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1 Introduction

For a commutative ring R with unit 1R, one may consider the projective special linear group

PSL(2, R) =

{[
a b
c d

]
: a, b, c, d ∈ R, ad− bc = 1R

}/
{±I}

Groups of this form are ubiquitous in algebra, and have a rich theory. A foundational result on special
linear groups over fields is due to Borel and Tits [1,2]: if two fields F1 and F2 satisfy certain properties,
PSL(2, F1) ∼= PSL(2, F2) if and only if F1

∼= F2.

An especially interesting case is that of matrix groups of discrete valuation fields, or of the rings of
integers of these fields. The two most accessible examples of such fields are Qp, the p-adic numbers, and
Fp((x)), the field of fractions of polynomials over the finite field Fp. In both cases, p must be a prime integer.
These fields, along with other objects mentioned in this introduction, will be rigorously defined in the next
section.

Qp and Fp((x)) have many common properties: their respective norms both have image set {0}∪{pn}n∈Z,
and there exists a canonical norm-preserving bijection between these fields. However, these fields are not
isomorphic (in fact, they do not even have the same characteristic), so PSL(2,Qp) 6∼= PSL(2,Fp((x))). While
these linear groups are globally distinct, one may ask if there is some sense in which the algebraic structures
of these groups are locally similar. Serre trees provide a concrete framework for comparing PSL(2,Qp) and
PSL(2,Fp((x))) on a local level.

Specifically, Serre observed [3] that for every discrete valuation field K, one can associate an infinite
regular tree TK , and that this tree admits a faithful group action by PSL(2,K). Since PSL(2,Qp) and
PSL(2,Fp((x))) both act on the tree Tp, we can ask whether any two actions from these groups are conjugate
with respect to the full automormorphism group of the tree, Aut(Tp) (fig. 1). In other words, does there
exist f ∈ PSL(2,Qp), g ∈ PSL(2,Fp((x))), and h ∈ Aut(Tp) such that (thinking of each element as an
automorphism of Tp),

g = h ◦ f ◦ h−1

If so, what can we say about f and g? Notice this condition is weaker than isomorphism of the two groups,
or even isomorphism of subgroups, since we are allowed to conjugate by elements of Aut(Tp) that do not
arise by action of either PSL(2,Qp) or PSL(2,Fp((x))). In fact, conjugacy gives a very high amount of
flexibility in some cases: for example, any two tree automorphisms that fix one point of Tp and act on its
neighbors via a cyclic permutation of length p + 1 are conjugate, regardless of how they act far away from
their respective fixed points.

However, for the projective special linear groups PSL(2,Zp) and PSL(2,Fp[x]) derived from the respec-
tive rings of integers of Qp and Fp((x)), we determine a condition for two actions to be conjugate, and find
that in this case, even with the flexibility given by working in Aut(Tp), conjugacy is still a highly restrictive
phenomenon:

Theorem 1.1 Let f ∈ PSL(2,Zp), g ∈ PSL(2,Fp[x]), and h ∈ Aut(Tp), where Tp is the Serre tree of Zp

and Fp[x]. Also let i1 : PSL(2,Zp)→ Aut(Tp) and i2 : PSL(2,Fp[x])→ Aut(Tp) be natural inclusions, and
assume

i2(g) = h ◦ i1(f) ◦ h−1

Then Ord(f) = Ord(g) <∞, and moreover Ord(f) = Ord(g) is a divisor of (p2−1)p
2 .

The primary reason this condition is restrictive is that elements of PSL(2,Zp) or PSL(2,Fp[x]) with
finite order are rare. In fact, it can be deduced from our primary technical lemmas that all finite elements

of PSL(2,Zp) and PSL(2,Fp[x]) have order dividing (p2−1)
p . Mirroring constructions commonly performed

in arithmetic geometry, our approach is essentially to understand PSL(2,Zp) and PSL(2,Fp[x]) by decom-
posing into exact sequences

0→ PSL(2,Fp)→ PSL(2,Zp)→ PSL(2,Zp)/PSL(2,Fp)→ 0
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Figure 1: A diagram showing the inclusions of PSL(2,Zp) and PSL(2,Fp[x]) in Aut(Tp). The arrows
represent injective homomorphisms. We ask whether, up to conjugacy in Aut(Tp), the images of the two
projective matrix groups overlap.

0→ PSL(2,Fp)→ PSL(2,Fp[x])→ PSL(2,Fp[x])/PSL(2,Fp)→ 0

and showing the quotients are torsion-free. However, these algebraic frameworks will generally be swept
under the rug in favor of explicit constructions.

We will also examine the space of invertible projective affine transformations over a field or ring:

Aff(R) =

{[
a b
0 1

]
: a ∈ R∗, b ∈ R

}
In the case of Aff(Zp) and Aff(Fp[x]), we obtain a corollary for affine transformations:

Corollary 1.1 Let f ∈ Aff(Zp), g ∈ Aff(Fp[x]), and h ∈ Aut(Tp) so that g = h ◦ f ◦ h−1. Then Ord(f) =
Ord(g) <∞, and additionally Ord(f) = Ord(g) is a divisor of p(p− 1).

In section 2, we will rigorously define Serre trees and their associated group actions. In section 3, we
will analyze the action of PSL(2,Zp) on Tp and derive crucial geometric information about this action. In
section 4 we will determine similar information for PSL(2,Fp[x]) and prove theorem 1.1 as a consequence.

2 Key Definitions

2.1 Discrete Valuation Rings, Zp, and Fp[x]

The first building block to define a Serre tree is a discrete valuation ring.

