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1 Introduction

In the hyperbolic plane, fix a triangle with angles π/α, π/β, π/γ (so, 1
α

+ 1
β

+ 1
γ
< 1).

The set of reflections over the edges of this triangle generate a triangle group with
relations

a2 = b2 = c2 = 1, (ab)γ = (bc)α = (ac)β = 1

If we consider the Klein model of the hyperbolic plane in RP2, the reflection over edge e
can be represented by a projective transformation, or a 3×3 matrix. The group applied
to a triangle will tile the hyperbolic plane, which in the Klein model is the unit circle in
RP2. So, the group fixes the unit circle (and so, under any projective transformation,
fixes some conic section). Now, we can perturb each matrix in such a way that the same
relations continue to hold and the group remains discrete. However, now, there is no
fixed conic section. We call these new groups convex projective groups. These groups
are studied extensively in greater generality in [Gol90]. They fix some non-conic convex
surface in RP2. In the first part of this paper, we will develop a parameterization of
these modified groups in terms of one parameter. This parameterization limits to the
case of the standard reflection transformations. In the second part of the paper, we
will examine these convex shapes and make a conjecture about their geometry as well
as provide some computational evidence.

2 Background

2.1 Projective Geometry

RP2, the real projective plane, is the set of all lines through the origin in R3. We can
view the RP2 as the set of vectors in R3 \ {0} up to scalar multiplication, i.e. v1 and v2

are equivalent if and only if v1 = cv2 for some c ∈ R. Now, we can represent this plane
as the set of vectors (a, b, 1) ∈ R3 (which is just R2) together with the set of vectors
(x, 1, 0) and (1, 0, 0), the set of slopes. These are known as points at infinity and the
set of all such points is the line at infinity.
Defined in this way, any linear transformation A ∈ GL3 induces a transformation on
RP2 because linear transformations preserve lines through the origin. These transfor-
mations are also equivalent under scaling, so we can assume they have determinant
1 by using the proper scaling factor. A general matrix in GL3 can bring any three
points to any three points. For projective transformations, we are able to take any four
non-collinear chosen points to any four non-collinear points because we have an added
degree of freedom.

2.2 Traces

Later in the paper, we will want to check if the product of two reflections AB = C is
of a certain order n. Because raising C to the nth power and checking if we get the
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identity quickly becomes infeasible, we will instead consider the trace of the matrix.
We will need the following lemma:

Lemma 2.1. Let A and B be projective reflections over non-parallel lines. Then, for
n > 1, C = AB is of order n if and only if it has trace 2 cos(2π/n) + 1.

Proof. Let C be any projective transformation of order n. Then, C is a rotation by
2π/n degrees around some line with some scaling factor. However, it is equivalent to the
rotation without the scaling factor, so we can assume there is no scaling factor without
loss of generality. Now, there is a change of basis matrix Q which will transform it to
a rotation around the origin. So, we can write C = Q−1NQ where N is the standard
rotation around the z-axis:

N =

 cos 2π/n sin 2π/n 0
− sin 2π/n cos 2π/n 0

0 0 1


which has trace 2 cos(2π/n) + 1. Now, the trace is preserved by conjugation so C has
the same trace up to scaling.
Now, suppose that C = AB is the product of two reflections and has trace 2 cos 2π/n+1.
Let (λ0, λ1, λ2) be the eigenvalues of C. Now, we claim that one eigenvalue is 1. A and
B are both reflections in RP2 so they each fix a line. These lines in RP2 can be
described by planes through the origin in R3. Because the lines are not parallel, the
planes intersect at a line through the origin. Each transformation A and B will fix this
line, so AB = C also fixes this line. So, one of the eigenvalues of C is 1. Without loss
of generality, let λ0 = 1. Now, we want to show that Cn = I. But Cn has eigenvalues
(λn0 , λ

n
1 , λ

n
2 ) so Cn = I if and only if each λi is an nth root of unity. We have already

shown that λ0 = 1 so it remains to be shown that each other eigenvalue is an nth root
of unity.
Now, we know that the sum of the eigenvalues is the trace, so λ1 + λ2 = 2 cos 2π/n.
Also, the product of the eigenvalues is the determinant (which is 1 for a projective
transformation), so λ1λ2 = 1. Suppose first that each is real. We know that λ2 = 1

λ1
.

