14], but we will only care about the unoriented and

complex cobordism rings R∗ and Rcomplex
∗ .

3 Generalized Homology and Spectra

In order to compute R∗ = Hcob
∗ (∗), we turn to a discussion of generalized (co)homology theories in

general. An (extraordinary) generalized (co)homology theory resembles an ordinary (co)homology
theory, except that the dimension axiom is omitted (so the (co)homology of a point may be
nontrivial). We use the definition given in [12], Chapter 13:

Definition 3.1. A (reduced) generalized homology theory on hCW∗ (the homotopy category
of pointed CW complexes) is a sequence of functors hn : hCW∗ → Ab with natural isomorphisms
σ : hn → hn+1 ◦ Σ (here Σ : hCW∗ → hCW∗ is the suspension functor) such that:
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• If i : A
i
↪−→ X is the inclusion of a subcomplex and q : X → X/A is the quotient map, then the

sequence

hn(A)
hn(i)−−−→ hn(X)

hn(q)−−−→ hn(X/A)

is exact.

• For any pointed spaces {Xj}, the maps induced by αi : Xi →
∨
j Xj combine to form an

isomorphism ⊕
j

hn(Xj)
⊕jhn(αj)
−−−−−−→ hn

∨
j

Xj


for all n.

Definition 3.2. A spectrum is a sequence of pointed CW complexes {Xn} together with maps
ΣXn → Xn+1. (Here we assume that a pointed CW complex has its basepoint as a 0-cell.) A
CW-spectrum is a spectrum where the maps ΣXn → Xn+1 are inclusions of subcomplexes.

For example, every CW complex X has a suspension spectrum Σ∞X, consisting of spaces
ΣnX with identity structure maps. A more interesting example is as follows:

Definition 3.3. An Eilenberg-Maclane space, or a K(G,n), is a (for our purposes, pointed
CW) space X such that πnX ∼= G and πkX = 0 for all k 6= n.

Proposition 3.1 (Proposition 4.30 in [2]). For every abelian group G and every n > 0, there exists
a unique K(G,n) up to homotopy equivalence.

For this reason we can often think about K(G,n) as a single object, so long as we are working
in the homotopy category hTop∗.

Given an abelian group G, we construct an Eilenberg-Maclane spectrum corresponding to
G (denoted HG) such that the nth space Xn is a K(G,n). Since ΩXn is a K(G,n−1), there exists
a homotopy equivalence fn : Xn−1 → ΩXn, yielding gn : ΣXn−1 → Xn by the loop-suspension
adjunction. These maps gn are the structure maps of the spectrum.

From here, we limit ourselves to CW-spectra when defining maps between spectra, for simplicity.

Definition 3.4. A function of spectra of degree d between X and Y is a sequence of functions
fn : Xn → Yn−d which commute with the structure maps of X and Y .

Definition 3.5. A subspectrum of a spectrum X is a sequence {Yn} such that Yn ⊂ Xn is a
subcomplex (containing the basepoint) and the structure map fn : ΣXn → Xn+1 satisfies fn(ΣYn) ⊂
Yn+1.

Definition 3.6. A cofinal subspectrum of X is a subspectrum {Yn} such that, for every Xn and
every cell e of Xn, eventually e is in Ym.
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Definition 3.7. A map of spectra of degree d from X to Y is an equivalence class of functions
of degree d from cofinal subspectra to Y , where two such functions are equivalent if they agree on
their intersection. A homotopy of maps of spectra is a map X ∧ I+ → Y where I+ = [0, 1]q∗.
The set of homotopy classes of maps of spectra X → Y of degree d is denoted [X,Y ]d, and the set
of homotopy classes of maps of spectra X → Y (of any degree) is denoted [X,Y ].

Note that, letting S = Σ∞S0 be the sphere spectrum, the kth stable homotopy group of spheres
is [S,S]k. We denote the category of spectra with homotopy classes of maps as morphisms by
hSpectra, and will always work in this category (rather than the category with ordinary maps as
morphisms).

Proposition 3.2 ([11], p. 68-69). Every spectrum X yields a generalized homology theory, given
by

Hn(Y ) = [S, X ∧ Y ]n = lim−→
k

πn+k(Xk ∧ Y ),

and a generalized cohomology theory given by

Hn(Y ) = [Y,X]−n.

For example, let X = HG be an Eilenberg-Maclane spectrum; then

Hn(Y ;G) = [Y,K(G,n)].

Theorem 3.1 (Brown Representability, Theorem 4E.1 in [2]). Every generalized homology theory
is represented by a spectrum. That is, given a generalized homology theory {Hgen

n (−) : n ≥ 0},
there exists a spectrum E such that En(−) = [S, E ∧ −]n is naturally isomorphic to Hgen

n (−).

The Brown Representability theorem tells us that there exists some spectrum E with En(−) ∼=
Hcob
n (−). In particular,

R∗ = Hcob
∗ (∗) ∼= E∗(∗) = [S, E] = π∗(E).

Thus, in order to compute R∗ we determine a spectrum representing the generalized homology
theory of cobordism, and then compute its homotopy groups. We will find such a spectrum, but
in order to construct it, we will first need to discuss vector bundles and their Thom spaces.

4 Vector Bundles

We review basic material from [7]:

Definition 4.1. A vector bundle of rank n is a continuous map π : E → B such that for every

b ∈ B, there exists an open neighborhood U 3 b and a homeomorphism f : π−1(U)
∼=−→ U ×Rn such

that for x ∈ U , f takes π−1(x) onto {x} × Rn linearly.

Definition 4.2. A bundle map between bundles π1 : E1 → B1 and π2 : E2 → B2 is a continuous
map f : E1 → E2 such that f takes π−1

1 (b) onto π−1
2 (b) as a linear isomorphism.
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Definition 4.3. The Grassmannian of n-subspaces in Rn+k is the space

Grn(Rn+k) = {V ⊂ Rn+k : dim(V ) = n},

topologized as a quotient space of

V 0
n (Rn+k) = {(v1, . . . , vn) ⊂ (Rn+k)n : v1, . . . , vn linearly independent} ⊂ (Rn+k)n.