Definition 2.1 A discrete valuation of a field F is a function ϕ : F → Z ∪∞ satisfying

1. ϕ(xy) = ϕ(x) + ϕ(y) for all x, y ∈ F

2. ϕ(x+ y) ≥ min(ϕ(x), ϕ(y)) for all x, y ∈ F

3. ϕ(x) =∞ ⇐⇒ x = 0
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If F is a field with discrete valuation ϕ, we can associate to it the ring

OF,ϕ = {x ∈ F : ϕ(x) ≥ 0}

This ring is an example of a discrete valuation ring, and in fact any discrete valuation ring arises in this way.

Definition 2.2 A discrete valuation ring is a ring K with field of fractions F such that for some discrete
valuation ϕ on F , K = OF,ϕ.

This definition is equivalent to the condition of having a unique nontrivial maximal ideal: for OF,ϕ, that
ideal is

I = {x ∈ OF,ϕ : ϕ(x) ≥ 1}

Any discrete valuation ring K with valuation ϕ : K → Z ∪∞ has a natural norm | · |ϕ : K → R≥0, defined
by

|x|ϕ = r−ϕ(x)

where r ∈ R, r > 1.

Two natural examples of discrete valuation rings are Zp and Fp[x]. For our purposes, it is most useful to
define Zp as the ring of formal power series in p:

Zp =

{ ∞∑
i=0

aip
i : ai ∈ {0, 1, ..., p− 1} for all i,

}
Addition and multiplication are carried out using the normal rules for manipulating power series, with the
exception that coefficients are carried. For example, when p = 7, 5∗71 + 3∗71 = (1 + 7)∗71 = 1∗71 + 1∗72.
When we restrict to elements of Zp with finite power series expansions, we recover the monoid Z≥0 with the
usual addition and multiplication rules.

Fp[x] is defined analogously to Zp, but with x in place of p, and with coefficients in Fp = Z/pZ:

Fp[x] =

{ ∞∑
i=0

aix
i : ai ∈ Fp for all i

}
Addition and multiplication are carried out by using the normal rules for power series expansions, treating
coefficients as elements of Fp. In this case, when p = 7, 5 ∗ x+ 3 ∗ x = (5 + 3) ∗ x = 1 ∗ x.

The fields of fractions of Zp and Fp[x] are isomorphic to Qp and Fp((x)), respectively, where Qp and
Fp((x)) are obtained by allowing finitely many negative coefficients:

Qp =

{ ∞∑
i=k

aip
i : k ∈ Z, ai ∈ {0, 1, ..., p− 1} for all i, ak 6= 0

}
∪ {0}

Fp((x)) =

{ ∞∑
i=k

aix
i : k ∈ Z, ai ∈ Fp for all i, ak 6= 0

}
∪ {0}

For z ∈ Qp or z ∈ Fp((x)), the valuation function is defined as ϕ(z) = k, and the norm is then given by
|z| = p−ϕ(z) = p−k. For example, if p = 5 and z = 5 ∗ 7−4 + 3 ∗ 7−1 + 72 ∈ Qp, then ϕ(z) = −4 and |z| = 74.
This norm effectively detects divisibility by p, and behaves very differently than the Euclidean norm on R:
for example, in Qp, limj→∞ |pj | = 0.

There exists a valuation-preserving (and thus norm-preserving) bijection from Qp to Fp((x)), given by

ψ : Qp ↔ Fp((x)), ψ

( ∞∑
i=k

aip
i

)
=
∑
i=k

aix
i

This observation will become critical once Serre trees are introduced.

4



2.2 Serre Trees

In subsection 2.1, we stated that any discrete valuation ring has a unique nontrivial maximal ideal, and that
for a discrete valuation ring of the form OF,ϕ = {z ∈ F : ϕ(z) ≥ 0} for some field F with valuation ϕ, the
maximal ideal is given explicitly by

I = {z ∈ F : ϕ(z) ≥ 1}
In the case of Zp or Fp[x], this maximal ideal is (p) = pZp or (x) = xFp[x], respectively.

Recall from elementary ring theory that a ring quotiented by a maximal ideal necessarily gives a field:

Definition 2.3 Let R be a discrete valuation ring with maximal ideal I. The field R/I is the residue field
of R.

The residue field can be finite, even when R is infinite: both Zp/pZp and Fp[x]/xFp[x] are isomorphic to
Fp. For the sake of simplicity, we will assume from now on that all discrete valuation rings under consideration
have finite residue fields.

We can now define Serre trees! We will first simply give a (highly unsatisfying) definition, and then
explain a useful geometric interpretation of that definition in the case of Qp and Fp((x)).

Definition 2.4 (Serre tree) Let R be a discrete valuation ring with field of fractions F and unique non-
trivial maximal ideal I. Then the Serre tree TR associated with R is the infinite regular tree with vertex
degree |R/I|+ 1.

Therefore, TZp and TFp[x] are both isomorphic to the infinite regular tree with p + 1 vertices, which we
will denote Tp (fig. 2). One intuitive description of Tp is a computer folder structure where each folder has
one parent folder and p subfolders. However, this description is somewhat misleading, since ’folder paths’
become infinitely long (we will make sense of these paths later, as they carry useful geometric information).

Serre trees are part of a much larger family of geometric objects, the Euclidean buildings, and are a
fundamental class of examples of 1-dimensional Euclidean buildings [4]. Serre originally defined these trees
as arising from scale-equivalence classes of rank-two modules over the base ring [3]; it is not obvious from
Serre’s original definition that the objects presented are trees, nor that they have the structure described
in definition 2.4. We will instead follow the more concrete geometric interpretation given by Armitage and
Parker [5].

2.3 p-adic Balls, the Ultrametric Inequality, and Serre Trees

For two elements x, y in a field with norm | · |, define d(x, y) = |x − y|. By axiom 2 of definition 2.1, both
Qp and Fp((x)) satisfy the ultrametric inequality, or for any x, y, z,

d(x, z) ≤ max(d(x, y), d(y, z))

This inequality can be seen as a strengthening of the standard triangle inequality for metrics. Its properties
can be quite surprising for those more familiar with Euclidean space: for example, in an ultrametric space,
all triangles are isoceles. Moreover, translations of balls are either disjoint or equal:

Lemma 2.1 Let B(x1, r), B(x2, r) be two closed balls in Qp with equal radius. Then B1 = B2 or B1∩B2 = ∅.