So, we have that

λ1 +
1

λ1

= 2 cos 2π/n =⇒
∣∣∣∣λ1 +

1

λ1

∣∣∣∣ ≤ 2

However, λ1 + 1
λ1

has a local min (max) of 2 (−2) at λ1 = 1 (λ1 = −1). So, the only
possibilities are that λ1 = λ2 = ±1. Now, if λ1 = 1, we need the cosine term to be 1,
which only happens if n = 1 which we have discounted. Now, if λ = −1, the cosine
term is −1 meaning n = 2. But −1 is a 2nd root of unity so C2 = I in this case.
Now, suppose that one of the eigenvalues is non-real. Then, because C is real, the other
must be its conjugate. So, λ2 = λ1. Now, we have that

λ1 + λ2 = λ1 + λ1 = 2 Reλ1 = 2 cos 2π/n

So, the real part of each eigenvalue is cos 2π/n. Now, we also have that

λ1λ2 = λ1λ1 = |λ1| = 1
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So, the imaginary part of λ1 must be ± sin 2π/n to have a norm of 1. So, our two
eigenvalues are

λ1 = cos 2π/n+ i sin 2π/n = e2πi/n, λ2 = cos 2π/n− i sin 2π/n = e−2πi/n

each of which is an nth root of unity as desired.

So, when we have a group of reflection matrices M0,M1,M2 and want to check if MiMj

has order n, we can just consider the trace.

2.3 Hyperbolic Geometry

In Euclidean geometry, the Parallel Postulate states that given any line and any point
not on that line, there is exactly one line parallel to the given line through the given
point. In elliptical geometry, this is modified to read that there is no such parallel line,
and in hyperbolic geometry, it is modified to read that there are infinitely many such
lines. Another characterization important to this paper is that the angles of triangles
in the hyperbolic plane always add to less than π instead of exactly π in Euclidean
geometry (and > π in elliptical geometry). See Chapter IV, §35 in [HC90] for further
discussion of this characterization.
In this paper, I will make use of the Klein disk model of the hyperbolic plane which
is best described as a projection of the hyperboloid model. In R3, we define a Lorentz
form L as

L(x, y) = x0y0 + x1y2 − x2y2

which gives rise to the quadratic form Q(a, b, c) = a2 + b2− c2. Now, we can define the
hyperbolic plane to be

H2 = {v = (a, b, c) | L(v, v) = −1, c > 0}

In this model, geodesics are simply the intersection of the surface with planes through
the origin. Because of this, we can describe lines by the vector orthogonal to the
intersecting plane. We will use the notation l⊥ as the orthogonal vector describing line
l. We can normalize these vectors l⊥ such that L(l⊥, l⊥) = 1. This also allows us to
measure angles in the hyperbolic plane. Suppose lines v and w meet at angle θ; then,
we have that

cos θ = L(v⊥, w⊥)

See [Rey93], especially section 7, for justification for this formula.
Note that v⊥ and w⊥ are only determined up to sign even with L(v⊥, v⊥) = 1. So,
L(v⊥, w⊥) is only determined up to sign as well, θ and −θ will both be solutions to the
above equation. We can assume we are looking for the acute angle at which they meet
and instead use

cos2 θ = L(v⊥, w⊥)2

Now, we also need a formula for where two lines intersect. A point where v and w
intersect will be orthogonal to both v⊥ and w⊥. To find a vector orthogonal to two
given vectors, we can define a box product

v � w := (v2w1 − v1w2, v0w2 − v2w0, v0w1 − v1w0)
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Lemma 2.2. L(v � w, v) = L(v � w,w) = 0

Proof.