There is an obvious chain of inclusions

Grn(Rn) ⊂ Grn(Rn+1) ⊂ · · ·

The direct limit is an infinite Grassmannian, denoted

BO(n) = {V ⊂ R∞ : dim(V ) = n},

where R∞ consists of infinite tuples with finitely many nonzero elements, and BO(n) is topologized
such that X ⊂ BO(n) is open (resp. closed) if and only if X ∩Grn(Rn+k) is open (resp. closed) for
all k.

Definition 4.4. The tautological bundle over Grn(Rn+k) consists of a total space

E(γn+k
n ) = {(V, v) : V ∈ Grn(Rn+k), v ∈ V } ⊂ Grn(Rn+k)× Rn+k

together with a projection (V, v) 7→ V . Similarly, the tautological bundle over BO(n) consists of

E(γn) = {(V, v) : V ∈ BO(n), v ∈ V } ⊂ BO(n)× R∞

together with a projection (V, v) 7→ V .

Proposition 4.1 (Lemma 5.2 in [7]). These are vector bundles.

The bundles γn are called “universal bundles”, for the following reason:

Proposition 4.2 (Theorems 5.6 and 5.7 in [7]). Let ξ : E → B be a rank-n bundle where B is
paracompact. Then there exists a bundle map from ξ to γn, and any two bundle maps from ξ to γn
are bundle-homotopic.

5 Thom-Pontryagin Isomorphism

The goal of this section is to find a ring spectrum representing the generalized (co)homology theory
of cobordism, and to express R∗ as its homotopy ring.

Recall that the classifying space BO(k) is the infinite Grassmanian consisting of k-planes in
R∞. There is a bundle γk : E(γk)→ BO(k), where

E(γk) =
⋃

V ∈BO(k)

{(V, v) : v ∈ V }

and γk(V, v) = V . This is called the universal bundle of rank k, since every bundle ξ of rank
k over a paracompact base is a pullback ξ ∼= f∗γk for some continuous map f : B(ξ) → BO(k).
Moreover, this map f is unique up to homotopy.
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Definition 5.1. Given a bundle ξ with an inner product, its Thom space is Th(ξ) = D(ξ)/S(ξ)
where D(ξ) is the disk bundle consisting of all e ∈ E(ξ) with ‖e‖ ≤ 1, and S(ξ) is the sphere
bundle consisting of all e ∈ E(ξ) with ‖e‖ = 1.

Definition 5.2. The Thom space of the universal rank-k bundle is denoted MO(k) = Th(γk).

Theorem 5.1 (Thom-Pontryagin Isomorphism, Theorem IV.8 in [15]). For each n, we have an
isomorphism

Rn
∼= lim−→

k

πn+k(MO(k)) = πn(MO).

Together these form an isomorphism R∗
∼=−→ π∗(MO).

Without proving the Thom-Pontryagin isomorphism, we give a basic description, following [4].
The idea is to construct, for each closed manifold M , a homotopy class of some MO(k). Given M of
dimension n, embed M in some Rn+k (which is possible by the Whitney Embedding Theorem). Let
ν = TRn+k/TM be the normal bundle of the embedding. By the tubular neighborhood theorem
([3], Theorem 5.1), E(ν) can be realized as an open set in Rn+k, with the zero section of M identical
to the embedding of M in Rn+k.

Since ν is a rank-k bundle over M , we have a map f : M → BO(k) such that ν ∼= f∗γk. This
means that f is covered by a bundle map β : ν → γk. This gives a map g : Th(ν) → Th(γk) =
MO(k), defined by g(e) = β(e) for e ∈ E(ν) and g(∞ν) =∞γk . Also, the inclusion E(ν) ↪→ Rn+k

yields a map from Sn+k = Rn+k∪{∞} to Th(ν), which fixes elements of E(ν) and sends everything
else to ∞ ∈ Th(ν). Composing the two maps yields a new map

Sn+k → Th(ν)→MO(k)

which determines an element of πn+k(MO(k)). By certain facts about embeddings, we end up with
a unique element of

lim−→
k

πn+k(MO(k))

which depends only on the cobordism class of M . Thus, we have a map from R∗ to the direct
limit of πn+k(MO(k)), which turns out to be a homomorphism. In fact, it also turns out to be an
isomorphism.

For any k, γk ⊕ ε1 is a rank-(k+ 1) bundle over BO(k) so there exists a bundle map γk ⊕ ε1 →
γk+1. Let e1 be the rank-1 bundle over a point. Since the Thom functor takes products to smash
products, we have a map

ΣMO(k) = S1∧MO(k) = Th(e1)∧Th(γk) = Th(e1×γk) = Th(ε1⊕γk)→ Th(γk+1) = MO(k+1).

This gives us a spectrum MO, and the Thom-Pontryagin isomorphism says that

R∗ ∼= π∗(MO)

as graded abelian groups. Moreover, there is an analogous Thom-Pontryagin isomorphism

Rcomplex
∗

∼= π∗(MU),
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where MU consists of spaces MU(k) = Th(BU(k)) and maps

Σ2MU(k) = S2∧MU(k) = Th(e1,C)∧Th(γkC) = Th(e1,C×γkC) = Th(ε1
C⊕γkC)→ Th(γk+1

C ) = MU(k+1).

Moreover, π∗(MO) and π∗(MU) have ring structures, and these are isomorphisms of rings. The
spectrum MO yields the homology theory of unoriented cobordism, while MU yields the homology
theory of complex cobordism.

6 Homotopy groups of spectra

In the last section, we expressed R∗ as π∗(MO); thus, all that remains is to calculate π∗(MO).
In this section we give a further discussion of spectra and their homotopy groups, and describe a
strategy for computing homotopy.