Proof. When r = 0, we have that two points are either equal or disjoint, which is definitely true. Assume
r > 0. Since the norm is discrete except at 0, we can assume without loss of generality that r = pk for some
k ∈ Z. If B(x1, r) ∩ B(x2, r) 6= ∅, then assume y ∈ B(x1, r) ∩ B(x2, r). For any z ∈ B(x1, r), d(z, x1) ≤ r.
Additionally, d(x1, y) ≤ r, and d(y, x2) ≤ r. Applying the ultrametric inequality twice,

d(z, x2) ≤ max(d(z, x1), d(x1, y), d(y, x2)) ≤ r

So z ∈ B(x2, r), and B(x1, r) ⊆ B(x2, r). By symmetry, B(x1, r) = B(x2, r). �
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Figure 2: The local structure of the infinite regular tree T2.

Corollary 2.1 For any k ∈ Z, the balls of radius pk partition Qp.

Corollary 2.2 Let B(x, r) ⊂ Qp. If y ∈ B(x, r), then B(x, r) = B(y, r).

Effectively, any point in a p-adic ball serves as its ’center’ ! Identical results hold in the case of Fp((x)).

Now, let V be the set of all balls in Qp with radius pk for some k ∈ Z; by the remark in the proof of
the above lemma, this covers every ball in Qp up to equality. V serves as the vertex set of Tp. Visually,
we can think of balls of equal radius being stacked in horizontal ’layers’ in order of radius, with each layer
representing a partition of Qp into balls. Arranging balls of greater radius ’higher’ on the tree, the partition
corresponding to each layer refines the partition above it (see fig. 3). In the case of Qp, we will notate each
ball using coset notation, so that B(z, p−k) = z + pkZk represents the ball of radius p−k ’centered’ at z.

The edge set E of Tp is defined via maximal containment :

Definition 2.5 If B1 and B2 are two distinct balls in some field, B1 is maximally contained in B2 if B1 ⊂ B2

and there exists no B3 such that B1 ( B3 ( B2.

Example 2.1 If B = 1 + 23Z2, then B is maximally contained in 1 + 22Z2, and B maximally contains
1 + 24Z2 and 1 + 23 + 24Z2.

E is then defined as the set of all unordered pairs of balls such that one is maximally contained in the
other. Over the p-adics, if the radius of B1 is pk and the radius of B2 is pj , an alternate way of characterizing
maximal containment is that B1 ⊂ B2 and k = j + 1, or B2 ⊂ B1 and k = j − 1.
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Figure 3: A rooted subtree of T2, labeled with the 2-adic ball associated to each vertex. Each ball contains
two maximal sub-balls.

Definition 2.6 (p-adic Serre tree) Let Vp be the set of all balls in Qp, and let Ep be the set of unordered
pairs (B1, B2) such that B1, B2 ∈ Qp and B1 is maximally contained in B2 or B2 is maximally contained in
B1. Then Tp = G(Vp, Ep), the graph constructed by interpreting Vp as a vertex set and Ep as an edge set, is
the Serre tree of Qp.

It is not immediately obvious from the above definition that Tp is in fact a tree. We give a proof sketch:
assume B0 = B(a0, p

k0) is a vertex contained in a cycle C of Tp. Notice that any ball in Tp is adjacent to p
balls of smaller radius and 1 ball of larger radius. Of the two vertices adjacent to B0 in C, at least one is a
ball with smaller radius, pk0−1; call this ball B1. If B2 is the other vertex adjacent to B1 in C, it must have
radius pk0−2, since the only ball adjacent to B1 in C with greater or equal radius to B1 is B0. Continuing
this argument, we form a chain of adjacent vertices B0, B1, B2, B3, ... ⊂ C with strictly decreasing radius.
So no Bn ∈ C can be equal to B0, a contradiction.

Having constructed TZp , we have all the structure in place to build TFp[x]. We remarked earlier that
there is a norm-preserving bijection between Qp and Fp((x)). As a function between Qp and Fp((x)), this
bijection sends balls to balls, and preserves both radii and containment (and therefore maximal containment).
Since TZp

was only defined in terms of balls on Qp and their relations, our bijection shows that TFp[x] can be
constructed in exactly the same manner as TZp

, and moreover TFp[x]
∼= TZp

in the sense of graph isomorphism.

Definition 2.7 (Laurent Serre tree) Let Vp be the set of all balls in Fp((x)), and let Ep be the set of
unordered pairs (B1, B2) such that B1, B2 ∈ Fp((x)) and B1 is maximally contained in B2 or B2 is maximally
contained in B1. Then Tp = G(Vp, Ep), the graph constructed by interpreting Vp as a vertex set and Ep as
an edge set, is the Serre tree of Fp((x)).
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2.4 Linear Fractional Transformations on Tp

We claimed that the Serre tree TR admits a group action by PSL(2,K), where K is the field of fractions of
R. How is this action defined? Rather than use the matrix notation presented in the introduction, we will
represent PSL(2,K) as a group of linear fractional transformations:

PSL(2,K) =

{
f(z) =

az + b

cz + d
: a, b, c, d ∈ K, ad− bc = 1

}
With this notation, the group law on PSL(2,K) becomes function composition, and each element f(z) is
an invertible function f : P1(K)→ P1(K). As is standard, we think of P1(K) as K ∪ {∞}. The map

ψ

([
a b
c d

])
=
az + b

cz + d

is the canonical isomorphism between the matrix notation of PSL(2,K) and our new notation. We will use
both notations, depending on context.

