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1 Introduction

Geometric invariant theory (GIT) is motivated by the desire to construct a quotient of an algebraic
variety X by the action of a linear algebraic group G. We note that the naive quotient X/G is
almost always non-separated due to the existence of non-closed orbits. GIT gives a way of choos-
ing subsets of X such that the quotients are quasiprojective varieties. The Gelfand-MacPherson
construction is an isomorphism of two GIT quotients: the Grassmannian Gr(2, n) under the ac-
tion of the torus Gn

m and the n-fold product of projective space (P1)n under the action of SL2

[19]. Understanding these quotients is particularly important due to connections to hypergeometric
functions [18], polylogarithms [19], and combinatorial formulas for Chern and Pontryagin classes
[1] (additionally, see the references in [3] for discussion of these connections).

In the first part of this thesis, we introduce the Gelfand-MacPherson isomorphism, motivated
by a concrete invariant theory question. Specifically, our motivating question is to show that the
ring of invariants of the diagonal action of SL2 on (P1)4 of equal degree in each set of variables is
generated as a k-algebra by the polynomials (2.1)-(2.3), which we note determine the cross ratio of
4 points in P1, modulo the relation (2.4). In proving this result, we also present a proof of the first
fundamental theorem of invariant theory for SL2(k), where k is any infinite field, using the theory
of standard monomials. We use the example of the Gelfand-MacPherson construction to introduce
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in an accessible manner some of the central ideas of GIT such as linearization of algebraic group
actions and the notion of stability of points with respect to an action [7],[10],[27]. Additionally,
we compute explicitly what the conditions on the weights (d1, . . . , dn) are for the invariant ring, or
equivalently the quotient under this action, to be non-empty.

It turns out that the invariant theory of subgroups of the general linear group is closely related
to the intersection theory of Grassmannians, which is the main topic in the second part of this
thesis. For example, the multiplicity of each representation in a direct sum decomposition of the
tensor product of irreducible representations of the general linear group is given the Littlewood-
Richardson coefficients [14]. In this section, we introduce Schubert calculus and explain how the
Schubert varieties generate the cohomology ring of the Grassmannian with the cup product given
by intersection. We prove a formula for computing the product of arbitrary Schubert cycles in
Gr(2, n), and additionally introduce Pieri’s formula and the Littlewood-Richardson rule for inter-
sections in an arbitrary Grassmannian. Finally, we consider the right action of the torus Gn

m on
the Grassmannian Gr(k, n) and torus orbit closures for generic subspaces under this action. In
particular, we explore further a formula stated by Klyachko in [23] for the decomposition of the
cohomology class of the torus orbit closure in terms of the Schubert classes.

2 Invariants in (P1)4

Let k be a field. We start by considering the diagonal action of SL2(k) on (P1)4, on which the coordi-
nates are labelled by (z1, w1; z2, w2; z3, w3; z4, w4). We now consider the ring k[z1, w1, z2, w2, z3, w3, z4, w4]
and want to find invariants of equal degree in each set of (zi, wi). We call this an invariant of degree
(d, d, d, d) under this action.

Starting with the d = 1 case, we immediately see that the polynomials

(z1w2 − z2w1)(z3w4 − z4w3), (z1w3 − z3w1)(z2w4 − z4w2), (z1w4 − z4w1)(z2w3 − z3w3)

are invariants satisfying the equal degree condition. We label these polynomials as

x12,34 =(z1w2 − z2w1)(z3w4 − z4w3), (2.1)

x13,24 =(z1w3 − z3w1)(z2w4 − z4w2), (2.2)

x14,23 =(z1w4 − z4w1)(z2w3 − z3w3). (2.3)

One notices that they satisfy the relation

x12,34 − x13,24 + x14,23 = 0. (2.4)

A fundamental question in invariant theory, known as Hilbert’s 14th problem, asks whether the
ring of invariants of any linear algebraic group G acting on a finitely generated k-algebra is finitely
generated. It turns out that more assumptions need to be placed on G for this to be true, which
motivates the following definitions (see [4], [27] for more on algebraic groups).

Definition 1. An algebraic group is a group object in the category of varieties over an algebraically
closed field k. A linear algebraic group is an algebraic group that is an affine variety.
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By this definiton, a morphism of algebraic groups is a group homomorphism that is also a morphism
of varieties. Additionally, a (rational) representation of a linear algebraic group G on a k-vector
space V is a morphism of algebraic groups ρ : G → GL(V ).

Definition 2. Let k be an algebraically closed field. A linear algebraic group G is linearly reductive
if every rational representation of G is completely reducible.

It turns out that the answer to Hilbert’s 14th problem is positive if G is linearly reductive.

Theorem 1. [27, Theorem 4.51] Let G be linearly reductive algebraic group acting on a finitely
generated k-algebra A. Then, the ring of invariants AG is finitely generated.

In our case, we have that SL2(k) is linearly reductive if k is algebraically closed with characteristic
0, so the above theorem gives us that ASL2 is finitely generated in this case. However, it turns out
that ASL2 is finitely generated for any infinite field [26]. Specifically, we claim that if |k| = ∞, then

k[z1, w1, z2, w2, z3, w3, z4, w4]
SL2(k)
(d,d,d,d) =

k[x12,34, x13,24, x14,23]

⟨x12,34 − x13,24 + x14,23⟩
.

2.1 First Fundamental Theorem of Invariant Theory

Theorem 2. The algebra of invariants under the action of SLn(k) defined by left multiplication on
the set of n×m matrices M = {xij} is generated by the determinants of the n× n minors of M .

Following the approach in [26], we now prove this for n = 2 in a characteristic independent manner
by utilizing the theory of standard monomials, which is an analog of Gröbner bases for subalgebras
rather than ideals. Our reference for standard monomial theory is [29]. The general setting is as
follows: Let R be an A-algebra, and let S = {s1, . . . , sn} ⊆ R be a partially ordered set.

Definition 3. An ordered product si1 . . . sik of elements is a standard monomial if the elements
of the product appear in nondecreasing order with respect to the partial ordering on S. We say that
R has a standard monomial theory for S if the standard monomials form a basis for R over A.

We now consider the k-algebra k[x1, y1, . . . , xn, yn] := k[x,y], and define the polynomials

fi,j = xiyj − yixj .

Clearly, fi,i = 0 and fi,j = −fj,i. Additionally, the fi,j satisfy the Plücker type relation:

fi,jfk,l = fi,kfj,l − fi,lfj,k. (2.5)

We now show that k[x,y]SL2 = k[fi,j ], which is the statement of the first fundamental theorem of
invariant theory for SL2(k).

We now consider the algebra k[fi,j ]. Any product fi1,j1fi2,j2 . . . fim,jm can be associated with the
diagram [

i1 i2 . . . im
j1 j2 . . . jm

]
.

3



Since fi,j = −fj,i, we can replace any non-decreasing indices in the fi,j , so we require that ik < jk
for all k in the above diagram. We define the standard monomials in k[fi,j ] as the set of products
fi1,j1fi2,j2 . . . fim,jm such that i1 ⩽ i2 ⩽ · · · ⩽ im and j1 ⩽ i2 ⩽ · · · ⩽ jm, We define a partial
ordering on the standard monomials by denoting[

i1 i2 . . . im
j1 j2 . . . jm

]
⩽

[
u1 u2 . . . un

v1 v2 . . . vn

]
if and only if m ⩽ n, ik ⩾ uk, and jℓ ⩾ vℓ for all 1 ⩽ k ⩽ m and 1 ⩽ ℓ ⩽ n.