First, we consider some categorical aspects of spectra. Recall that we have a notion of smash
product (denoted ∧) for pointed spaces, so that the homotopy category of pointed spaces hTop∗
is a monoidal category (with unit S0). Similarly, the stable homotopy category hSpectra (i.e.
the category of spectra with homotopy classes of maps as morphisms) has a smash product ∧ and
forms a monoidal category (with unit S = Σ∞S0, the sphere spectrum). Note that for spaces we
have that [ΣX,Y ] is naturally a group (e.g. π1(Y ) for X = S0) and [Σ2X,Y ] is naturally an abelian
group, so for spectra we have that [E,F ] = [Σ2E,Σ2F ] is an abelian group ([11], II.1 p. 39).

For any ring R, the Eilenberg-Maclane spectrum HR comes equipped with morphisms ir ∈
[S, HR] (corresponding to r ∈ H∗(S;R) ∼= R) for each r ∈ R, as well as a morphism

m ∈ [HR ∧HR,HR] ∼= H∗(HR ∧HR;R)

The morphisms i1 : S→ HR and m : HR∧HR→ HR turn HR into a monoid object in hSpectra,
also known as a ring spectrum. Moreover, H∗(E;R) = [E,HR] and H∗(E;R) = [S, E ∧HR] are
naturally R-modules via

R× [E,HR]→ [E,HR], (r, E
f−→ HR) 7→ (E

f−→ HR
βr−→ HR)

and

R× [S, E ∧HR]→ [S, E ∧HR], (r, S f−→ E ∧HR) 7→ (S f−→ E ∧HR Id∧βr−−−→ E ∧HR)

where βr : HR→ HR is the composition

HR
∼=−→ HR ∧ S Id∧ir−−−→ HR ∧HR m−→ HR.

Our spectraMO andMU are also ring spectra, with mapsMO∧MO →MO andMU∧MU →MU
coming from the operation of bundle product.

Let E be a spectrum, and recall that π∗(E) = [S, E]. Recall that mod p cohomology of a
spectrum is represented by HZ/p, so

H∗(E) ∼= [E,HZ/p].
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This is usually not too difficult to compute, and one might hope that it would yield some information
about [S, E], since we know that

[S, HZ/p] = π∗(HZ/p) ∼= Z/p.

Note that [E,HZ/p] is a [HZ/p,HZ/p]-module in a natural way. If we compute not only [E,HZ/p] =
H∗(E;Z/p) as an abelian group but also its structure as a module over [HZ/p,HZ/p], then we
have a better chance at being able to deduce π∗(E). In fact, we really can determine π∗(E) if
H∗(E;Z/p) is a free module and π∗(E) is both bounded below and killed by multiplication by p.
When we choose a basis {wi} for H∗(E;Z/p) = [E,HZ/p] and combine to get a map

f : E →
∏
i

Σ|wi|HZ/p '
∨
i

Σ|wi|HZ/p, (1)

this map is a cohomology isomorphism, and is thus a homology isomorphism. We then adapt the
argument in [5]: let C be the homotopy cofiber of f . Since f is a homology isomorphism, C has
trivial homology (and it is also bounded below in homotopy). If C is (n − 1)-connected, then the
Hurewicz map πn(C) → Hn(C;Z) is an isomorphism, so πn(C) ⊗ Z/p → Hn(C;Z/p) is also an
isomorphism. But Hn(C;Z/p) = 0, so πn(C)⊗ Z/p = 0 and (using our knowledge of the fact that
π∗(E) is killed by p) we deduce that πn(C) = 0. Thus, C has trivial homotopy groups so f is an
isomorphism on homotopy groups, yielding the structure of π∗(E).

As it turns out, this situation will occur for MO (note that π∗(MO) is killed by 2, since the
unoriented cobordism ring is a Z/2-algebra). It will not turn out this nicely for MU ; however, we
can still use information about cohomology as a module over [HZ/p,HZ/p] as part of a spectral
sequence to determine π∗(MU).

7 The Steenrod algebra

We now turn to a discussion of [HZ/2, HZ/2], as well as [HZ/p,HZ/p] for p > 2 prime. From the
previous section, we know that [HZ/p,HZ/p] is a Z/p-module.

Lemma 7.1 (Special case of Theorem 2.2.4 in [10], the Yoneda Lemma). Let X and Y be objects
of a category C. Then there is a natural isomorphism

Hom(X,Y ) ∼= Nat(Hom(−, Y ),Hom(−, X))

where Nat(−,−) : C × C → Set is the functor of natural transformations.

As a consequence of the Yoneda lemma, we can identify [HZ/p,HZ/p] with the natural transformations
from the contravariant functor [−, HZ/p] ∼= H∗(−;Z/p) : hSpectra→ Set to itself. We call such
a natural transformation a (mod p) stable cohomology operation. The set of mod p stable
cohomology operations [HZ/p,HZ/p] forms an algebra known as the mod p Steenrod algebra,
denoted Ap. Moreover, in the p = 2 case this algebra is generated by a relatively simple family of
stable cohomology operations known as the Steenrod squares

Sqi : H∗(−;Z/2)→ H∗+i(−;Z/2).
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for i ≥ 0. In the p > 2 case, the mod p Steenrod algebra is generated by the Steenrod powers

P i : H∗(−;Z/p)→ H∗+2i(p−1)(−;Z/p)

and the Bockstein map
β : H∗(−;Z/p)→ H∗+1(−;Z/p).

The Steenrod squares have a simple axiomatic characterization, as stated and proved in [13]:

Theorem 7.1. The Steenrod squares are uniquely defined by the following:

1. Sq0 : Hn(X;Z/2)→ Hn(X;Z/2) is the identity.

2. Sqn : Hn(X;Z/2)→ H2n(X;Z/2) is the cup square, x 7→ x2.

3. Sqk : Hn(X;Z/2)→ Hn+k(X;Z/2) is zero for k > n.

4. The Cartan formula holds:

Sqk(xy) =
∑
i+j=k

(Sqix)(Sqjy)

Proposition 7.1 ([2], p. 489). The Steenrod squares are stable operations, i.e. the diagram

Hn(X;Z/2) Hn+i(X;Z/2)

Hn+1(ΣX;Z/2) Hn+i+1(X;Z/2)

Sqi

Sqi

commutes where the left and right arrows are the suspension isomorphisms.