One apparent issue is that representations of the form f(z) = az+b
cz+d are not quite unique. After all, for

any element s,
az + b

cz + d
=
s

s

az + b

cz + d
=
asz + bs

csz + ds

However, a quick calculation shows that

det

([
as bs
cs ds

])
= s2 det

([
a b
c d

])
So the only choice of s that leaves the determinant fixes is s = ±1. But these choices of s correspond to
multiplying by ±I, which we quotiented by to obtain PSL(2,K)! So the az+b

cz+d notation is well-defined once
we require that ad− bc = 1. This issue of multiple representations can thus mostly be ignored, although it
will be useful once much later in the paper.

Similarly,
Aff(K) = {f(z) = az + b : a, b ∈ K, a ∈ K∗}

where the multiple representations issue is resolved by requiring that any matrix

[
a b
0 d

]
corresponding to

an affine transformation satisfy d = 1.

If f(z) ∈ PSL(2,Qp) and B ⊂ Qp is a ball, then the image set f(B) is either another ball or the
complement of a ball (here, we think of complements of balls as ’balls centered at∞’). Associating each ball
with its complement, this map defines a bijection on the vertices of the p-adic Serre tree. Moreover, if B1

and B2 are two p-adic balls such that B1 is maximally contained in B2, and neither balls is mapped to the
complement of a ball, then either f(B1) is maximally contained in f(B2) or f(B2) is maximally contained
in f(B1). If either B1 or B2 is mapped to the complement of a ball, this statement holds after taking proper
complements. Since f(z) can be thought of as a bijective vertex map that preserves edge relations, f(z) acts
as an isomorphism on TQp . Proofs of the assertions made in this paragraph can be found in [6], and for the
most part reduce to direct calculations.

Example 2.2 If B = 1 + 23Z2 and f(z) = (1 + 2)z + (1 + 22), then

f(B) = f(1) + 23Z2 = (1 + 2) + (1 + 22) + 23Z2 = 23 + 23Z2 = 0 + 23Z2

As a more complex example that is best left to a computer, if f(z) = (1+2)z+2
(1+2+22)z+(1+22) and B = 2−1 + 2 +

23 + 25 + 26Z2, then
f(B) = 1 + 2 + 22 + 23 + 24 + 26 + 27 + 28Z2

Example 2.3 Figure 4 shows how six elements of PSL(2,Z2) locally act on Tp.
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Figure 4: The action of six elements of PSL(2,Z2) on the vertex 0 + Z2 and the three adjacent vertices
0 + 2−1Z2, 0 + 2Z2, and 1 + 2Z2. In each subfigure, 0 + Z2 is the central vertex, and is fixed by the action.

In [6], it is also shown that the group action homomorphisms PSL(2,Qp)→ Aut(Tp) and PSL(2,Fp((x)))→
Aut(Tp) are injective:

Lemma 2.2 The actions of PSL(2,Qp), PSL(2,Fp((x))), Aff(Qp), and Aff(Fp((x))) on Tp are faithful.

Due to the above lemma, we can think of these groups as embedded subgroups of Aut(Tp). We will
often abuse notation and use f(z) to refer to both the linear fractional transformation and its corresponding
automorphism on Tp - this identification makes more sense once we consider rays of Tp.

2.5 Rays, Ends and the Boundary of Tp

Serre observed that the ’boundary’ of Tp can be associated with the projective line over its base field, in
our case either Qp ∪ {∞} or Fp((x)) ∪ {∞} [3]. Intuitively, this statement makes sense: as one chooses a
path down the tree, once chooses a nested sequence of balls of decreasing radius, which converge to a single
point. On the other hand, all paths of balls of strictly increasing radii eventually converge, so we label this
’upwards’ limit point ∞ (using the picture suggested by fig. 3). This idea can be made precise by defining
rays (see fig. 5):

Definition 2.8 A ray r on TR is an infinite path of vertices with one endpoint and no backtracking. Two
rays r1 and r2 are equivalent if their intersection is again a ray, and an equivalence class of rays is called an
end. A line l on TR is an infinite path of vertices with no endpoints and no backtracking.

The set of ends of Tp is in bijection with either Qp ∪{∞} or Fp((x))∪{∞}, and this bijection agrees with
the already-established bijection between Qp and Fp((x)). As suggested above, an intuitive way to see this is
that an end represents all nested sequences of balls that ’zoom in’ to the same point, and defining ends in
this way is the standard way of extending the idea of ’boundary’ to the infinite tree Tp. For any element h

9



Figure 5: A line (blue) and two equivalent rays (red) on T2.

of Aut(Tp), the fact that h is a tree automorphism implies it sends equivalent rays to equivalent rays, and
hence is a well-defined map on ends.

Crucially, ends interact nicely with the actions of PSL(2,Qp) and PSL(2,Fp((x))). We’ll state this fact
(without proof) for Qp, but it will be true for Fp((x)) as well.

Lemma 2.3 Let M ∈ PSL(2,Qp), and let Ez be the end of Tp associated to some z ∈ P1(Qp). If M(z) is
the image of z under M : P1(Qp) → P1(Qp), and M(Ez) is the image of Ez (i.e. the equivalence class of
images of rays in Ez) under the automorphism M : Tp → Tp, then

M(Ez) = EM(z)

Sometimes, it will be helpful to go back and forth between the automorphism M induces on Tp, and
the automorphism M induces on the ’boundary’ of Tp; this second automorphism is just the function M :
P1(Qp)→ P1(Qp).