Lemma 1. The standard monomials form a k-basis of k[fi,j ].

Proof. The relation (2.5) implies that the standard monomials span k[fi,j ]. Additionally, if we fix
the monomial ordering x1 ≺ y1 ≺ x2 ≺ y2 · · · ≺ xn ≺ yn, all of the fi,j have pairwise distinct
leading terms and are hence linearly independent.

Lemma 2. Let F1, . . . , Fk be any finite collection of standard monomials, and let p =
k∑

j=1

cjFj be

a nonzero k-linear combination. If for some i, p|(xi,yi)=(0,0) = 0, then for each 1 ⩽ j ⩽ k, Fj is
divisible by fi,rj for some rj ∈ {1, . . . , n}.

Proof. We assume for the sake of contradiction that there exist standard monomials F1, . . . , Fk

which are not divisible by any fi,r for r ∈ {1, . . . , n}. It then follows that for each 1 ⩽ j ⩽ k,

Fj = Fj |(xi,yi)=(0,0).

Then, evaluating p at (xi, yi) = (0, 0) gives

0 =

k∑
j=1

cjFj

for cj not all zero, which contradicts the fact that the Fj are linearly independent.

One more lemma will be useful before proving the first fundamental theorem for SL2(k).

Lemma 3. Let q ∈ k[x,y] be a polynomial satisfying f1,2 · q ∈ k[fi,j ]. Then q is also an element of
k[fi,j ].

Proof. We start by writing p = f1,2 · q as a k-linear combination of standard monomials, p =∑
α∈I

cαFα. Our goal is to prove for all α ∈ I, the standard monomial Fα is divisible by f1,2, which

will imply that q ∈ k[fi,j ] if p is. We note that

p|(x1,y1)=(0,0) = 0 and p|(x2,y2)=(0,0) = 0,

since f1,2|p, and f1,2|(xk,yk)=(0,0) = 0 for k = 1, 2. By the previous lemma, we have that for all
α ∈ I, Fα is divisible by f1,r and f2,s for some r, s ∈ {1, . . . , n}. We claim that we can choose r = 2.
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We assume for the sake of contradiction that there exist Fα1 , . . . , Fαk
which are not divisible by

f1,2. Then, we can write

p = f1,2 · P +

k∑
ℓ=1

cαℓ
Fαℓ

,

where P is a sum of standard monomials of degree less than deg(p). We now consider the k-
algebra k[x,y, λ], where λ is an indeterminate. We define the substitution ∗ which maps (x1, y1) 7→
(λx2, λy2) and note that {

f∗
1,k = λf2,k for all k ⩾ 2

f∗
i,j = fi,j if i, j ̸= 1.

It follows that if a polynomial is divisible by f1,2, it is mapped to zero under this substitution.
Additionally, we have that ∗ acts injectively on standard monomials not divisible by f1,2. We now

apply ∗ to p = f1,2P +
k∑

l=1

cαℓ
Fαℓ

. We have that

p∗ = 0 =

k∑
ℓ=1

cαℓ
F ∗
αℓ
.

However, ∗ is injective on the F ∗
αℓ
, and all of the F ∗

αℓ
are non-zero, so we have reached a contradiction.

We are finally ready to prove the first fundamental theorem for SL2(k). By linearity of the SL2

action, it suffices to consider homogeneous polynomials in k[x,y]. We consider the matrix

S =

(
t 0
0 t−1

)
∈ SL2(k) (2.6)

for t ∈ k∗. If p a homogeneous degree d polynomial invariant under the action of SL2, then, using
multi-indices for the xi, yi, we have that

p =
∑
i∈Nn

cix
iyd−i = S · p =

∑
i∈Nn

cit
d(xi)(t−1)d−i(yd−i) =

∑
i∈Nn

cix
iyi−d.

Therefore, d = 2i, and we see that the polynomial has to be homogeneous degree m in both the
{xi} and {yi}. We now consider an arbitrary matrix G ∈ GL2(k). We can write

G = G

(
det(G)

−1
0

0 1

)(
det(G) 0

0 1

)
,

and since G

(
det(G)

−1
0

0 1

)
∈ SL2(k), if p is invariant under the action, the action of G on p

reduces to the action of the matrix

G̃ =

(
det(G) 0

0 1

)
.

We have that

G · p(xi, yi) = G̃ · p(xi, yi) = p(det(G)xi, yi) = (detG)mp(xi, yi) = (ad− bc)mp(xi, yi).
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Because the equality holds on GL2(k), which is a Zariski dense set of Mat2×2(k), it holds on all of
Mat2×2(k) since |k| = ∞. We can therefore consider a, b, c, d as variables, and after substituting
a = −y1, b = x1, c = −y2, d = x2, we have that

G · p(xi, yi) 7→ fm
1,2 · p(xi, yi) = p(f1i, f2i) ∈ k[fi,j ].

It follows by Lemma (3) that p(xi, yi) ∈ k[fi,j ], thereby completing the proof.

2.2 The Gelfand-MacPherson Correspondence

The first fundamental theorem of invariant theory shows that

k[z1, w1, z2, w2, z3, w3, z4, w4]
SL2 =

k[p12, p13, p14, p23, p24, p34]

⟨p12p34 − p13p24 + p14p23⟩
,

where the pij are the minors consisting of the i, j rows of the matrix(
z1 z2 z3 z4
w1 w2 w3 w4

)
.

We note that this invariant ring is the homogeneous coordinate ring for the Grassmannian Gr(2, 4)
under the Plücker embedding into P5, and we denote this ring as k[pij ] from now on.

While we now know what the ring of invariants under the SL2 action is, we are still specifically
interested in the invariants of degree (d, d, d, d). Motivated by this question, we now consider two
actions on the space of 2× n matrices Mat(2, n): the left action by SL2 given by

A ·M 7→ AM

and the right action by the torus Gn
m, where Gm := Spec k[t, s]/(ts− 1) ∼= Spec k[t, t−1]. The torus

action is given by right multiplication:

M · diag(t1, . . . , tn) = M(diag(t1, . . . , tn)).

By the first fundamental theorem of invariant theory, we have that

SL2\Mat(2, n) ∼= Gr(2, n),

where the quotient SL2\Mat(2, n), is interpreted as Proj(Mat(2, n)SL2) = Proj(k[pij ]), the projec-
tive variety associated to the Z⩾0 graded ring of invariants.

We may now consider the quotient with respect to the right action of the torus on the Grass-
mannian,

(SL2\Mat(2, n))/Gn
m

∼= Gr(2, n)/Gn
m.

Conversely, we have that
Mat(2, n)/Gn

m
∼= (P1)n,

and considering the leftover right action by SL2 shows that

SL2\(Mat(2, n)/Gn
m) ∼= SL2\(P1)n.
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We therefore have the isomorphism

SL2\(P1)n ∼= Gr(2, n)/Gn
m. (2.7)

which is known as the Gelfand-MacPherson construction [15], [20].

We note that there is some constructive imprecision surrounding the definition of these quotients
(see [7],[13],[27] for more on the full definition of a GIT quotient). Although the action of Gn

m on
Gr(k, n) is defined unambiguously, the lift to the homogeneous coordinate ring is ambiguous. We
consider the example of Gr(2, n) for simplicity. If we define the action

pij 7→ titjpij ,

we have that k[pij ]
Gn

m = k, so there are no non-trivial invariants. Therefore, we fix the character
χ ∈ Hom(Gn

m,Gm) given by
χ(t1, . . . , tn) = td1

1 . . . tdn
n

and define
k[pij ]χ = {f ∈ k[pij ] : f(titjpij) = χ · f(pij)}.