Consequently, the Steenrod squares define maps Sqi : H∗(−;Z/2) → H∗+i(−;Z/2) in the
category of spectra.

Note that the Steenrod algebra is noncommutative; for example, letting x ∈ H1(RP∞) be a
generator,

Sq2Sq1x = Sq2(x2) = (x2)2 = x4 6= 0 = Sq10 = Sq1Sq2x

and so Sq2Sq1 6= Sq1Sq2.

Proposition 7.2 (p. 496 in [2]). The algebra A2 satisfies the Adem relations:

SqiSqj =

bi/2c∑
k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk.

While the Adem relations make it possible to work directly with A2, it turns out that the graded
Z/2-dual of A2 has an algebra structure that is simpler to work with. This comes from the fact
that, as shown in [6], A2 has a comultiplication A2 → A2⊗A2 which turns it into a coalgebra (and
more strongly, a bialgebra and even a Hopf algebra):
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Definition 7.1. An F -coalgebra is a vector space A over F with linear maps ∆ : A→ A⊗A (the
comultiplication) and ε : A → F (the counit) satisfying coassociativity and coidentity axioms.
That is, it is a module object in the opposite category of the monoidal category of F -vector spaces
(equipped with the notion of tensor product).

Milnor proved in [6] that the Steenrod algebra A2 is a Hopf algebra with comultiplication
∆ : A → A⊗A satisfying

∆(Sqk) =
∑
i+j=k

Sqi ⊗ Sqj

and counit given by ε(Sqk) = 1. In fact he proved more generally that Ap is a Hopf algebra, and
consequently, the graded duals of Ap are Hopf algebras (in particular, algebras and coalgebras) as
well.

Theorem 7.2 (Stated as Theorem 3.1.1 in [9], due to [6]). As a graded algebra,

A∗2 = Z/2[ξ1, ξ2, ξ3, . . . ]

where |ξi| = 2i − 1. For p > 2,

A∗p = Z/p[ξ1, ξ2, ξ3, . . . ]⊗ E(τ0, τ1, τ2, . . . )

where |ξi| = 2(pi − 1), |τi| = 2pi − 1, and E(τ0, τ1, τ2, . . . ) is the exterior algebra on the τi. The
comultiplication maps A∗p → A∗p ⊗A∗p are given by

∆ξi =
i∑

j=0

ξ2j

i−j ⊗ ξj

for p = 2 where ξ0 = 1, and by

∆ξi =

i∑
j=0

ξp
j

i−j ⊗ ξj

for p > 2 where ξ0 = 1 and

∆τi = τi ⊗ 1 +

i∑
j=0

ξp
j

i−j ⊗ τj .

8 (Co)homology

Note that π∗(MO) and π∗(MU) have natural ring structures, and more generally, π∗(E) has a
natural ring structure when E is a ring spectrum. This structure is given as follows:

[S, E]⊗ [S, E]→ [S, E], (f ⊗ g) 7→ (S f∧g−−→ E ∧ E → E)
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Similarly, H∗(E;R) has a natural ring structure when E is a ring spectrum. This structure is given
as follows:

[S, E∧HR]⊗[S, E∧HR]→ [S, E∧HR], (f, g) 7→ (S f∧g−−→ E∧HR∧E∧HR ∼= E∧E∧HR∧HR mE∧mHR−−−−−−→ E∧HR)

The computation of π∗(MO) and π∗(MU) goes as follows:

1. Compute H∗(BO;Z/2) and H∗(BU ;Z/p) as rings.

2. Show that H∗(MO;Z/2) ∼= H∗(BO;Z/2) and H∗(MU ;Z/p) ∼= H∗(BU ;Z/p) as rings.

3. Show that H∗(MO;Z/2) is cofree as a comodule over A∗2, and therefore H∗(MO;Z/2) is
free as a module over A2. Determine the (not quite cofree) structure of H∗(MU ;Z/p) as a
comodule over A∗p.

4. Apply the same idea we discussed earlier: using the fact that H∗(HZ/2) = A2, construct
a map of spectra from MO to a wedge of HZ/2 which is an isomorphism on (co)homology,
and then conclude that it is an isomorphism on homotopy groups. Apply the Adams spectral
sequence to determine π∗(MU).

Since we are working over a field, the universal coefficient theorem tells us that H∗(MG(k);Z/p)
is the graded vector space dual of H∗(MG(k);Z/p), and so H∗(MG;Z/p) is the graded vector space
dual of H∗(MG;Z/p). (Homology classes are dual elements via the cap pairing H i(MG(k)) ⊗
Hi(MG(k))→ Fp.)

Theorem 8.1 (Theorem 7.1 in [7]). As rings,

H∗(BO(n);Z/2) ∼= Z/2[w1, . . . , wn]

where wi ∈ H i(BO(n)) is the ith Stiefel-Whitney class of BO(n).

Proof. Consider the map BO(1)n → BO(n) lying under γ1 × · · · × γ1 → γn. Note that, as vector
spaces,

H∗(BO(1)n;Z/2) ∼= H∗(BO(1);Z/2)⊗n ∼= Z/2[x]⊗n = Z/2[x1]⊗ · · · ⊗ Z/2[xn]

using the Kunneth formula. Since the Stiefel-Whitney classes are natural, the induced map on
cohomology H∗(BO(n);Z/2)→ H∗(BO(1)n;Z/2) takes wi(γ

n) to wi(γ
1×· · ·×γ1). By the Cartan

formula, the total Stiefel-Whitney class is multiplicative and so

w(γ1 × · · · × γ1) = w(γ1)n = (1 + x1) · · · (1 + xn) =

n∑
i=0

σi(x1, . . . , xn)

implying that the induced map on cohomology takes

wi(γ
n) 7→ wi(γ

1 × · · · × γ1) = σi(x1, . . . , xn) ∈ H i(BO(1)n).