L(v � w, v) = (v2w1 − v1w2)v0 + (v0w2 − v2w0)v1 − (v0w1 − v1w0)v2

= v0v2w1 − v0v1w2 + v1v0w2 − v1v2w0 − v0v2w1 + v1v2w0

= 0

L(v � w,w) = (v2w1 − v1w2)w0 + (v0w2 − v2w0)w1 − (v0w1 − v1w0)w2

= w0v2w1 − w0v1w2 + w1v0w2 − w1v2w0 − w1v0w2 + w0v1w2

= 0

From this lemma it follows that the box product works as desired.
We will also often need to consider the reflection across a given line. It is important
to note that not only will such a reflection fix the line, but it will also fix the vector
orthogonal to the line. In fact, any projective transformation of order 2 will fix one line
and one point (see §1.2 in [Gol90]). We can use this fact when we generalize reflections
by changing the point which they fix.
This model is very useful, but somewhat difficult to represent visually. So, for most of
the following, we will consider the Klein disk model, which is the hyperboloid model
projected down so that the third coordinate is 1. Now, the hyperbolic plane is the unit
circle and lines are simply chords. Equivalently, we can consider the points in R3 as
points in RP2 projected down onto the plane z = 1. Now, reflections can be thought of
as projective transformations which will be useful later.

2.4 Triangle Groups

Definition 2.1. A triangle group, denoted by three parameters (α, β, γ) such that
2 ≤ α, β, γ, is generated by the reflections over the edges of a triangle with angles
π/α, π/β, and π/γ. The group rule is composition of reflections.

Note that if 1
α

+ 1
β

+ 1
γ

= 1, the triangle sits in Euclidean space. If the sum is greater
than 1, it sits in elliptic space and if it is less than 1, it sits in hyperbolic space. We
will focus on this third case because the first two are fairly limited (there are only three
examples in Euclidean space). If we let the generators of our group be a, b, c where a is
the reflection over the edge opposite angle π/α etc., we have the following relations:

a2 = b2 = c2 = 1, (ab)γ = (bc)α = (ac)β = 1

The first relation holds because applying any reflection twice is the identity, and the
second relation holds because by reflecting over each edge incident to an angle repeat-
edly, we can rotate around that angle fully, again yielding the identity.
Now, in the Klein Model of the hyperbolic plane, each reflection can be represented by a
projective transformation, so we also have a corresponding group of matrices A ∈M3,3
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which follow the same relations. Also, each group defines a tiling of the hyperbolic
plane with the corresponding triangle.

Figure 2.4.1: Tiling of the hyperbolic plane with the (4,4,4) triangle group

Now, since any projective transformation of order 2 fixes a line and a point, we can
generalize the concept of triangle groups by changing the point. Given a triangle in
the hyperbolic plane, we can find the matrix representation of the triangle group by
finding the transformations which correspond to reflecting over each side. These will
fix each edge and the orthogonal vector to that edge. By changing the vector fixed by
each transformation in the correct way, we are able to find three new generators which
still obey the same relations. Now, it turns out that for sufficiently small perturbations,
there is some convex domain fixed by this new group instead of just the unit circle. For
a more general treatment of these convex projective structures, see [Gol90].
The object of this paper is to describe the one parameter family of these more general
groups and to examine some of their properties.
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3 Parameterization

3.1 Setting

Figure 3.1.1: Labeled Triangle

For a family of convex projective groups based on the triangle group (α, β, γ) we first
find the triangle with angles θ0 = π/α, θ1 = π/β, and θ2 = π/γ in the Klein model of the
hyperbolic plane. To find the triangle, we set e⊥0 = (−1, 0, 0), e⊥1 = (− cos θ2, sin θ2, 0),
and e⊥2 = (s, t, u) where

s = cos θ1

t =
cos θ0 + cos θ2s

sin θ2

u =
√
s2 + t2 − 1

These choices guarantee the correct angles. Recall that the angle θ between two edges
v and w obeys the formula

cos2 θ = L(v⊥, w⊥)2
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So, we just need to check