In other words, we are looking for covariants (also called semiinvariants) with respect to χ. We then
define the graded ring

R =
⊕
n⩾0

k[pij ]χn .

We note that the lift of action to the coordinate ring R depends on the choice of embedding into
projective space, and additionally for choices of χ that do not simply differ by an integer multiple
in the (d1, . . . , dn), taking Proj(R) may lead to different quotients.

Because of this ambiguity, for X ↪→ Pn a projective variety, G a linearly reductive algebraic group,
and χ ∈ Hom(G,Gm) a character, we define, following [27], the Proj quotient in the direction χ as

X//χG := Proj
⊕
n⩾0

RG
χn ,

where R is the homogeneous coordinate ring of X with respect to the chosen embedding into Pn.

Definition 4. A point x ∈ X satisfying f(x) ̸= 0 for some semiinvariant f ∈ R with weight χn,
n > 0 is called semistable with respect to χ. If no such f exists, then x is called unstable. The set
of points semistable with respect to χ is the open set Xss

χ ⊆ X.

We and consider the rational map X 99K X//χG given by

x 7−→ (f0(x) : f1(x) : · · · : fn(x)) ∈ P(a0, . . . , an),

where f0, . . . , fn ∈
⊕
m⩾0

RG
χm are generators for the ring of semiinvariants with weights χa0 , . . . , χan .

This rational map is called the Proj quotient map in the direction χ.

Going back to the case that k = 2, n = 4, the isomorphism (2.7) implies that invariants under
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the SL2 action on k[z1, w1, z2, w2, z3, w3, z4, w4] of degree (d1, d2, d3, d4) correspond to semiinvari-
ants under the G4

m action on k[pij ] with respect to the character χ(t1, t2, t3, t4) = td1
1 td2

2 td3
3 td4

4 .
Because we are interested in invariants of degree (d, d, d, d), we fix χ(t1, t2, t3, t4) = td1t

d
2t

d
3t

d
4. We

note that if f ∈ k[pij ] is a semiinvariant of degree (d, d, d, d), then each monomial of f must be a
semiinvariant of degree (d, d, d, d). If

m =
∏

1⩽i<j⩽4

p
xij

ij

is a semiinvariant monomial of degree (d, d, d, d), then we require

m 7→ td1t
d
2t

d
3t

d
4m (2.8)

under the G4
m action. Now, let Ia be the number of times the index a ∈ [1, 4] appears in the

expansion of m in terms of the pij . For the condition 2.8 to be satisfied, we see that Ia = d for
each a ∈ [1, 4]. It follows that the semiinvariant monomials of degree (d, d, d, d) must be products
of the degree (1, 1, 1, 1) semiinvariants which are p12p34, p13p24 and p14p23. Additionally, if m is a
semiinvariant monomial of degree (d, d, d, d) given by

m = (p12p34)
x1(p13p24)

x2(p14p23)
x3 ,

then x1 + x2 + x3 = d. Because any semiinvariant of degree (d, d, d, d) is a linear combination of
semiinvariant monomials, we have that the ring of semiinvariants of degree (d, d, d, d) is generated
as a k-algebra by p12p34, p13p24, and p14p23. This completes the proof that

k[z1, w1; z2, w2 : z3, w3; z4, w4]
SL2

d,d,d,d =
k[x12x34, x13x24, x14x23]

⟨x12,34 − x13,24 + x14,23⟩
= k[x1423, x24,13].

We note that Proj(k[x14x23, x24x13]) ∼= P1, and consider the rational map

(P1)4 99K P1

[(z1 : w1), (z2 : w2), (z3 : w3), (z4 : w4)] 7→ [(z1w4−z4w1)(z2w3−z3w4) : (z2w4−z4w2)(z1w3−z3w1)].

This map is defined on the locus where no three points coincide, which is exactly the semistable
locus of (P1)4 under the action of SL2 which shows that this is the Proj quotient map.

2.3 Counting Invariants

We are specifically interested in invariants of the graded ring k[z1, w1; z2, w2; z3, w3; z4, w4] of de-
gree (d1, d2, d3, d4), for which the isomorphism tells us that we should consider covariants of
the coordinate ring Gr(2, 4) under the Gn

m action with respect to the character χ(t1, t2, t3, t4) =
td1
1 td2

2 td3
3 td4

4 . We now attempt to answer the question: For what (d1, d2, d3, d4) are the invariant
rings (P1)4d1,d2,d3,d4

non-constant? We start with the case (d1, d2, d3, d4) = (d1, d1, d1, d2). We set

χ(t1, t2, t3, t4) = td1
1 td1

2 td1
3 td2

4 and note that it suffices to consider monomials in the pij of which will
generically be of the form

(p12)
x12(p13)

x13(p14)
x14(p23)

x23(p24)
x24(p34)

x34 .
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Therefore, if the monomial is covariant with respect to td1
1 td1

2 td1
3 td2

4 , we require that the system of
equations

x12 + x13 + x14 = d1,

x12 + x24 + x23 = d1,

x13 + x23 + x34 = d1,

x14 + x24 + x34 = d2 (2.9)

to have a solution in Q4
⩾0. Although the degrees have to be integers, the reason that we only require

solutions to this system of equations in Q4
⩾0 is because the projective variety defined by the graded

ring

k[z1, w1, z2, w2, z3, w3, z4, w4]
SL2(k)
(d1,d2,d3,d4)

is isomorphic to the projective variety defined by

k[z1, w1, z2, w2, z3, w3, z4, w4]
SL2(k)
n(d1,d2,d3,d4)

for any n ∈ N. To see this, suppose that X ↪→ Pr is a projective variety with coordinate ring

R = k[x0,...,xr]
J =

⊕
n⩾0

Rn, and define for a fixed d ∈ N, the ring R(d) as

R(d) =
⊕
n⩾0

Rnd =
⊕
n⩾0

k[t0, . . . , tr]nd
J ∩ k[t0, . . . , tr]nd

.

We consider the degree d Veronese map νd : Pr → Pm, where m =

(
r + d
d

)
− 1, which sends

[x0 : . . . : xr] 7→ [xd
0 : xd−1

0 x1 : · · · : xd
r ].

In other words, [x0 : . . . : xr] is sent to all possible degree d monomials in r + 1 variables. The
Veronese map is an embedding, so it is an isomorphism onto its image, which is exactly the projec-
tive variety defined by the graded ring

⊕
n⩾0

k[t0, . . . , tr]nd. Restricting the Veronese embedding to

the subvariety X shows that R and R(d) define isomorphic projective varieties.

Adding the first three equations of (2.9) and subtracting the last shows that

2x12 + 2x13 + 2x23 = 3d1 − d2.

Because the xij are always positive, we must have that 3d1 − d2 ⩾ 0.

Prop 1. The invariant ring k[z1, w1, z2, w2, z3, w3, z4, w4]
SL2

d1,d1,d1,d2
is non-trivial if and only if

3d1 − d2 ⩾ 0.