If the wi(γ
n) are algebraically dependent, then so are the σi(x1, . . . , xn). But the elementary

symmetric polynomials are algebraically independent, so the wi(γ
n) are as well, implying that the

kernel is trivial and so the map on cohomology is injective. The image of the map on cohomology
consists of the symmetric polynomials in x1, . . . , xn.
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Theorem 8.2 (Theorem 14.5 in [7]). As rings,

H∗(BU(n);Z) ∼= Z[c1, . . . , cn]

where ci ∈ H2i(BU(n);Z) is the ith Chern class of BU(n).

It follows that, for p prime,

H∗(BU(n);Z/p) ∼= H∗(BU(n);Z)⊗Z Z/p ∼= Z/p[c1, . . . , cn].

Consider again the map BO(1)n → BO(n). Note that, since we are working over a field, the
graded dual map of the induced map on cohomology (i.e., the induced map on homology) is the
quotient by symmetric polynomials

H∗(BO(1)n;Z/2) ∼= Z/2[y0, y1, . . . ]
⊗n → Z/2[y0, y1, . . . ]

⊗n
Σ = H∗(BO(n);Z/2)

where M⊗nΣ is the nth symmetric power of M , yi (in degree i) is dual to xi ∈ H i(BO(1);Z/2) and

Z/2[y0, y1, . . . ]
⊗n = Z/2[yi1 · · · yin : i1 ≤ · · · ≤ in].

Since homology commutes with direct limits ([12] Theorem 5.4.1),

H∗(BO;Z/2) ∼= lim−→H∗(BO(n);Z/2) ∼= lim−→Z/2[yi1 · · · yin : i1 ≤ · · · ≤ in] ∼= Z/2[y0, y1, y2, . . . ]

as graded vector spaces, where the last vector space is free on the yi (of degree i), i.e. it is the
vector space structure of the polynomial graded ring with variables {yi}. In fact, H∗(BO;Z/2) has
a ring structure coming from the homology cross product and BO(k)×BO(`)→ BO(k + `), and

H∗(BO) ∼= Z/2[y1, y2, . . . ]

as rings where y0 = 1.
Similarly, consider the map BU(1)n → BU(n) lying under γ1

C×· · ·×γ1
C → γnC. Its induced map

on mod p homology is the quotient by symmetric polynomials

H∗(BU(1)n;Z/p) ∼= H∗(BU(1);Z/p)⊗n = Z/p[d0, d1, d2, . . . ]
⊗n → Z/p[d0, d1, d2, . . . ]

⊗n
Σ
∼= H∗(BU(n);Z/p)

where di ∈ H2i(BU(1);Z/p) is dual to ci1 ∈ H2i(BU(1);Z/p). Since homology commutes with
direct limits,

H∗(BU ;Z/p) ∼= lim−→
n

H∗(BU(n);Z/p) ∼= lim−→
n

Z/p[di1 · · · din : i1 ≤ · · · ≤ in] ∼= Z/p[d1, d2, . . . ]

as rings.
Using our knowledge of the homology of BO and BU , we can compute the homology of MO

and MU using the Thom isomorphism theorems:
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Theorem 8.3 (Thom Isomorphism Theorem, Theorem 8.1 in [7]). Let ξ : E → B be a rank-n real
vector bundle. Then there exists a Thom class u ∈ Hn(Th(ξ);Z/2) such that the cup product map

x 7→ x ∪ u : Hk(B;Z/2)→ Hn+k(Th(ξ);Z/2)

is an isomorphism for each k.

Theorem 8.4 (Thom Isomorphism Theorem version 2, Theorem 9.1 in [7]). Let ξ : E → B be a
rank-n oriented real vector bundle. Then there exists a Thom class u ∈ Hn(Th(ξ);Z) such that
the cup product map

x 7→ x ∪ u : Hk(B;Z)→ Hn+k(Th(ξ);Z)

is an isomorphism for each k.

Corollary 8.1. If ξ : E → B is a rank-n complex vector bundle, then there is a Thom class
u ∈ H2n(Th(ξ);Z) such that the cup product

x 7→ x ∪ u : Hk(B;Z)→ H2n+k(Th(ξ);Z)

is an isomorphism for each k.

Proof. This follows from Lemma 14.1 in [7], which says that ξ has a canonical orientation on its
underlying rank-2n real bundle.

The dualization of these Thom isomorphisms tells us that

H∗(MO(n);Z/2) ∼= H∗+n(BO(n);Z/2), H∗(MU(n);Z) ∼= H∗+2n(BU(n);Z)

as abelian groups. Since the Thom isomorphisms commute with the structure maps, we have Thom
isomorphisms

H∗(BO;Z/2)→ H∗(MO;Z/2), H∗(BU ;Z)→ H∗(MU ;Z)

which take

Hi(BO(n);Z/2)→ Hi+n(MO(n);Z/2)→ Hi(MO;Z/2), Hi(BU(n);Z)→ Hi+2n(MU(n);Z)→ Hi(MU ;Z).

These turn out to be not just additive isomorphisms, but ring isomorphisms as well. Hence, as a
graded Z/2-algebra,

H∗(MO;Z/2) ∼= H∗(BO;Z/2) = Z/2[y1, y2, . . . ]

where yi ∈ Hi(BO(1)) is the dual of xi ∈ H i(BO(1)) (here, y0 = 1). Let ỹi ∈ Hi+1(MO(1)) be the
elements corresponding to yi. Note that

Sγ1 = {(V, v) : V ∈ RP∞, v ∈ V ⊂ R∞, ‖v‖ = 1} ∼= S∞

which is contractible. Quotienting by a contractible subcomplex of a CW complex is a homotopy
equivalence, so MO(1) = Dγ1/Sγ1 ' Dγ1. Moreover, Dγ1 deformation retracts to the zero section
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∼= RP∞ so it is homotopy equivalent to RP∞. Thus, MO(1) ' RP∞. Let x̃ be a generator of
H1(MO(1)); then since ỹi ∈ Hi+1(MO(1)) and Hi+1(MO(1)) ∼= Z/2 with nonzero element dual to
x̃i+1, it follows that ỹi is dual to x̃i+1. We can write

H∗(MO;Z/2) = Z/2[ỹ1, ỹ2, . . . ]

as a graded Z/2-algebra freely generated by the ỹi (each in degree i), so as a graded Z/2-vector
space,

H∗(MO;Z/2) = Z/2[w1, w2, . . . ]

where the right side is the additive structure of the graded polynomial ring on wi, and wi is dual
to ỹi.