L(e⊥0 , e
⊥
1 )2 = L((−1, 0, 0), (− cos θ2, sin θ2, 0))2

= cos2 θ2

L(e⊥0 , e
⊥
2 )2 = L((−1, 0, 0), (s, t, u))2

= (−s)2 = cos2 θ1

L(e⊥1 , e
⊥
2 )2 = L((− cos θ2, sin θ2, 0), (s, t, u))2

= (−s cos θ2 + t sin θ2)2

= (− cos θ1 cos θ2 + cos θ0 + cos θ2 cos θ1)2

= cos2 θ0

as desired. From here, we can find the vertices (where the edges intersect) as follows:

v2 = e⊥0 � e⊥1 = (0, 0,− sin θ2) = (0, 0, 1)

v1 = e⊥0 � e⊥2 = (0,−u,−t) = (0,
u

t
, 1)

v0 = e⊥1 � e⊥2 = (− sin θ2u,− cos θ2u,− cos θ2t− sin θ2s)

=

(
sin θ2u

cos θ2t+ sin θ2s
,

cos θ2u

cos θ2t+ sin θ2s
, 1

)
: = (a, b, 1)

Now, in the standard triangle group, the reflection over each edge fixes that edge and
the vector orthogonal to the plane of the edge. When we look for more general groups,
we can change each reflection by changing the point which is fixed. However, these
groups are only unique up to projective transformations, and a projective transforma-
tion can bring any 4 points to any 4 points. So, we can assume that one of these
“reflection points” is the original, as we can always bring one of the reflection points
back to the original while still fixing the three vertices of the triangle using a projective
transformation. So, we can let r2 be this fixed point:

r2 = e⊥ = (s, t, u)

Now, the other two points are variable so we let r0 = (x, y, 1) and r1 = (q, w, 1).

3.2 Formulas

Now we are in a position to state the formulas for the three matrices of our group in
terms of the one free parameter q. First, the four variables defined above obey the
linear equation 

x
y
q
w

 =


0
b02

0
b12

+ q


m01

0
1
m12
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where

b02 =
u

t

m01 =
u tan θ2

at

b12 =
a

sin θ2 cos θ2

m12 = − tan θ2

For the matrices, we have

M0 =


1 0 0

2b02

m01q
−1 0

2

m01q
0 −1



M1 =



q(b+m12a) + b12a

q(b−m12a)− b12a

−2aq

q(b−m12a)− b12a
0

2bm12q + 2bb12

q(b−m12a)− b12a

−q(b+m12a)− b12a

q(b−m12a)− b12a
0

2b

q(b−m12a)− b12a

−2a

q(b−m12a)− b12a
−1



M2 =

cos(2θ1) 2t cos θ1 −2u cos θ1

2t cos θ1 2t2 − 1 −2ut
2u cos θ1 2ut − cos(2θ1)− 2t2



where matrix Mi fixes edge ei and reflection point ri.
There are two asymptotes for this solution. First, when q = 0, terms in M0 blow

up. Also, when q =
b12a

b−m12a
= a, terms in M1 blow up. Solutions on either side

of this boundary seem to be equivalent under projective transformations. For a given
triangle group, a is the second asymptote. Now, G(q) is equivalent to G(a − q) where
G(x) denotes the group of matrices with parameter x. However, vertices 0 and 1 are
switched. So, if we swap matrices M0 and M1, the trace of any word is equal at q and
a− q.
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Figure 3.2.1: Trace of M0M1M2M1 with M0 and M1 swapped for q < 0

With this parameterization, the limit as q → 0 from below or q → a from above results
in the most deformed convex shape, whereas the limit as q → ±∞ results in the convex
shape formed by a standard triangle group. In this parameterization it is an ellipse,
although by using a normalizing projective transformation, we can return it to a circle.