Proof. We claim that if 3d1 − d2 ⩾ 0, then the system of equations (2.9) always has a positive
rational solution which defines a non-trivial invariant. This system of equations defines the matrix

1 1 1 0 0 0 d1
1 0 0 1 1 0 d1
0 1 0 1 0 1 d1
0 0 1 0 1 1 d2

 ,
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which is equal to 
1 0 0 0 0 −1 1

2 (d1 − d2)
0 1 0 0 −1 0 1

2 (d1 − d2)
0 0 1 0 1 1 d2
0 0 0 1 1 1 1

2 (d1 + d2)


in reduced row echelon form (RREF). Therefore, the equations

x12 = x34 +
1

2
(d1 − d2),

x13 = x24 +
1

2
(d1 − d2),

x14 = −x24 − x34 + d2,

x23 = −x24 − x34 +
1

2
(d1 + d2)

must have a solution in Q4
⩾0. In the case that d1 − d2 ⩾ 0, then setting x34 = x24 = 0 defines an

invariant. We note that in this case we always have that 3d1−d2 ⩾ 0. In the case that d1−d2 < 0,
setting x12 = x13 = 0 defines an invariant given by

x12 = 0,

x13 = 0,

x34 = −1

2
(d1 − d2),

x24 = −1

2
(d1 − d2),

x14 = (d1 − d2) + d2 = d1,

x23 = (d1 − d2) +
1

2
(d1 + d2) =

1

2
(3d1 − d2).

Indeed, all of these values are positive since 3d1 − d2 ⩾ 0.

We now consider the general case where χ(t1, t2, t3, t4) = td1
1 td2

2 td3
3 td4

4 . For there to be an
invariant in this situation, we require a positive integral solution to the system of equations

x12 + x13 + x14 = d1,

x12 + x24 + x23 = d2,

x13 + x23 + x34 = d3,

x14 + x24 + x34 = d4.

Again, after adding the first three and subtracting the last, we see that

2x12 + 2x13 + 2x23 = d1 + d2 + d3 − d4,

so we require that d1 + d2 + d3 − d4 ⩾ 0. We can clearly add any three equations and subtract the
other to obtain similar constraints, which we claim are the only requirements necessary for there
to be a non-trivial invariant.
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Prop 2. The invariant ring k[z1, w1, z2, w2, z3, w3, z4, w4]
SL2

d1,d2,d3,d4
is non-trivial if and only if

dσ(1) + dσ(2) + dσ(3) − dσ(4) ⩾ 0

for all permutations σ ∈ S4.

Proof. The system of equations defines the following matrix in RREF form:
1 0 0 0 0 −1 1

2 (d1 + d2 − d3 − d4)
0 1 0 0 −1 0 1

2 (d1 − d2 + d3 − d4)
0 0 1 0 1 1 d4
0 0 0 1 1 1 1

2 (−d1 + d2 + d3 + d4)

 .

The invariants are defined by positive rational solutions to the following system of equations

x12 = x34 +
1

2
(d1 + d2 − d3 − d4),

x13 = x24 +
1

2
(d1 − d2 + d3 − d4),

x14 = −x24 − x34 + d4,

x23 = −x24 − x34 +
1

2
(−d1 + d2 + d3 + d4).

Finding a non-trivial invariant breaks down into four cases: In the first case, suppose d1+d2−d3−
d4 ⩾ 0 and d1 − d2 + d3 − d4 ⩾ 0. Then, setting x34 = x24 = 0 defines an invariant given by

x12 =
1

2
(d1 + d2 − d3 − d4),

x13 =
1

2
(d1 − d2 + d3 − d4),

x14 = d4,

x23 =
1

2
(−d1 + d2 + d3 + d4).

In the second case, suppose that d1 + d2 − d3 − d4 ⩾ 0 and d1 − d2 + d3 − d4 < 0. Then, setting
x34 = x13 = 0 defines an invariant given by

x12 =
1

2
(d1 + d2 − d3 − d4),

x24 = −1

2
(d1 − d2 + d3 − d4),

x14 =
1

2
(d1 − d2 + d3 − d4) + d4 =

1

2
(d1 + d3 + d4 − d2),

x23 =
1

2
(d1 − d2 + d3 − d4) +

1

2
(−d1 + d2 + d3 + d4) = d3,
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where we recall that d1 + d3 + d4 − d2 is always greater than zero. In the third case, suppose that
d1+d2−d3−d4 < 0 and d1−d2+d3−d4 ⩾ 0. Setting x24 = x12 = 0 defines an invariant given by

x34 = −1

2
(d1 + d2 − d3 − d4),

x13 = −1

2
(d1 − d2 + d3 − d4),

x14 =
1

2
(d1 + d2 − d3 − d4) + d4 =

1

2
(d1 + d2 + d4 − d3),

x23 =
1

2
(d1 + d2 − d3 − d4) +

1

2
(−d1 + d2 + d3 + d4) = d2,

which is again an invariant as d1 + d2 − d3 − d4 ⩾ 0. In the fourth and final case, suppose that
d1 + d2 − d3 − d4 < 0 and d1 − d2 + d3 − d4 < 0. Then, setting x12 = x13 = 0 defines an invariant
given by

x34 = −1

2
(d1 + d2 − d3 − d4),

x24 = −1

2
(d1 − d2 + d3 − d4),

x14 =
1

2
(d1 + d2 − d3 − d4) +

1

2
(d1 − d2 + d3 − d4) + d4 = d1,

x23 =
1

2
(d1 + d2 − d3 − d4) +

1

2
(d1 − d2 + d3 − d4) =

1

2
(d1 + d2 + d3 − d4),

which is indeed an invariant as d1 + d2 + d3 − d4 ⩾ 0.

In the most general case of invariants on (P1)nd1,...,dn
, one will need to solve a system of n equations

in

(
n
2

)
variables:

x12 + x13 + . . .+ x1n−1 =d1,

...

xn1 + xn2 + . . .+ xnn−1 =dn,

An analogous computation shows that the following:

Prop 3. [16] The invariant ring k[z1, w1, . . . , zn, wn]
SL2

d1,...,dn
is non-empty if and only if 2di ⩽

n∑
j=1

dj

for all 1 ⩽ i ⩽ n. Equivalently, this condition states that dσ(1) + . . . + dσ(n−1) − dσ(n) ⩾ 0 for all
permutations σ ∈ Sn.

3 Cohomology of Grassmannians

3.1 Schubert Cells and Varieties

From this section onwards, we work solely over C, and the variable k no longer represents a field.
Let Gr(k, n) be the Grassmannian of k-dimensional subspaces of an n-dimesnional complex vector
space V . We now consider the collection of subvarieties of Gr(k, n) called Schubert varieties. Our
main reference is [11].
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Definition 5. Schubert varieties are defined in terms of a complete flag V in V , which is a
sequence of subspaces of V

0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V,

with dimVi = i.

The Grassmannian parameterizes the k-dimensional subspaces of an n-dimensional vector space, so
we can write the Grassmannian as the quotient

Gr(k, n) = {full rank k × n matrices} \GLk .

Each GLk orbit has a unique matrix representation in RREF, so a point in Gr(k, n) corresponds to
a full rank k× n matrix in RREF. The Schubert cells index the subset of the Grassmannian whose
points have this particular form. To each matrix representing an element of Gr(k, n), we assign a
partition λ = (λ1, . . . , λk) with n − k ⩾ λ1 ⩾ λ2 · · · ⩾ λk ⩾ 0, where λi is the number of entries
between the n − i + 1 entry to the 1 in the ith row, including the endpoints. For example, if we
consider the RREF matrix

representing an element of Gr(2, 4), the associated partition is λ = (2, 2). We note that the Young
tableaux associated to the partition λ always fits into the k(n− k) ambient rectangle.