We also have

H∗(MU ;Z) ∼= H∗(BU ;Z) =⇒ H∗(MU ;Z/p) ∼= H∗(BU ;Z/p) = Z/p[d1, d2, . . . ]

as rings, where di ∈ H2i(BU(1);Z/p) is dual to ci1 ∈ H2i(BU(1);Z/p). Let d̃i ∈ H2i+2(MU(1);Z/p)
be the elements corresponding to di ∈ H2i(BU(1);Z/p) under Thom isomorphism. Note that
MU(1) is homotopy equivalent to BU(1) = CP∞, since

Sγ1
C = {(V, v) : V ∈ CP∞, v ∈ V ⊂ C∞, ‖v‖ = 1} ∼= S∞

is contractible and thus MU(1) = Dγ1
C/Sγ

1
C ' Dγ1

C ' CP∞. Let z ∈ H2(MU(1);Z/p) ∼=
Z/p be such that H∗(MU(1);Z/p) = Z/p[z]. Then d̃i ∈ H2i+2(MU(1);Z/p) is dual to zi+1 ∈
H2i(MU(1);Z/p). We can write

H∗(MU ;Z/p) = Z/p[d̃1, d̃2, d̃3, . . . ] (2)

as a graded ring, where |d̃i| = 2i.

9 Computing π∗(MU)

Theorem 9.1. As a module over A, H∗(MO;Z/2) is free with basis

{w2, w4, w5, . . . } = {wj : j 6= 2i − 1}.

Our goal is to prove this theorem, and we follow closely the proof given in [4]. An equivalent
statement of the theorem is that

A⊗B → A⊗H∗(MO;Z/2)→ H∗(MO;Z/2)

is a Z/2-vector space isomorphism, where B is the vector space span of {wj : j 6= 2i−1}; surjectivity
of this map means that every element of H∗(MO;Z/2) is of the form

∑
ajwj for aj ∈ A, and

injectivity means that the wj are linearly independent over A. Dualizing, another equivalent
statement is that

H∗(MO;Z/2)→ A∗ ⊗H∗(MO;Z/2)→ A∗ ⊗B∗



17

is an isomorphism of vector spaces, i.e. that H∗(MO;Z/2) is “cofree” as a comodule over A∗.
Here B∗ is the graded dual of B, and (A ⊗ B)∗ ∼= A∗ ⊗ B∗ since this isomorphism holds on each
(finite-dimensional) graded piece.

To prove that H∗(MO;Z/2) → A∗ ⊗ B∗ is a vector space isomorphism, we prove that it is in
fact an isomorphism of Z/2-algebras. Since this is a ring homomorphism, and since H∗(MO;Z/2)
is generated (as a ring) by the ỹi, it is determined by the image of the ỹi. Now we only have to
consider the map

H∗(MO(1);Z/2)
φ−→ H∗(MO(1);Z/2)⊗Z/2 A∗

and see where each ỹi is sent.
Note that, since the ỹi form a basis for H∗(MO(1);Z/2) and the ξi (dual to Sq2i−1 · · · Sq2Sq1)

form a basis for A∗2,

φ(ỹi) =
∑
j,k

cjkỹj ⊗ ξk

where cjk ∈ Z/2, and cjk = 1 if and only if

Sq2k−1 · · · Sq2Sq1x̃j+1 = x̃i+1.

Proposition 9.1. If i1, . . . , in > 0, then

Sqi1 · · ·Sqin x̃

is x̃2n if (i1, . . . , in) = (2n−1, . . . , 2, 1), or 0 otherwise.

Proof. The proof is by induction on n. For the base case, suppose n = 1; then since x̃ ∈
H1(MO(1);Z/2), it follows Sqi1 x̃ is either x̃2 if i1 = 1, or 0 if i1 > 1.

Now suppose the claim holds for n− 1 and

Sqi1 · · · Sqin x̃ 6= 0.

Then
Sqi2 · · · Sqin x̃ 6= 0 =⇒ (i2, . . . , in) = (2n−2, . . . , 2, 1), Sqi2 · · · Sqin x̃ = x̃2n−1

and
Sqi1 · · · Sqin x̃ = Sqi1 x̃2n−1

.

Since the total Steenrod square Sq : H∗(RP∞)→ H∗(RP∞) is a ring homomorphism by the Cartan
formula,

Sq(x̃2n−1
) = Sq(x̃)2n−1

= (x̃+ x̃2)2n−1
= x̃2n−1

+ x̃2n

and thus it must be the case that i1 = 2n−1 and

Sqi1 · · · Sqin x̃ = Sq2n−1 · · · Sq2Sq1x̃ = x̃2n

as claimed.
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As a result,

Sq2k−1 · · · Sq2Sq1x̃ = x̃i+1

if and only if i+ 1 = 2k, so c0k = 1 if and only if i+ 1 = 2k. That is,

φ(ỹi) =

{
1⊗ ξk + ỹi ⊗ 1 + . . . i+ 1 = 2k

ỹi ⊗ 1 + . . . i+ 1 6= 2k

since ỹ0 = 1.
Now consider the map of Z/2-algebras

H∗(MO;Z/2)
ψ−→ B∗⊗A∗ = H∗(MO;Z/2)/〈ỹj : j = 2k−1〉⊗A∗ = Z/2[ỹj : j 6= 2k−1]⊗Z/2[ξ1, ξ2, . . . ].