2.6 Conjugation and Orbits

One of the most useful tools we’ll use is conjugation, since it preserves the permutation structures we’ll be
interested in. For a set S, a group G acting on S, and s ∈ S, g ∈ G, define Ordg(s) as the least positive
integer m such that gm(s) = s. Then:

Lemma 2.4 Let S be a set and let G be a group acting on S. For all s ∈ S, and g, h ∈ G,

Ordg(s) = Ordhgh−1(h(s))

Proof. Assume that gm(s) = s for some m ≥ 1. Then (hgh−1)m = hgmh−1, and

h(gm(h−1(h(s)))) = h(gm(s)) = h(s)

10



So Ordhgh−1(h(s)) ≤ Ordg(s). On the other hand, if (hgh−1)m(h(s)) = h(s), then

h(gm(h−1(h(s)))) = h(s)

→ h(gm(s)) = h(s)→ gm(s) = s

So Ordg(s) ≤ Ordhgh−1(h(s)). In conclusion,

Ordg(s) = Ordhgh−1(h(s))

�

In particular, if S is finite, then Sn naturally acts on S for some n, and a bit more work shows that
conjugation in Sn preserves the orbit structures induced by permutations. We won’t need this fact, but it
indicates that elements of PSL(2,Zp) and PSL(2,Fp[x]) inducing orbits of differing length on Tp prevents
them from being conjugate in Aut(Tp).

We are now ready to move on to proving our primary result! We will restrict our attention to the
subgroups PSL(2,Zp) and PSL(2,Fp[x]), where the actions have an especially nice structure.

3 Analyzing PSL(2,Zp)

3.1 Preliminary Lemmas and Computational Tools

Let M =

[
a b
c d

]
∈ PSL(2,Zp). If c = 0, then a is a unit and d = a−1; M corresponds to the function

f(z) =
az + b

a−1
= a2z + ab

f(z) fixes ∞, so must send balls to balls and complements of balls to complements of balls. Moreover,
it can be quickly verified that f(z), and in fact any affine map, acts as an isometry on Qp. Therefore, for
any ball pku+ pjZp where u is a unit, f(pku+ pjZp) is a ball with radius p−j containing f(pku), so must be
equal to f(pku) + pjZp.

In particular, ab ∈ Zp, so f(0 + Zp) = ab+ Zp = 0 + Zp.

If c 6= 0, we can apply a standard decomposition to M :[
a b
c d

]
=

[
1 ac−1

0 1

] [
0 −1
1 0

] [
c 0
0 c−1

] [
1 dc−1

0 1

]
Note that not all of these matrices necessarily lie in PSL(2,Zp). The first and last matrix are affine, so

act as isomorphisms on Qp.

[
c 0
0 c−1

]
corresponds to the map f(z) = c2z, and if c = pku and q + 2jZp is

some ball, f(q + 2jZp) = c2q + pj+2kZp. In effect, f(z) = c2z acts as a dilation map.

[
0 −1
1 0

]
corresponds

to the map r(z) = − 1
z , and has a somewhat complex action: if pku + 2jZp is a ball not containing 0,

r(pku + 2jZp) = r(pku) + 2j−2kZp. Any ball containing 0 can be written in the form 0 + pjZp, and
r(0 + pjZp) = p−jZp. (Calculations verifying these assertions are in [6]).

Lemma 3.1 Let f(z) = az+b
cz+d ∈ PSL(2,Zp). Then f(0 + Zp) = 0 + Zp.

Proof. f decomposes into A2 ◦R ◦D ◦A1 as above. First, assume c is a unit. Then

A1(0 + Zp) = dc−1 + Zp = 0 + Zp
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since dc−1 ∈ Zp. Again, since c is a unit,

D(0 + Zp) = c2 ∗ 0 + Zp = 0 + Zp

R(0 + Zp) = 0 + Zp, and lastly A2(0 + Zp) = 0 + Zp for an analogous reason as A1.

Now assume c is not a unit, so c = pku where k > 0. d is necessarily a unit, as otherwise ad − bc = 1
would be impossible. A1(0 + Zp) = p−kdu−1 + Zp. Then

D(p−kdu−1 + Zp) = pkdu+ p2kZp

Since 0 /∈ pkdu+ p2kZp,

R(pkdu+ p2kZp) = −p−kd−1u−1 + p2k−2kZp = −p−kd−1u−1 + Zp

. Lastly,
A2(−p−kd−1u−1 + Zp) = −p−kd−1u−1 + ac−1 + Zp

Moreover, if ∞ ∈ f(0 + Zp), then there exists some z ∈ Zp so that bz + d = 0. But since b is a nonunit,
bz is a nonunit, and bz + d is a unit. So bz + d = 0 is impossible, and ∞ is not in the image of f . In other
words, f(0 + Zp) is a ball, rather than the complement of a ball.

This verifies that f(0 + Zp) is a ball of radius 1. Lastly, notice that f(0) = bd−1 ∈ Zp, since d is a unit.
Therefore f(0 + Zp) can be written as bd−1 + Zp, which is equal to 0 + Zp. �

Lemma 3.1 gives us a fixed point to work with. Since we know 0 + Zp is fixed by PSL(2,Zp), and that
functions in PSL(2,Zp) act as graph isomorphisms on Tp, functions in PSL(2,Zp) must permute the sets
of vertices of distance k from 0 + Zp, for all k ≥ 0. We will call these vertex sets layers (fig. 6).

Definition 3.1 Let Tp be the p-adic Serre tree. Lk, the kth layer from the vertex 0 + Zp, is the set of all
vertices of Tp of distance exactly k from 0 + Zp for k ≥ 0.

L1 consists of the vertices adjacent to 0 + Zp, and contains p + 1 vertices. Moving outwards on Tp,
|Lk| = (p+ 1)pk−1.

Since each Lk is finite, passing from the action of PSL(2,Zp) on Tp to its action on Lk reduces our
problem to analyzing permutations of finite sets. We can restrict further to especially nice permutations by
considering matrices of a certain form.

Lemma 3.2 Let M ∈ PSL(2,Zp) such that

M =

[
1 + pa pb
pc 1 + pd

]
where a, b, c, d ∈ PSL(2,Zp). Then if f(z) is the linear fractional transformation corresponding to M , f
fixes L1.