A subspace Λ ∈ Gr(k, n) has the partition λ if and only if

Λ ∩ Vn−k+i−λi
= i

for n− k + i = λi ⩽ r ⩽ n− k + i− λi+1 for all 1 ⩽ i ⩽ k. This leads to the following definitions:

Definition 6. The Schubert cell associated to a partition λ is defined as

Σ◦
λ = {Λ ∈ Gr(k, n) : dim(Λ ∩ Vn−k+i−λi⟩ = i for all i}.

and

Definition 7. The Schubert variety (also called a Schubert cycle) associated to the partition λ,
denoted by Σλ is defined as

Σλ(V) = {Λ ∈ Gr(k, n) : dim(Λ ∩ Vn−k+i−λi
) ⩾ i for all i}.

We note that the Schubert variety Σλ is the Zariski closure of Σ◦
λ, which can be seen through

examining the determinants of the minors of the RREF matrices representing the Schubert cells
[25].

We consider two special cases of λ:

1. If λ = (0, . . . , 0), then dim(Λ∩Fn−k+i) ⩾ i is trivially satisfied since dim(Λ) = k and k+(n−
k+i) = n+i, and for any subspace Ψ, we have that dim(Λ∩Ψ) = dimΛ+dimΨ−dim(Λ+Ψ).
We have that dim(Λ+Ψ) ⩽ n since they are subspaces of an n-dimensional vector space, and
hence the dimension of the intersection is at least i. Therefore, Σ0 = Gr(n, k).
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2. Suppose λ = (n− k, . . . , n− k). If dim(Λ ∩ Fi) ⩾ i for all 1 ⩽ i ⩽ k, then we have that

dim(Λ) + i− dim(Λ + Fi) ⩾ i.

Since dim(Λ+Fi) ⩾ dim(Λ), we have that dim(Λ)+ i− dim(Λ+Fi) < i unless Fi ⊆ Λ for all
1 ⩽ i ⩽ k, which occurs if and only if Λ = Fi. Therefore Σ(n−k)r is a single point in Gr(k, n).

3.2 Cell Complex Structure

Definition 8. The size of the partition λ is given by |λ| =
k∑

i=1

λi. We also define a partial ordering

on the set of partitions length k by saying µ ⩽ λ if µi ⩽ λi for 1 ⩽ i ⩽ k.

We can see by the structure of the reduced row echelon form matrices that each Schubert cell Σ◦
λ

is isomorphic to Ak(n−k)−|λ|, and that the closure of a Schubert cell

Σλ = Σ◦
λ =

⋃
µ⊆λ

Σ◦
µ.

This means that if the closure of a cell intersects another cell, it in fact contains that cell. Hence,
the Schubert cells provide an affine stratification

Gr(k, n) =
⊔

Ak(n−k)−|λ|.

Furthermore, the Schubert cells give a cell complex structure on the Grassmannian with only even
dimensional cells. We define the 0-skeleton X0 = Σ◦

B , where B is the k× (n−k) ambient rectangle.
We then define X2 = X0 ∪ Σ◦

λ1
, where λ1 = (n− k, . . . , n− k − 1). In general, the 2m-skeleton is

formed by attaching the cells with |λ| = k(n− k)−m to the previous cell. We see that Gr(k, n) is
a CW complex with even dimensional skeleta

X0 ⊆ X2 ⊆ · · · ⊆ X2k(n−k).

Example 1. We compute the cell decomposition of Gr(2, 4). We have that there are

(
4
2

)
Schubert

cells corresponding to matrices in RREF form:

Σ◦
2,2 =

(
0 0 0 1
0 0 1 0

)
,

Σ◦
1,1 =

(
0 0 1 ∗
1 0 ∗ ∗

)
,

Σ◦
0,0 =

(
0 1 ∗ ∗
1 0 ∗ ∗

)
,

Σ◦
2,1 =

(
0 0 0 1
0 1 ∗ 0

)
,

Σ◦
2,0 =

(
0 0 0 1
1 ∗ ∗ 0

)
,

Σ◦
1,0 =

(
0 0 1 ∗
1 ∗ 0 ∗

)
.
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Then, we have that X0 = Σ◦
2,2, X

2 = Σ◦
2,1 ∪ Σ◦

2,2 (note the boundary of X2 is X0), X4 is formed
by attaching Σ◦

1,1 and Σ◦
2,0, X

6 is formed by attaching Σ◦
1,0, and finally X8 is formed by attaching

Σ◦
0,0.

We now note a few convenient properties of the Schubert variety indexing convention used:

1. It follows from the definition that Σµ ⊆ Σλ if and only if µ ⩽ λ.

2. The codimension of a Schubert cycle Σλ ⊆ Gr(k, n) is given by |λ|.

Because the Schubert cells give a cell decomposition of Gr(k, n) with only even dimensional cells, it
follows that they generate the homology of Gr(k, n) [12]. Therefore, the Schubert varieties define a
class [σλ] in homology, and Poincare duality gives a correspondence to classes in cohomology. We
define

σλ := [Σλ] ∈ H2|λ|(Gr(k, n)).

Theorem 3. The classes σλ form a Z-basis for the cohomology ring H∗(Gr(k, n),Z), and under
sufficient conditions, such as Schubert varieties for generic flags (see definition 10), the cup product
of two cohomology classes is equivalent to the intersection of the Schubert varieties defining these
classes:

σλσµ = [Σλ ∩ Σµ] ∈ H2(|λ|+|µ|)Gr(k, n).

We note that GLn acts transitively on the set of complete flags, so the cohomology class determined
by Σλ is independent of the choice of flag.

Example 2. With respect to the flag p ∈ L ⊆ H ⊆ P3, the Schubert cycles of Gr(2, 4) = G(1, 3)
are given by

σ0,0 = {all of Gr(2, 4)},
σ1,0 = {lines intersecting L},
σ1,1 = {lines contained in H},
σ2,0 = {lines containing p},
σ2,1 = {lines lying in H that contain p},
σ2,2 = {L}.

3.3 Transverse Intersections

Definition 9. The vector spaces L,M ⊆ Cn are called transverse if

dim(L ∩M) = max(0,dim(L) + dim(M)− n).

We can extend the notion of transversality to flags F and G of an n-dimensional vector space V .

Theorem 4. Two flags F and G on V are transverse if Fi ∩Gn−i = {0} for all i.

We now state some equivalent conditions for two flags to intersect transversely.

Theorem 5. Let F and G be flags on V . The following conditions are equivalent:

1. Fi ∩Gn−i = {0} for all i.
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2. dim(Fi ∩Gj) = max(0, i+ j − n) for all i, j.

3. There exists a basis e1, . . . , en for V such that

Fi = ⟨e1, . . . , ei⟩ and Gj = ⟨en+1−j , . . . , en⟩.

Because transverse flags form a dense open subset in the space of all pairs of flags, any statement
proved for a transverse pair of flags holds for a generic pair of flags. We now make precise the notion
of a “generic” flag. The complete flag variety Fl(Cn) is the collection of all complete flags in Cn.
We can represent a flag via a matrix by defining the span of the first i columns to be the ith flag.
Additionally, suppose we fix an ordered basis for Cn and consider the standard flag associated to
this basis (meaning that the ith subspace is spanned by the first i basis vectors). Then, the matrix
representing this flag is equivalent up to the action of Bn the subgroup of upper triangular matrices
in GLn. Therefore, the complete flag variety Fl(Cn) has the structure of the homogeneous space
GLn /Bn.

Definition 10. We say that property holds for a “generic” collection of flags if it holds for all
tuples of flags in some Zariski open subset of the product variety Fl(Cn)× · · · × Fl(Cn).

We also define the notion of a generically transverse intersection, which will be used in the next
section.