We have shown that

ψ(ỹi) =

{
1⊗ ξk + . . . i+ 1 = 2k

ỹi ⊗ 1 + . . . i+ 1 6= 2k

since ỹi ⊗ 1 is quotiented out when i+ 1 = 2k. Note that the codomain

Z/2[ỹj : j 6= 2k − 1]⊗ Z/2[ξ1, ξ2, . . . ]

is a graded polynomial algebra on the ỹj ⊗ 1 (of degree j) and 1 ⊗ ξi (of degree 2i − 1) since the
tensor product of polynomial algebras is a polynomial algebra.

Proposition 9.2. The map ψ is an isomorphism of graded Z/2-algebras.

Proof. We claim by induction on n that each element of the codomain of degree ≤ n is hit by ψ.
For n = 0, this is trivial since ψ(1) = 1⊗ 1. Now suppose the claim is true for n− 1. If n 6= 2k − 1,
then ỹn ⊗ 1 is of degree n, and

ψ(ỹn) = ỹn ⊗ 1 + . . .

where the . . . include elements ỹj⊗ξ` for deg(ỹj),deg(ξ`) < n. For ỹj⊗ξ` with deg(ỹj),deg(ξ`) < n,
we can use the inductive hypothesis to see that

ỹj = ψ(a), ξ` = ψ(b), ψ(ỹj ⊗ ξ`) = ψ(a)ψ(b) = ψ(ab)

so each decomposable element in the ellipses is in the image of ψ, hence by additivity of ψ,

ỹn ⊗ 1 ∈ im(ψ).

Similarly, if n = 2k − 1, then 1⊗ ξk ∈ im(ψ) by the same argument. Thus all generators of degree
≤ n are in the image, so every element of degree ≤ n is in the image. This proves the inductive
claim, and so ψ is surjective.

Note that ψ is a graded map of graded Z/2-vector spaces, i.e. it takes elements of degree n to
elements of degree n. (This comes from the fact that ψ(ỹi) has degree i.) In order to prove that ψ
is injective, it suffices to show that it is injective on each graded piece. Note that the nth graded
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piece of the domain consists of homogenous degree-n polynomials in the ỹi (along with 0), so the
degree-n monomials, of which there are

N = |{(i1, . . . , ir) : deg(ỹi11 ỹ
i2
2 · · · ỹ

ir
r ) = i1 + 2i2 + · · ·+ rir = n}|,

form a basis. Note that the codomain is isomorphic to the domain as a graded algebra as ỹj
corresponds to itself for j 6= 2k − 1, and ξk corresponds to ỹj for j = 2k − 1. Thus, the nth graded
piece of the codomain has dimension N as well. A surjective map of vector spaces of the same
(finite) dimension is injective, so ψ is injective on each graded piece and is thus injective. This
proves that ψ is injective and surjective, hence is an isomorphism.

This proves Theorem 7.1, and so H∗(MO;Z/2) is free on {wj : j 6= 2i − 1}. As we discussed in
Section 6, this is enough to show that

R∗ ∼= π∗(MO;Z/2) ∼= Z/2[wj : j 6= 2i − 1].

10 Module Structure of H∗(MU ;Z/p) over Ap
Theorem 10.1 (Lemmas 3.1.6, 3.1.7 in [9]). Let P ∗ ⊂ A∗p be defined as either P ∗ = Z/2[ξ2

1 , ξ
2
2 , . . . ]

for p = 2 or as P ∗ = Z/p[ξ1, ξ2, . . . ] for p > 2. Then P ∗ is a subcoalgebra of A∗p, and as a comodule

over A∗p, H∗(MU ;Z/p) = P ∗ ⊗ Z/p[d̃i : i 6= pk − 1].

Proof. We follow the argument in [9]. First, we need to show that P ∗ in fact a coalgebra. In the
p = 2 case, we have P ∗ = Z/2[ξ2

1 , ξ
2
2 , . . . ], and the comultiplication ∆ : A∗2 → A∗2 ⊗A∗2 satisfies

∆(ξ2
i ) = (∆(ξi))

2 =

 i∑
j=0

ξ2j

i−j ⊗ ξj

2

=
i∑

j=0

(ξ2j

i−j ⊗ ξj)2 =
i∑

j=0

ξ2j+1

i−j ⊗ ξ2
j ∈ P ∗ ⊗ P ∗

using the fact that A∗2 has characteristic 2. This implies that ∆ restricts to a comultiplication
∆P ∗ : P ∗ → P ∗ ⊗ P ∗. In the p > 2 case, we have P ∗ = Z/p[ξ1, ξ2, . . . ] and the comultiplication
∆ : A∗p → A∗p ⊗A∗p satisfies

∆(ξi) =

i∑
j=0

ξp
j

i−j ⊗ ξj ∈ P
∗ ⊗ P ∗,

so that ∆ restricts to a comultiplication ∆P ∗ : P ∗ → P ∗ ⊗ P ∗. In either case, we have proven that
P ∗ is a subcoalgebra of A∗p.

Next we claim that H∗(MU ;Z/p) is a comodule over P ∗, i.e. the structure map

φ : H∗(MU ;Z/p)→ A∗p ⊗H∗(MU ;Z/p)

has its image in P ∗ ⊗H∗(MU ;Z/p). Recall, by Equation 2, that

H∗(MU ;Z/p) = Z/p[d̃1, d̃2, d̃3, . . . ]
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where |d̃i| = 2i. In particular, Hi(MU ;Z/p) = 0 for i odd. Let {mi} be an additive basis for
H∗(MU ;Z/p), such as the set of finite products d̃i1 · · · d̃ik . Let

φ(mn) =
∑
i

ai,n ⊗mi

where ai,n ∈ A∗p. Since φ is a graded map and since each mi has even degree, it follows that each
ai,n has even degree. Note that since H∗(MU ;Z/p) is a comodule over A∗p, we have the following
commutative diagram:

A∗p ⊗A∗p ⊗H∗(MU ;Z/p) A∗p ⊗H∗(MU ;Z/p)

A∗p ⊗H∗(MU ;Z/p) H∗(MU ;Z/p)

∆⊗1

1⊗φ

φ

φ

Therefore,

(1⊗ φ)(φ(mn)) =
∑
i

ai,n ⊗ φ(mi)

=
∑
i

ai,n ⊗
∑
j

aj,i ⊗mj

=
∑
j

(∑
i

ai,n ⊗ aj,i

)
⊗mj

= (∆⊗ 1)(φ(mn))

=
∑
j

∆(aj,n)⊗mj .