(a) q = −1000000 (b) q = −1 (c) q = −0.001

Figure 3.2.2: Convex shapes for various q values

Solutions between the two asymptotes 0 and a do not fix convex domains. Below is one
such example:
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Figure 3.2.3: Shape when q value is between asymptotes (For the (4,4,4) group at
q = 0.5)

3.3 Normalization

A normalization which creates symmetric shapes limiting to a circle (which is useful for
finding evidence for the conjecture below) is as follows: Find the images of vertices 0
and 1 rotated halfway around vertex 2 by applying the matrix (M0M1)γ/2 to the original
vertices (note that this only works for even γ). Call these new points f(v0) and f(v1).
Now, use the projective transformation which brings the four points (v0, v1, f(v0), f(v1))
to (v0, v1,−v0,−v1). This will normalize the convex shape to be more symmetrical and
to limit to a circle as q → ∞. All images in this paper use this normalization, unless
otherwise noted.

Figure 3.3.1: Normalization Transformation
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3.4 Derivations

In this section, we will derive the formulas for the matrices given above. We will do
this in three steps:

1. First, we will give a formula for a general perturbed reflection matrix fixing a
given line and a given point.

2. Next, we will calculate the perturbed reflections M0,M1,M2 over each edge. M2

will be deterministic because we assume that this matrix is the standard reflection,
but M0 and M1 will be in terms of the two variable reflection points (x, y, 1) and
(q, w, 1).

3. Finally, we will use trace equations to force the rotation relations to hold. This
will give a linear equation for all of our variables in terms of the parameter q.

Step 1 The reflection matrix fixing the edge through vertices (m0,m1, 1) and (n0, n1, 1)
which also fixes the point (p0, p1, p2) has the form A−1KA where

K =

−1 0 0
0 −1 0
0 0 1


and

A−1 =

m0 n0 p0

m1 n1 p1

1 1 p2


The matrix K fixes the line at infinity (any vector with a third coordinate of 0
remains the same up to scaling) and also fixes the point (0, 0, 1) (the origin). The
matrix A−1 brings the line at infinity to the desired line and the origin to the
desired point. So, by composing A−1KA, we bring the desired point and line to
the origin and the line at infinity, then perform the desired reflection, and bring
everything back.

Step 2 To calculate M0, we first need to find A−1. From the formulas listed,

A−1 =

 0 0 x
u/t 0 y
1 1 1


From here, we can calculate that

A =
t

xu

 −y x 0
y − u/t −x xu/t
u/t 0 0
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Now,

M0 = A−1KA

=
t

xu

 0 0 x
u/t 0 y
1 1 1

−1 0 0
0 −1 0
0 0 1

 −y x 0
y − u/t −x xu/t
u/t 0 0



=
t

xu

 xu/t 0 0
2yu/t −xu/t 0
2u/t 0 −xu/t



=

 1 0 0
2y/x −1 0
2/x 0 −1


For M1, we have

A−1 =

a 0 q
b 0 w
1 1 1


From here, we can calculate that

A =
1

qb− wa

 −w q 0
w − b a− q qb− wa
b −a 0


Now,

M1 = A−1KA

=
1

qb− wa

a 0 q
b 0 w
1 1 1

−1 0 0
0 −1 0
0 0 1

 −w q 0
w − b a− q qb− wa
b −a 0



=
1

qb− wa

aw + qb −2aq 0
2bw −aw − qb 0
2b −2a aw − qb


For M2, we have

A−1 =

 0 a s
u/t b t
1 1 u


The determinant of this matrix simplifies to a/t so we have

A =
t

a

 ba− t s− au at− bt
t− u2/t −s −us/t
u/t− b a −au/t
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Now,

M2 = A−1KA

=
t

a

 0 a s
u/t b t
1 1 u

−1 0 0
0 −1 0
0 0 1

 ba− t s− au at− bt
t− u2/t −s −us/t
u/t− b a −au/t



=

−1 + 2s2 2st −2su
2st −1 + 2t2 −2tu
2su 2tu 1− 2s2 − 2t2


after some messy calculations. We can write this as

M2 =

cos(2θ1) 2t cos θ1 −2u cos θ1

2t cos θ1 2t2 − 1 −2ut
2u cos θ1 2ut − cos(2θ1)− 2t2


after a few further simplifications.