Definition 11. Let A, B be two subvarieties of a variety X. We say that A and B intersect
trasversally at a point p ∈ A ∩ B if X,A, and B are smooth at p and TpA+ TpB = TpX. We say
that A and B are generically transverse if they intersect transversally at a generic point of each
component of their intersection.

3.4 Intersection Formulas

The product of Schubert classes has a simple formula when one of the classes has the form
σb = σb,0,...,0. Such classes are called special Schubert classes. Before proving a formula for such
intersections, we introduce the concept of specialization which will be used in the proof.

Example 3. Suppose we want to compute σ2
1 in Gr(2, 4). Recall that σ1 is the set of lines in P3

passing through a point. Instead of intersecting two general lines L and L′, the idea of specialization
is to choose L and L′ special enough such that the intersection Σ1(L)∩Σ1(L

′) is easily identifiable
but the intersection is still generically transverse. This is accomplished by choosing L and L′ to be
distinct lines that intersect. Then the intersection consists of lines passing through p = L ∩ L′ or
lines lying on the plane spanned by L and L′. The first class of lines corresponds to σ2 and the
second class of lines corresponds to σ1,1. We can then conclude that

σ2
1 = σ2 + σ1,1.

We now prove a formula for computing products of Schubert cycles in Gr(2, n).

Lemma 4. For any special Schubert class σa and σb

σa · σb =

a+b∑
c⩾a,b

σc,a+b−c. (3.1)
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Proof. We give a proof by induction on n, following [30]. For the n = 2 case, the only choices for a
and b are 0, and

σ0 · σ0 = σ0,

so (3.1) is trivially satisfied. Now, suppose n ⩾ 3 and the formula (3.1) holds for all Gr(2,m) with
m < n. Because the Schubert classes are independent of the flag chosen, we let W be the standard
flag, meaning Wj = Cj , and V be any other transverse flag with respect to W. We now need to
determine the intersection of

Σa(W) = {Λ ∈ Gr(2, n) : Λ ∩ Cn−1−a ̸= {0}}

and
Σb(V) = {Λ ∈ Gr(2, n) : Λ ∩ Vn−1−b ̸= {0}}.

We split the argument into two cases.

Case 1: Suppose that a+ b > n− 2. Then,

dim(Cn−1−a+Vn−1−b) ⩽ dimCn−1−a+dimVn−1−b = (n−1−a)+(n−1−b) = n+(n−2)−(a+b) < n.

Also,
dim(Cn−1−a ∩ Vn−1−b) = max{0, n− 2− a− b} = {0},

since V and W are transverse flags. Additionally, we can assume without loss of generality that
Cn−1−a + Vn−1−b ⊆ Cn−1. Thus,

σa · σb =Σa(W) ∩ Σb(V) = {Λ ∈ Gr(2, n) : Λ ∩ Cn−1−a ̸= {0},Λ ∩ Vn−1−b ̸= {0}} =

{Λ ∈ Gr(2, n− 1) : Λ ∩ C(n−1)−1−(a−1) ̸= {0},Λ ∩ V(n−1)−1−(b−1) ̸= {0}},

which is the product of σa−1σb−1 in Gr(2, n− 1). By the inductive hypothesis, we have that

σa−1 · σb−1 =

a+b−1∑
c⩾(a−1,b−1)

σc−1,a+b−c−1 =

min(n−2,a+b−1)∑
c=max(a,b)

σc−1,a+b−c−1

in Gr(2, n− 1). As a cycles in Gr(2, n− 1) ⊆ Gr(2, n),

min(n−2,a+b−1)∑
c=max(a,b)

σc−1,a+b−c−1 =

min(n−2,a+b−1)∑
c=max(a,b)

{Λ ∈ Gr(2, n− 1) : Λ ⊆ Cn−1−(a+b−c−1),Λ ∩ C(n−1)−1−(c−1) ̸= {0}}

=

min(n−2,a+b−1)∑
c=max(a,b)

{Λ ∈ Gr(2, n) : Λ ⊆ Cn−(a+b−c),Λ ∩ Cn−1−c ̸= {0}} =
∑
c⩾a,b

σc,a+b−c, (3.2)

where the bounds on the last sum come from the fact that in this case min(n− 2, a+ b− 1) = n− 2
which is the maximum allowed value of c.

Case 2: Suppose a + b ⩽ n − 2. If V is transverse with respect to the standard flag, we have
that

dim(Cn−1−a ∩ Vn−1−b) = max{0, (n− 1− a) + (n− 1− b)− n} = n− 2− (a+ b).
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Without loss of generality, we can specialize V such that Cn−1−a ∩ Vn−1−b = Cn−1−(a+b) and the
intersection is still generically transverse. Then, we have that

dim(Cn−1−a + Vn−1−b) = dimCn−1−a + dimVn−1−b − dim(Cn−1−a ∩ Vn−1−b) =

(n− 1− a) + (n− 1− b)− (n− 1− (a+ b)) = n− 1.

Therefore, we can assume that Cn−1−a + Vn−1−b = Cn−1. Then,

Σa ∩ Σb = {Λ ∈ Gr(2, n) : Λ ∩ Cn−1−a ̸= {0},Λ ∩ Vn−1−b ̸= {0}},

so it consists of elements Λ ∈ Gr(2, n) such that either

1. Λ has a 1-dimensional subspace in common with Cn−1−a ∩ Vn−1−b = Cn−1−(a+b),

2. Λ intersects Cn−1−a and Vn−1−b along some one dimensional subspaces L1 ⊆ Cn−1−a and
L2 ⊆ Vn−1−b. In this case, Λ must lie in the sum Cn−1−a + Vn−1−b = Cn−1 since it is a two
dimensional subspace.

We can now characterize the intersection Σa ∩ Σb as

Σa ∩ Σb ={Λ ∈ Gr(2, n) : Λ ∈ Cn−1−(a+b) ̸= {0}}∪
{Λ ∈ Gr(2, n) : Λ ⊆ Cn−1,Λ ∩ Cn−1−a ̸= {0},Λ ∩ Vn−1−b ̸= {0}}.

The first type of subspaces are exactly the elements of Σa+b with respect to the standard flag in
Gr(2, n). The second case is the intersection of Σa−1(V) and Σb−1(W), and the inductive hypothesis
implies

σa−1 · σb−1 =

min(n−2,a+b−1)∑
c=max(a,b)

σc−1,a+b−c−1

in Gr(2, n− 1). Then, by the same argument as in the first case, we have that in Gr(2, n),

σa−1 · σb−1 =

min(n−2,a+b−1)∑
c=max(a,b)

σc,a+b−c =

a+b−1∑
c=max(a,b)

σc,a+b−c. (3.3)

Combining both cases, we see that

σa · σb =
∑
c⩾a,b

σc,a+b−c,

which completes the proof of the lemma.

We need to compute one more type of intersection before being able to compute arbitrary products
of Schubert cycles in Gr(2, n).

Lemma 5. In Gr(2, n), the following formula holds:

σa1,a2 · σb,b = σa1+b,a2+b.
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Proof. With respect to the flags V and W the Schubert cycles are of the form

Σa1,a2
= {Λ ∈ Gr(2, n) : Λ ∩ Vn−1−a1

̸= {0},Λ ⊆ Vn−a2
},

Σb,b = {Λ ∈ Gr(2, n) : Λ ⊆ Wn−b}

Therefore,

Σa1,a2 ∩ Σb,b = {Λ ∈ Gr(2, n) : Λ ⊆ Wn−b ∩ Vn−a2 ,Λ ∩ (Vn−1−a1 ∩Wn−b) ̸= {0}}.