Proof. We know that pc is not a unit, so we decompose M :

M = A2RDA1[
1 + pa pb
pc 1 + pd

]
=

[
1 (1 + pa)(pc)−1

0 1

] [
0 −1
1 0

] [
pc 0
0 (pc)−1

] [
1 (1 + pd)(pc)−1

0 1

]
The first step will be to check that 0 + p−1Zp is fixed. A1(0 + p−1Zp) = p−1c−1 + dc−1 + p−1Zp. Assume
that c has the form pku, where u is a unit, so pc = pk+1u. Then

D(p−1c−1 + dc−1 + p−1Zp) = p2c2(p−1c−1 + dc−1) + p2k+1Zp

12



Figure 6: The layers L1, L2, and L3 of T2.

= pc+ p2dc+ p2k+1Zp

0 is not contained in pc+ p2dc+ p2k+1Zp, since |pc+ p2dc| = |pc| = p−(k+1). Therefore,

R(pc+ p2dc+ p2k+1Zp) = − 1

pc+ p2dc
+ p(2k+1)−2(k+1)Zp = − 1

pc+ p2dc
+ p−1Zp

And lastly

A2

(
− 1

pc+ p2dc
+ p−1Zp

)
= (1 + pa)(pc)−1 − 1

pc+ p2dc
+ p−1Zp

We could attempt to simplify the center of the above ball, but we could also notice that the only ball of
radius p−1 in L1 is 0 + p−1Zp. Since M permutes L1, necessarily

(1 + pa)(pc)−1 − 1

pc+ p2dc
+ p−1Zp = 0 + p−1Zp

and
M(0 + p−1Zp) = 0 + p−1Zp

We will now turn our attention to balls in L1 of the form r + pZp, where r can be assumed to be in
{0, 1, ..., p − 1}. M cannot invert balls of this type: that would imply there is some z ∈ r + pZp such that
M(z) = ∞, or pcz + 1 + pd = 0. But we can see that pcz + 1 + pd is a unit. Moreover, M must send each
r+ pZp to another ball in L1, and 0 + p−1Zp is fixed. So in fact M must send r+ pZp to some r′+ pZp such
that M(r) ∈ r′+ pZp. To show r+ pZp is fixed by M , it is therefore sufficient to show that M(r)− r ∈ pZp.
This is not so bad:

M(r)− r =
r + par + pb

pcr + 1 + pd
− r =

r + par + pb

1 + pcr + pd
− r + pcr2 + pdr

1 + pcr + bd

13



Figure 7: The three branches of a vertex v in T2, highlighted. A point in Tp will have p+ 1 branches.

=
p(ar + b+ cr2 + dr)

1 + pcr + bd

The denominator is a unit, while the numerator is divisible by p. Therefore M(r)− r ∈ pZp as claimed. �.

3.2 Integral Branches, Identity-Like Matrices, and Orbits

Lemma 3.2 is an example of a broader phenomenon, whereby in some cases we can reduce the coefficients
of M to their representatives modulo pkZp when working on the layer Lk. To make this phenomenon more
precise, we will need yet more definitions.

Definition 3.2 Let v ∈ Tp. A branch of Tp at v is a connected component of Tp − v. If v = 0 + Zp, the
integral branches are those containing a point of the form a+ pZp where a ∈ {0, 1, ..., p− 1}.

The three branches of a given v in T2 are shown in fig. 7. A standard fact about Zp is that it can
be constructed by taking the colimit of Z/pkZ for all positive k. The term ’colimit’ comes from category
theory, and its full definition is unimportant to us: all we need to know is that there is a surjective ring
homomorphism ϕn projecting Zp to Z/pkZ for any n, obtained by taking the quotient of Zp by the ideal
pkZp. In effect, we discard terms in our power series with coefficient pk or greater. For example, 1+2+22+28

maps to 1 + 2 + 22 under ϕ3. Any such projection map ϕn extends to a projection homomorphism

ϕn : PSL(2,Zp)→ PSL(2,Z/pkZ)

by applying ϕn to each entry of a given matrix. As we will see, this projection allows us to throw out
unneeded information.

Definition 3.3 A matrix

M =

[
a b
c d

]
∈ PSL(2,Zp)
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is identity-like if

ϕ1(M) =

[
1 0
0 1

]
∈ PSL(2,Z/pZ)

An analogous definition (obtained by projecting to Z/pZ) applies to matrices in PSL(2,Z/pkZ). We
have already used this idea: the hypothesis of lemma 3.2 is that M is identity-like. We will now generalize
lemma 3.2.

Lemma 3.3 Let M1,M2 ∈ PSL(2,Zp) be identity-like. Let r + pkZp lie on an integral branch of Tp, and
additionally assume that ϕk(M1) = ϕk(M2). Then M1(r + pkZp) = M2(r + pkZp).

Proof. Since r + pkZp is on an integral branch, r ∈ Zp. Additionally, since M1 and M2 are both
identity-like, they will send r + pkZp to balls on the same integral branch, and on the same layer Lk. Let

M1 =

[
a b
c d

]
, M2 =

[
a′ b′

c′ d′

]
Neither matrix can send r+ pkZp to the complement of a ball: this would imply that for some z ∈ r+ pkZp,
cz+d = 0 or c′z+d′ = 0, respectively. Since c and c′ are nonunits and d and d′ are units, this equation cannot
be solved by any z ∈ Zp. Therefore, M1(r + pkZp) = M1(r) + pkZp, and M2(r + pkZp) = M2(r) + pkZp. So
we merely need to show that M1(r)−M2(r) ∈ pkZp.