Step 3 Now, we want to find quantities for x, y, q, z such that (M0M1)γ = (M0M2)β =
(M1M2)α = I. To simplify these equations, we can instead set the trace of the
products equal to the trace of the rotation matrix of the same order (see Lemma
2.1). So, we set the trace of M0M2 to

2 cos 2π/β + 1 = 2 cos 2θ1 + 1

and then solve

Tr(M0M2) = 2 cos(2θ1) + 1

cos 2θ1 +
2y

x
(2t cos θ1) + 1− 2t2 − 4

u

x
cos θ1 + cos 2θ1 + 2t2 = 2 cos(2θ1) + 1

2 cos 2θ1 + 1 +
4yt cos θ1

x
− 4u cos θ1

x
= 2 cos(2θ1) + 1

4yt cos θ1

x
− 4u cos θ1

x
= 0

4yt cos θ1 = 4u cos θ1

y =
u

t

Now, we set
Tr(M1M2) = 2 cos 2π/α + 1 = 2 cos(2θ0) + 1

This gives

2 cos(2θ0) + 1 =
1

qb− wa

(
(aw + qb) cos 2θ1 − 4aqt cos θ1 + 4bwt cos θ1

− (aw + qb)(2t2 − 1)− 4bu cos θ1

+ 4aut+ (aw − qb)(− cos 2θ1 − 2t2)
)
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Some simplifying calculations yield w = m12q + b12 where m12 = − tan θ2 and

b12 =
a

sin θ2 cos θ2

.

Now, we set

Tr(M0M1) = 2 cos 2π/γ + 1

= 2 cos 2θ2 + 1

1

qb− wa
(aw + q − 4yaq

x
+ aw + qb+ qb− aw) = 2 cos 2θ2 + 1

aw + 3qb− 4yaq

x
= (qb− wa)(2 cos 2θ2 + 1)

Simplifying and substituting in for y and w using what we know from above, we
get that

x = m01q

where m01 =
u tan θ2

at
. Now, we arrive at the linear equation stated above and

are able to write out each matrix in terms of a single variable q.

4 Conjecture

4.1 Motivation

The following discussion was motivated by a discussion with Nicolas Tholozan while he
was visiting Brown to give a talk in a geometry seminar. The entropy of the Hilbert
metric, a related quantity to what we discuss here, and its asymptotic behavior over
one parameter families of a more general class of projective groups is studied in [Nie15].
Using the machinery developed above, we have a way of describing the one parameter
family of groups for a given triangle group (α, β, γ). We get a valid convex shape for any
parameter value in the set (−∞, 0) ∪ (a,∞) where a is the constant described above.
Since the two parts can be seen to be equivalent under projective transformations, we
will just focus on the first interval. With the parameterization above, we can consider
the family of groups G(q) for −∞ < q < 0 for a given triangle group (α, β, γ). Each
gives rise to a convex domain in RP2. At the limit q → −∞, our convex shape is the
same as using the standard reflections in the hyperbolic plane. In the normalization
defined above, the convex shape induced by the standard triangle group is just the
hyperbolic plane, or the unit disk in RP2. Now, in each shape, we can consider the
size of the triangle. We can use the Hilbert metric to measure distance in each convex
shape.
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Definition 4.1. For a convex domain Ω which doesn’t contain a line, consider two
points u and v. Let x and y be the points at which the line through a and b intersects
the boundary of Ω and suppose that the order of the four points is x, u, v, y. Then, the
Hilbert distance dΩ(u, v) is defined by

dΩ(u, v) = log

(
|yu||xv|
|yv||xu|

)

and dΩ(u, u) = 0.