We note that
codim (Wn−b ∩ Vn−a2) = b+ a2

and
codim (Vn−1−a1 ∩Wn−b) = a1 + b+ 1.

Therefore, letting U be a new flag containing Vn−1−a1
∩Wn−b and Wn−b ∩ Vn−a2

, we have that

Σa1,a2
∩ Σb,b = {Λ : Λ ⊆ Un−(a2+b),Λ ∩ Un−1−(a1+b)} = σa1+b,a2+b,

thereby completing the proof.

Indeed, Lemmas (4) and (5) are sufficient to compute the intersection of arbitrary Schubert cycles
in Gr(2, n), which are given by the following formula.

Theorem 6. Assuming that a1 − a2 ⩾ b1 − b2, then

σa1,a2σb1,b2 = σa1+b1,a2+b2 + σa1+b1−1,a2+b2+1 + . . .+ σa1+b2,b1+a2 =
∑

|c|=|a|+|b|
a1+b2⩾c1⩾a1+b2

σc1,c2 .

Proof. We first consider the case where b1 = b2 = b. Then,

Σb,b(W) = {Λ ∈ Gr(2, n) : Λ ⊆ Wn−b},

so for any a1, a2 we have that

Σa1,a2
(V) ∩ Σb,b(W) = {Λ ∈ Gr(2, n) : Λ ∩ Vn−1−a1

̸= {0},Λ ⊆ Vn−a2
,Λ ⊆ Wn−b} =

{Λ ∈ Gr(2, n) : Λ ∩ (Vn−1−a1
∩Wn−b) ̸= {0},Λ ⊆ (Vn−a2

∩Wn−b} =

Σa1+b,a2+b(Vn−1−a1
∩Wn−b, Vn−a2

∩Wn−b).

By Lemma 5, we have that σa1,a2
σb,b = σa1+b,a2+b.

Now we consider the general case. Using Lemma (5), we can write

σa1,a2
σb1,b2 = (σa1−a2,0σa2,a2

)(σb1−b2,0σb2,b2) = σa1−a2,0σb1−b2,0σa2+b2,a2+b2 .

From Lemma (4), we know that

σa1−a2,0σb1−b2,0 = σ(a1−a2)+(b1−b2),0 + σ(a1−a2)+(b1−b2)−1,1 + . . .+ σa1−a2,b1−b2 ,
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so

σa1,a2
σb1,b2 =(σ(a1−a2)+(b1−b2),0 + σ(a1−a2)+(b1−b2)−1,1 + . . .+ σa1−a2,b1−b2)σa2+b2,a2+b2 =

σ(a1−a2)+(b1−b2),0σa2+b2,a2+b2 + . . .+ σa1−a2,b1−b2σa2+b2,a2+b2 .

Then, using the first case, we can expand

σa1,a2
σb1,b2 =σ(a1−a2)+(b1−b2),0σa2+b2,a2+b2 + . . .+ σa1−a2,b1−b2σa2+b2,a2+b2 =

σa1+b1,a2+b2 + . . .+ σa1+b2,b1+a2
, (3.4)

which completes the proof.

In general, there exist combinatorial formulas for the intersection of Schubert varieties Grassman-
nians Gr(k, n) where k is not necessarily 2 (see, for example, [11]).

Theorem 7. (Pieri’s Formula) Let σλ be a special Schubert cycle in Gr(k, n), meaning that λ =
(λ1, 0, . . . , 0), suppose that σµ is any Schubert cycle. Then

σλ · σµ =
∑

µi⩽νi⩽µi−1

|ν|=|λ|+|µ|

σν .

Proof. We can prove Pieri’s formula in Gr(2, n) as a corollary of (6). Assuming without loss of
generality that λ ⩾ µ1 − µ2, Theorem (6) implies that

σλ,0 · σµ1,µ2
= σλ+µ1,µ2

+ σλ+µ1−1,µ2+1 + . . .+ σλ+µ2,µ1
=

∑
µ1⩽ν1

µ1⩽ν2⩽µ2

|ν|=|λ|+|µ|

σν ,

which exactly matches Pieri’s formula. For a general proof see [11, Theorem 4.9].

In order to describe the formula for the intersection of arbitrary Schubert cycles, it is necessary to
introduce some more combinatorial machinery on which more details can be found in [12], [28].

Definition 12. A Semi-Standard Young Tableaux (SSYT) is a filling of boxes of the Young diagram
of shape ν/λ with positive integers such that within each row, the integers weakly increase from left
to right and within each column they strictly increase from top to bottom. The content of a SSYT is
µ = (µ1, . . . , µn) if there are µi boxes labeled i. The reading word is the word formed by concatenating
rows from bottom to top. A reading word is called a lattice if when read backwards from the nth to
(n−m)th term, the sequence contains at least as many i as i+ 1.

Theorem 8. (Littlewood-Richardson Rule) If σλ and σµ are arbitrary Schubert cycles, then

σλ · σµ =
∑

cνλµσν ,

where the sum ranges over all ν in the (n − k) · k ambient rectangle, and cνλµ is the number if
semi-standard Young tableaux having content µ whose reading word is a lattice.
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[28, Theorem 5.1] It is important to note that there is an isomorphism

H∗(Gr(k, n)) ∼=
Λ

⟨sλ|λ /∈ B⟩
,

where Λ is the ring of symmetric functions, and the ideal ⟨sλ|λ /∈ B⟩ is the ideal generated by Schur
polynomials corresponding to partitions which do not fit in the ambient (n − k) × k rectangle B.
Because the Schur polynomials form a basis for the ring of symmetric functions, it follows that
the Schur polynomials corresponding to partitions fitting inside the ambient rectangle form a basis
for Λ

⟨sλ|λ/∈B⟩ . Due to this isomorphism, computations with Schubert classes can be turned into

computations with Schur functions.

3.5 Torus Orbit Formula

We have seen that the n-dimensional torus acts on Gr(k, n) from the right. For L ∈ Gr(k, n) we now
consider the orbit closure T · L and want to decompose the cohomology class [T · L] with respect to
the Schubert cycles. For an arbitrary subspace L ∈ Gr(k, n), the torus orbit closures can be quite
unwieldy, so we restrict ourselves to “generic L”, which we now define. Our main reference is [20].

Definition 13. Let I ⊆ {1, . . . , n}, |I| = k and let LI be the subspace in Cn defined by the equations
{xi = 0 for i ∈ I}. Additionally, we define CI as SpanC{ei} for i ∈ I. A subspace L ∈ Gr(k, n) is
generic if for any I ∈ {1, . . . , n}, L ∩ LI = 0.

The space of all generic subspaces, denoted Gr0(k, n) is a T -invariant subset in Gr(k, n) called the
generic stratum.

Prop 4. A subspace L ∈ Gr(k, n) is generic if and only if none of its k × k minors in the matrix
representing L vanish.

Proof. Suppose that LI = span(ei1 , . . . , ein−k
) and that L is represented by the k × n matrix by

taking the row span of the matrix

M(L) =

a11 . . . a1n
...

. . .
...

ak1 . . . akn

 .

If L∩LI ̸= 0, L ⊆ LI , so then there exist c1, . . . , ck and d1, . . . , dn−k such that if ri = ai1+ . . .+ain
are the rows of the matrix of L, then

c1r1 + . . .+ ckrk = d1ei1 + . . .+ dn−ken−k (3.5)

We now form a new matrix M̃ by attaching the matrix of LI below M(L). For example, in Gr(2, 4)
if LI = span(e1, e2), then

M̃ =


a11 a12 a13 a14
a21 a22 a23 a24
1 0 0 0
0 1 0 0

 .