M1(r)−M2(r) =
ar + b

cr + d
− a′r + b′

c′r + d′

=
(ar + b)(c′r + d′)− (a′r + b′)(cr + d)

(cr + d)(c′r + d′)

Applying ϕk to the numerator of the above expression, we observe ϕk(a) = ϕk(a′), ϕk(b) = ϕk(b′), ϕk(c) =
ϕk(c′), and ϕk(d) = ϕk(d′). So ϕk of the numerator is equal to 0 in Z/pkZ, showing M1(r)−M2(r) ∈ pkZp.
�

We need two more lemmas, which will allow us to make simplifying assumptions when calculating the
order of a point under an identity-like matrix M . The first lemma is a counting argument. It uses the fact
that the identity-like matrices of PSL(2,Zp) form a subgroup J , which is easily seen by noticing J = kerϕ1,
where ϕ1 is the projection map from PSL(2,Zp) to PSL(2,Z/pZ). Likewise, define Jn as the identity-like
matrices in PSL(2,Z/pnZ), which is a subgroup by a similar projection onto PSL(2,Z/pZ).

Lemma 3.4 Let n ≥ 1 and p > 2. Then

|PSL(2,Z/pnZ)| = (p2 − 1)p3n−2

2

and
|Jn| = p3n−3

If p = 2, then
|PSL(2,Z/2nZ)| = 3 ∗ 23n−2

and
|Jn| = 23n−3

Proof. All elements of SL(2,Z/pnZ) can be written in the form

[
a b
c d

]
. If a and b are both nonunits,

ad − bc = 1 is impossible, so assume a is a unit. We may choose any elements of Z/pnZ for b and c, and
setting d = 1+bc

a satisfies ad− bc = 1. Since there are pn−1 nonunits in Z/pnZ, there are (p− 1)pn−1 units,
so there are ((p− 1)pn−1)(pn)(pn) = (p− 1)p3n−1 matrices in Z/pnZ such that the top left entry is a unit.
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If a is not a unit, b must be a unit. We may choose any element for d, and setting c = ad−1
b satisfies

ad−bc. Choosing one nonunit, one unit, and one arbitrary element gives (pn−1)((p−1)pn−1)pn = (p−1)p3n−2

possible matrices. Therefore,

|SL(2,Z/pnZ)| = (p− 1)p3n−1 + (p− 1)p3n−2 = (p− 1)(p+ 1)p3n−2

To obtain the size of PSL(2,Z/pnZ), recall that

PSL(2,Z/pnZ) = SL(2,Z/pnZ)/{±I}

and {±I} is a normal subgroup of size 2 when p > 2 (i.e. 1 6= −1). For p = 2, I = −I, and PSL(2,Z/pnZ) =
SL(2,Z/pnZ).

As for Jn, we can notice that any identity-like matrix in SL(2,Z/pnZ) can be written in the form[
1 + pa pb
pc 1 + pd

]
where a, b, c, d are elements of Z/pn−1Z. The only restriction that must be satisfied is

(1 + pa)(1 + pd)− p2bc = 1 ⇐⇒ pd =
(1 + p2bc)− (1 + pa)

1 + pa

⇐⇒ d =
pbc− a
1 + pa

Therefore choosing a, b, c determines d uniquely. Sicne a, b, and c can be chosen arbitrarily from Z/pn−1Z,
we find

|Jn| = (pn−1)3 = p3n−3

For p > 2, going from SL(2,Z/pnZ) to PSL(2,Z/pnZ) doesn’t affect the size of Jn, since −I /∈ Jn by
definition. For p = 2, −I = I, so again nothing changes. �

Corollary 3.1 Let M ∈ PSL(2,Z/pnZ) and p > 2. Then M
(p2−1)p

2 is identity-like. If p = 2, then M6 is
identity-like.

Proof. Let ϕn,1 : PSL(2,Z/pnZ) → PSL(2,Z/pZ) be the projection map and p > 2. Since ϕn,1 is a

homomorphism and |PSL(2,Z/pZ)| = (p2−1)p
2 ,

ϕn,1(M
(p2−1)p

2 ) = ϕn,1(M)
(p2−1)p

2 = I

by Lagrange’s theorem. But ϕn,1(M
(p2−1)p

2 ) = I is equivalent to M
(p2−1)p

2 being identity-like. The situation
when p = 2 is analogous. �

This lemma has a somewhat powerful consequence regarding orbits of points on Tp under M . But first,
a definition:

Definition 3.4 Let M ∈ PSL(2,Zp) and let v be a vertex of Tp. Let OrdM (v) be the order of v under the
group action of M .

Since any v ∈ Tp lies in Lk for some k, and all Lk are finite PSL(2,Zp)-invariant sets, OrdM (v) is always
a finite positive integer. We can now state another lemma:

Lemma 3.5 Let M be an identity-like matrix of PSL(2,Zp) and let v be a vertex of Tp lying on the in-
tersection of Lk and an integral branch. Then the order of v under M , OrdM (v), is equal to pm for some
non-negative integer m.
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Proof. By lemma 3.3, it suffices to consider the image of M in PSL(2,Z/pkZ), which we will denote

Mk. Since Mk ∈ Jk, Lagrange’s theorem and lemma 3.4 tells us that Mp3k−3

k = I, and hence Mp3k−3

k (z) = z.
It follows that OrdM (z)|p3k−3, so OrdM (z) = pm for some m ≥ 0. �

Lemma 3.1 shows that we can analyze the action of M ∈ PSL(2,Zp) on Tp by analyzing the permutations
it induces on the finite sets Lk. Lemma 3.2 shows that for certain matrices, we can restrict our attention
to considering the subpermutation M induces on the intersection of each integral branch with Lk. Lemma
3.3 shows we can even reduce M by projecting it down to PSL(2,Z/pkZ). We have reduced studying the
action of PSL(2,Zp) on Tp to studying the action of a finite matrix group on a finite set, which will prove
to be a fairly tractable problem.