This corresponds with twice the hyperbolic metric on the disk in the Klein model
(see page 243 of [HC90]). Now, these convex shapes are equivalent under projective
transformation and so is the Hilbert metric. One hypothesis we considered is that the
Hilbert metric was monotonically increasing as the parameter q varied from −∞ to 0.
One way to prove this would be to show that for q1 > q2, the convex shape induced by
G(q1) was contained in the convex shape induced by G(q2). Then, the following lemma
would suffice to show the hypothesis:

Lemma 4.1. Let A and B be convex shapes. Suppose that A ( B. Then for any two
points u, v ∈ A, dA(u, v) > dB(u, v) where dA is the Hilbert metric for A and dB is the
Hilbert metric for B

Proof. Let a1 and a2 be the points on the boundary of A intersecting the line through
u and v and let b1 and b2 be the points on the boundary of B intersecting the same line.
Suppose that the order of points is b1, a1, u, v, a2, b2 (see Figure 4.1.1). Let |uv| = l.
Note that because A ( B, we have that |a1u| < |b1u| and |a2v| < |b2v|. Now, we can
consider edA(u,v) for simplicity because the logarithm is monotonic.

edA(u,v) =
|a2u||a1v|
|a2v||a1u|

=
(|a2v|+ l)(|a1u|+ l)

|a2v||a1u|

=
|a2v||a1u|+ l(|a1u|+ a|2v|) + l2

|a2v||a1u|

= 1 + l

(
1

|a2v|
+

1

|a1u|

)
+

l2

|a2v||a1u|

> 1 + l

(
1

|b2v|
+

1

|b1u|

)
+

l2

|b2v||b1u|
= edB(u,v)

so dA(u, v) > dB(u, v).
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Figure 4.1.1: Diagram for proof of Lemma 4.1

4.2 Statement

Some computational experimentation suggested that we could not in fact fit shapes
with large q values into those with smaller values, leading to the following conjecture:

Conjecture 4.1. For any triangle group (α, β, γ) and any parameter q < 0, let G(q)
be the convex projective group formed using the parameter q. Then, if x < y, there is
no projective transformation of the convex shape of G(y) which fixes the vertices of one
triangle and is entirely contained in the convex shape of G(x).

In order to better understand this, we considered the simpler case of fitting any given
shape entirely into the unit circle (which is induced by the group G(q) in the limit as
q → ∞). After some further experimentation, we conjectured that for no value of q
could the convex shape fit entirely into the unit circle.

Conjecture 4.2. For any triangle group (α, β, γ) and any parameter q < 0, let G(q) be
the convex projective group formed using the parameter q. Then, there is no projective
transformation of the corresponding convex shape which fixes the vertices of one triangle
and is entirely contained in the unit circle.

If Conjecture 4.2 held, for every q ∈ (−∞, 0), we would never be able to find a pro-
jective transformation which fixed the original triangle and fit the invariant convex
boundary of G(q) into the unit circle. In the below diagram, there would be no pro-
jective transformation fixing the red triangle which brings the blue convex boundary in
Figure 4.2.1(a) to the blue boundary in Figure 4.2.1(b).

16
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(a) (b)

Figure 4.2.1: A projective transformation fixing the triangle which fits the invariant
convex boundary of G(q) into the unit circle

If Conjecture 4.1 held, the same would be true except that the unit circle could be
replaced by the invariant convex boundary of some other group G(r) for every r < q.
We were able to computationally verify Conjecture 4.2 for one case and saw evidence
that it would be true in general.