If equation (3.5) holds, we see that the rows of M̃ are not linearly independent, so det M̃ = 0.
However, this also means that no two columns of M are linearly independent, so the k × k minor
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spanned by the orthogonal complement of LI must vanish. Hence, we have shown that if L is
generic, then none of its k × k minors vanish.

Conversely, if none of the k × k minors of M(L) vanish, then none of the k × k minors of M̃
vanish so equation (3.5) is satisfied if and only if ci = di = 0 for all i, showing that L∩LI = 0.

Definition 14. A Lie complex is the torus orbit closure T · L for a generic L ∈ Gr0(k, n).

Theorem 9. [20, Proposition 1.1.5] Each Lie complex is an n − 1 dimensional variety with fixed

points under the T -action given by CI . In fact, these

(
n
k

)
points are the only singular points of a

Lie complex.

Example 4. We compute the torus orbit closure in Gr(2, 4). If L is generic, L is represented by a
matrix

M(L)

(
a11 a12 a13 a14
a21 a22 a23 a24

)
such that none of the two by two minors vanish. Then, under the torus action, L is mapped to a
matrix

T · L =

(
t1a11 t2a12 t3a13 t4a14
t1a21 t2a22 t3a23 t4a24

)
for ti ̸= 0. We note that none of the minors of T · L vanish as the minor consisting of the i, j
columns is simply scaled by a factor of titj ̸= 0. However, if we let up to two of the ti in T · L we

see that there is still one non-vanishing minor, so the resulting matrix which we denote T̃ · L still
represents an element of Gr(2, 4) and is therefore contained in the orbit closure T · L.

Example 5. The torus orbit orbit closure in Gr(2, 4) has a nice geometric interpretation. We view
Gr(2, 4) as the set of lines in P3. Letting x1, x2, x3, x4 be homogeneous coordinates in P3, we define
Li to be the plane defined by xi = 0. The configuration of the planes Li form a tetrahedron, and
l is general if and only l doesn’t intersect any of the 6 edges of the tetrahedron. Then, l intersects
each Li at pairwise distinct points, and we can define the cross ratio

r(l ∩ L1, . . . , l ∩ L4) = λ.

The tetrahedral complex Kλ is then defined to be the closure of the set of lines l ∈ Gr0(2, 4) with
cross ratio λ. In terms of the Plücker coordinates, this is the zero locus of

p12p34 + λp13p24 = 0.

This argument shows that the Lie complexes of Gr(2, 4) are exactly the tetrahedral complexes Kλ.

Because Kλ is cut out by a quadratic irreducible polynomial, we see that it has codimension 1
in Gr(2, 4). It follows that [Kλ] is a Z-linear combination of codimension 1 Schubert cycles, so
[Kλ] = 2σ1,0, where the coefficient comes from the fact that σ4

1,0 = 2σ2,2. In general, we know that
all Lie complexes represent the same class in H∗Gr(k, n). In [23, Theorem 5], Kylachko gives a
formula for the class of a Lie complex in terms of the Schubert cycle basis for H∗Gr(k, n). which
we now explain.
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Theorem 10. Let λ = (λ1, . . . , λk) with λ1 ⩾ λ2 · · · ⩾ λk be a Young tableaux with no more than
k-rows and (n−k) columns consisting of (n−1) squares. The coefficient at σλ in the decomposition
of a Lie complex [T · L] for with respect to Schubert cycles is

k∑
i=0

(−1)i
(
n
i

)
dimΣλ(Ck−i) (3.6)

where Σλ(Ck−i) is the irreducible representation of GL(k − i) with highest weight λ.

We note that the dimension of the irreducible representation of GL(k − i) with highest weight λ
is combinatorially determined by the number N of semi-standard Young tableaux of shape λ. The
number N is given by the hook-length formula,

N =
|λ|!∏

s∈λ

hook(s)
,

where hook(s) for s a square in a Young diagram is the

{number of squares strictly below s}+ {number of squares strictly to the right of s}+ 1.

We note that this formula obscures the fact that the coefficients of the Schubert classes in this
decomposition are always positive. In fact, in [6, Theorem 5.1], Berget and Fink give an equivalent
formula

[T · L] =
∑
λ

σλσλ̃,

where the sum is over the partitions λ that fit inside the (k − 1)× (n− k − 1) rectangle, and λ̃ is
the complementary partition to λ with respect to this rectangle. Explicitly, if λ = (λ1, . . . , λk−1),
then λ̃ = (n − k − 1 − λ1, . . . , n − k − 1 − λk−1). A comparison of the formulas in ([6]) and ([23])
for the class of the torus orbit closure is given in [24].

In Gr(2, n), Klyachko’s formula (3.6) reduces to

[T · L] = (n− 2)σn−3,0 + (n− 4)σn−4,1 + (n− 6)σn−5,2 + . . .

We see that [T · L] = 2σ1,0 which aligns with the fact that Lie complexes in Gr(2, 4) have codimen-
sion 1, and σ1,0 spans H2(Gr(2, 4)). In Gr(2, 5) for example, a Lie complex has codimension 2, and
the formula tells us that

[T · L] = 3σ2,0 + σ1,1.

In general, a Lie complex has codimension k(n − k) − (n − 1), and must therefore be a Z-linear
combination of Schubert classes with this codimension.

It seems that a full proof of the torus orbit formula (3.6) has not been published, and is a fruitful
avenue for future work. There are multiple properties of the torus orbit closures that may be useful
in the proof of this formula which we now state.

Let e1, . . . , en be the standard basis vectors in Rn. We define the convex polytope ∆(k, n) as
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the convex hull of

(
n
k

)
points of the form eI := ei1 + . . . + eik for 1 ⩽ i1 ⩽ · · · ⩽ in ⩽ n. These

points are the vertices of ∆(k, n). For any subspace L ∈ Gr(k, n) we define its matroid polytope
M(L) as the convex hull of eI where I runs over all bases for L. For a generic L, we we see that
M(L) = ∆(k, n). There is a very concrete description of ∆(k, n) given in [1],[20].

1. Each face of ∆(k, n) is a hypersimplex.

2. Edges of ∆(k, n) are segments [eI , eJ ] where J differs by I by swapping one element i ∈ I
with an element j /∈ I.

Theorem 11. [20, Proposition 1.2.4], [3] Let L ∈ Gr(k, n) be a generic subspace. Then, the torus
orbit closure T · L is a projective normal toric variety corresponding to the matroid polytope ∆(k, n),
meaning the fan associated to T · L is the normal fan of ∆(k, n), which means that the cones are
the cones over the proper faces of ∆(k, n).

We now consider the example of Gr(2, 4).

Example 6. Let L be a generic subspace in Gr(2, 4). The matroid polytope M(L) = ∆(2, 4) is the
convex hull

∆(2, 4) = Conv{e1 + e2, e1 + e3, e1 + e4, e2 + e3, e2 + e4, e3 + e4},

which is an octahedron.

To decompose the cohomology class of a generic torus orbit closure X = T · L into the Schubert
classes, one wants to consider the pullback of the inclusion map ι : X → Gr(k, n). Specifically, the
coefficient of each Schubert class in the decomposition will be given by the image of the Schubert
cycles under this pullback map. It is important to note that for n = k − 1, the fan associated to
T · L is complete, simplicial, and rational, which means that the cohomology ring of X has a simple
combinatorial structure as described in [5], which may be of use in carrying out this computation.
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