This tells us that ∆(aj,n) can be written as
∑

i ai,n ⊗ aj,i, which consists of pieces that are purely
even-dimensional.

If p = 2 and i > 0, then ∆(ξi) =
∑i

j=0 ξ
2j
i−j ⊗ ξj has an odd-dimensional piece ξ2

i−1 ⊗ ξ1 (as
|ξ1| = 1 is odd). However,

∆(ξ2
i ) = (∆(ξi))

2 =

 i∑
j=0

ξ2j

i−j ⊗ ξj

2

=
i∑

j=0

ξ2j+1

i−j ⊗ ξ2
j

has purely even-dimensional pieces. If p > 2 and i ≥ 0, then

∆(τi) = τi ⊗ 1 +
i∑

j=0

ξp
j

i−j ⊗ τj

has an odd-dimensional piece τi⊗ 1, since |τi| = 2pi− 1 is odd. In fact, the constraint that ∆(aj,n)
consists of purely even-dimensional pieces tells us that aj,n ∈ P ∗. Therefore, H∗(MU ;Z/p) is a
comodule over P ∗. By an argument similar to the one we gave in calculating the comodule structure
of H∗(MO;Z/2) over A∗2, it turns out that H∗(MU ;Z/p) is cofree as a comodule over P ∗, with
“cobasis” {d̃i : i 6= pk − 1}.
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Note that, unlike in the case of MO, the mod p homology of MU is not cofree as a comodule
over A∗p (i.e., the mod p cohomology is not free as a module over Ap). Thus, we cannot use the same
method as earlier to compute π∗(MU). However, it is possible to do so using a spectral sequence
known as the Adams spectral sequence.

Theorem 10.2 (Theorem 2.2.3 in [9]). Let X be a spectrum. Then there is a spectral sequence with
differentials dr : Es,tr → Es+r,t+r−1

r such that Es,t2 = Exts,tA∗
p
(Z/p,H∗(X;Z/p)), and the E∞ page is

associated to a filtration of π∗(X)⊗ Z/p.

We refer to [9] (Section 3.1) for the remainder of the calculation. In our case, the E2 page
equals the E∞ page, and [9] proves first that π∗(MU) ⊗ Z/p = 0 for all p, and subsequently that
the global structure π∗(MU) is simply Z[x1, x2, . . . ] with |xi| = 2i.

11 Conclusion

We have seen how cobordism rings (in this case, unoriented and complex cobordism rings) can be
computed by reducing to the computation of π∗ of a Thom spectrum, via the Thom-Pontryagin
isomorphism. Many other flavors of cobordism exist, perhaps most notably oriented cobordism,
but also including spin cobordism, symplectic cobordism, etc.; see [14] for a survey. While some
cobordism rings are known, some are not; an important example is the case of framed bordism, as
the framed bordism ring is isomorphic to the stable homotopy groups of spheres.

There are a couple natural questions about cobordism that we have not yet answered, including
the natural question: How can we tell in practice whether two manifolds are cobordant? As it
turns out, this is possible by means of characteristic classes. Given a closed n-manifold M and
nonnegative integers i1, . . . , ik with i1 +2i2 + · · ·+kik = n, we have an associated Stiefel-Whitney
number in Z/2 which we obtain by pairing the mod 2 fundamental class [M ] ∈ Hn(M) with
w1(M)i1 · · ·wk(M)ik ∈ Hn(M). Two manifolds are cobordant (in the unoriented sense) if and only
if they have the same Stiefel-Whitney numbers for all possible tuples (i1, . . . , ik) (see Corollary 4.11
in [7]); in particular, the nonvanishing of any Stiefel-Whitney number of M implies that M is not
null-cobordant, i.e. it is not the boundary of a compact manifold. The real projective plane RP 2

is one such example (corresponding to w2 in R∗ ∼= Z/2[w2, w4, w5, . . . ]).
Another natural question is that of determining reasonable descriptions of generators for cobordism

rings. It turns out that there are reasonably simple representatives of generators for the unoriented
cobordism ring; in 1956, Dold proved that there is a set of generators consisting of RPn for n even,
and for n 6= 2k − 1 odd a Dold manifold of the form P (a, b) = (Sa × CP b)/((x, [y]) ∼ (−x, [y]));
see [1].

Finally, while unoriented cobordism may be more geometrically natural than complex cobordism,
complex cobordism is theoretically significant. As one example, Quillen’s theorem [8] establishes
a surprising connection between the complex cobordism ring and the theory of formal group
laws. Given a ring R, a formal group law on R is an element f(x, y) ∈ R[[x, y]] such that
f(x, y) = x+y+ · · · and f(f(x, y), z) = f(x, f(y, z)); a commutative formal group law also satisfies
f(x, y) = f(y, x). Consider the multiplication map m : CP∞ × CP∞ → CP∞. This map induces
a map on the cohomology theory of cobordism, i.e. MU∗(CP∞) → MU∗(CP∞ × CP∞). By [9],



22

Theorems 1.3.2 and 1.3.3, there is some x ∈MU2(CP∞) such that MU∗(CP∞) = MU∗(∗)[[x]] and
MU∗(CP∞×CP∞) = MU∗(∗)[[x⊗1, 1⊗x]], and m∗(x) ∈MU∗(∗)[[x⊗1, 1⊗x]] is a formal group
law on MU∗(∗). Quillen’s theorem states that the complex cobordism ring MU∗(∗), together with
this formal group law, is isomorphic to the Lazard ring carrying the universal formal group law.
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