4.3 Evidence

To investigate this conjecture, we studied the (4, 4, 4) triangle group with parameter
q = −1. To prove Conjecture 4.2 for this case, it is sufficient to find a finite collection of
points on the boundary such that no projective transformation which fixed the central
triangle would bring them all into the unit circle. We looked at the six points where each
edge intersected the boundary. We then considered the set of projective transformations
which brought each pair of points into the unit circle (in suitable coordinates) and
computationally demonstrated that the intersection of these three sets was empty.
In order to find exact values for the six boundary points, we numerically calculated
the eigenvectors of matrices which fixed each edge of the original triangle. To fix
e0, we used (M0M2)2(M0M1)2, for e1 we used (M1M2)2(M1M0)2, and for e2 we used
(M2M1)2(M2M0)2. Because these matrices fixed each edge, the eigenvectors represented
points on each edge which only scaled. However, in projective geometry, points which
only scale are fixed. So, we were able to find the fixed points of transformations which
fixed each edge, which were the endpoints of each edge. These points are on the
boundary of the convex shape. Because we were attempting to fit these points into
a circle, we truncated rather than rounded to preserve accuracy with this numerical
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method.
Now, we checked computationally if there was any projective transformation which
would put the endpoints of all three edges into the unit circle while fixing the central
triangle. Each transformation which fixes the central triangle can be described by the
way it moves a fixed internal point. A point p inside the triangle was arbitrarily chosen
and each transformation T was described by the point Tp = r. For simplicity, let
T (r) denote the transformation found in this way. For each point r in the triangle,
we considered T (r) applied to the eigenvectors calculated above. We had three sets of
two endpoints, one set for each edge of the triangle. We plotted the points r for which
T (r) fit each pair into the unit circle in different colors and were able to experimentally
determine that there was no point r with a corresponding transformation T (r) which
fit all three sets of points into the unit circle, verifying the conjecture for this case.

(a) Every point in the triangle defines a
transformation...

(b) ...and none can fit all six points into the
circle

Figure 4.3.1: Trying to fit the (4, 4, 4) triangle into the circle for q = −1

Note that while there were small areas around the edges of the triangle where all three
colors overlapped, these transformations brought the fixed point too close to the edge
and therefore didn’t correctly maintain the convex structure. As an example, below is
the convex shape under the projective transformation described by a point in the center
of the innermost triangle formed by the three strips:

18
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Figure 4.3.2: We see that each of the three pairs of points almost, but doesn’t quite fit
(and the entire convex shape certainly doesn’t fit)

This method relied on picking an arbitrary point p inside the triangle. To eliminate the
dependence on such a choice, we instead plotted the eigenvalues of each transformation
matrix which did not depend on the fixed point. Because we were only considering
projective transformations, we only had a two parameter family of eigenvectors. With-
out normalizing our transformation matrices, one eigenvalue was always 1 so below, we
have plotted the logs of the other two eigenvalues. It is evident that the three sets do
not intersect.

Figure 4.3.3: When we graph the logs of the eigenvalues to remove dependence on the
fixed point, there is still no intersection

19



A Parameterization of Convex Projective Groups

References

[Gol90] William M. Goldman. “Convex Real Projective Structures on Compact Sur-
faces”. In: J. Differential Geom. 31.3 (1990), pp. 791–845. url: http://

projecteuclid.org/euclid.jdg/1214444635.

[HC90] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Trans. by
P. Nemenyi. 2nd ed. New York: Chelsea Publishing Company, 1990. isbn:
0828410879.

[Nie15] Xin Nie. “On the Hilbert Geometry of Simplicial Tits Sets”. In: Annales de
l’Instituit Fourier 65.3 (2015), pp. 1005–1030. url: https://arxiv.org/
abs/1111.1288.

[Rey93] William F. Reynolds. “Hyperbolic Geometry on a Hyperboloid”. In: The
American Mathematical Monthly 100.5 (1993), pp. 442–455. issn: 00029890,
19300972. url: http://www.jstor.org/stable/2324297.

20