3.3 Finding Orbits of Exponentially Increasing Length

Our goal will be to show that for some M ∈ PSL(2,Zp) a fixed e ∈ Zp and a sequence of balls (e + pkZp)
where k →∞, OrdM (e+pkZp) increases quite quickly with respect to k. In fact, as a function of k and with
M properly chosen, OrdM (e + pkZp) will increase exponentially. For this paper, ’increasing exponentially’
will mean that OrdM (e + pkZp) is bounded below by some function ark, where a ∈ R>0 and r ∈ R>1,
although finding precise values of a and r is unimportant to us. The next lemma is the primary building
block of our main theorem:

Lemma 3.6 Let M ∈ PSL(2,Zp), M 6= I be an identity-like matrix, and

M =

[
a b
c d

]
For sufficiently large k and for some e ∈ Zp, OrdM (e+ pkZp) increases exponentially with respect to k.

Proof. We will make the assumption for now that e = 0, and will only be required to take other values
of e in special cases of M . Projection to PSL(2,Z/pZ) shows that all powers Mn are identity-like. Define

Mn =

[
an bn
cn dn

]
Assume for our matrix M that a = 1 + piaua, b = pibub, c = picuc, and d = 1 + 2idud, where ua, ub, uc, ud
are all units and ia, ib, ic, id are all positive integers. We will go through the proof in this general case, and
then explore relaxing these assumptions.

We want to find the order of 0 + pkZp under M , which is equivalent to finding the least n such that

Mn(0 + pkZp) =
bn
dn
− 0 ∈ pkZp

Since dn is a unit for all n, this condition is equivalent to

bn ∈ pkZp ⇐⇒ |bn| ≤ p−k

As we saw from lemma 3.5, 0 + pkZp has orbit length of the form pj . Our calculation will make use of the
binomial theorem for matrices, which we can apply in this case since the identity matrix commutes with all
other matrices.

We will consider the effect of raising M to a single power of p.

Mp =

([
1 + piaua pibub
picuc 1 + pidud

])p

=

([
1 0
0 1

]
+

[
piaua pibub
picuc pidud

])p
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=

p∑
j=0

(
p

j

)[
1 0
0 1

]p−j [
piaua pibub
picuc pidud

]j
We have

(
p
1

)
= p, and a well-known result from elementary combinatorics asserts that p divides

(
p
j

)
for all

1 ≤ j ≤ p− 1.

Also assume for the moment that p ≥ 3, so that p divides each of the entries of Mp−2, and can be factored
out from such a matrix. Then we can factor pM2 out of all terms of the above binomial expression except
the first two: [

1 0
0 1

]
+ p

[
piaua pibub
picuc pidud

]
+ p

[
piaua pibub
picuc pidud

]2 (
...
)

The (...) term represents the rest of the binomial expression after factoring, and can safely be ignored.
Expanding (M − I)2, we have[

1 0
0 1

]
+ p

[
piaua pibub
picuc pidud

]
+ p

[
p2iau2a + pib+icubuc pibub(p

iaua + pidud)
picuc(p

iaua + pidud) p2idu2d + pib+icubuc

](
...
)

Pulling out the upper-right entries, we find

bp = 0 + p(pibub) + p(pibubub(p
iaua + pidud))(...)

= pib+1ub(1 + (piaua + pidud)(...))

As above, (...) represents terms from the rest of the binomial expansion. We now compare |b| to |bp|:

|b| = |pibub| = p−ib , |bp| = |pib+1ub(1 + (piaua + pidud)(...))| = p−(ib+1)

This equation holds because 1 + (piaua + pibub)(...) is a unit.

We have essentially shown that |bp| = 1
p |b|. Now, we can take Mp as our new M and rerun the above

argument on (Mp)p = Mp2

, which will show that |bp2 | = 1
p |bp|. Proceeding inductively,

|bpm | = 1

pm
|b|

For sufficiently large k such that p−k < |b|, the least m such that Mpm

(0 + pkZp) = 0 + pkZp will be the
least m such that

|b|
pm

< p−k

Such an m will be equal to k−C for some constant C depending on |b| but not on k. Therefore, for sufficiently
large k we find that OrdM (0 + pkZp) = pm increases exponentially in k.

We now wish to relax the assumption we made that piaua, pibub, p
icuc, and pidud are all nonzero. From

the expression
bp = pib+1ub(1 + (piaua + pidud)(...))

we can see that piaua = 0, picuc = 0, or pidud = 0 do not affect our result that |bp| = 1
p |b|. On the other

hand, b = 0 appears to create a problem, as this implies M fixes all 0 + pkZp. However, we can resolve this
issue by conjugating M . Let e ∈ Zp. Then[

1 e
0 1

] [
a 0
c d

]([
1 e
0 1

])−1
=

[
1 e
0 1

] [
a 0
c d

] [
1 −e
0 1

]

=

[
1 e
0 1

] [
a −ea
c d− ec

]
=

[
a+ ec −ea+ ed− e2c
c d− ec

]
The upper right term of this matrix is e(d − a − ec). If c 6= 0, we can certainly find some e such that
e(d − a − ec) 6= 0, and after conjugating M the resulting matrix will be identity-like. Showing this new
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matrix has orbits of exponentially increasing length on 0 + pkZp is equivalent to showing M has orbits of
exponentially increasing length on vertices of the form e+ pkZp.

On the other hand, if b = 0 and c = 0, M is a diagonal matrix, and am = am, bm = bm. In this case, we
will let e = 1. Since M(1) = a

d , and more generally Mm(1) = am

dm =
(
a
d

)m
, let a

d = f = 1 + pifuf . We can
write a

d in this form since a
d = ±1 implies M is the identity matrix in PSL(2,Zp).

M(1 + pkZp) = 1 + pkZp ⇐⇒
a

d
− 1 ∈ pkZp

Mm(1 + pkZp) = 1 + pkZp ⇐⇒
(a
d

)m
− 1 ∈ pkZp

Define fm =
(
a
d

)m
= (1 + pifuf )m. We can analyze raising f to the p:

fp = fp = (1 + pifuf )p =

p∑
j=0

(
p

j

)
(pifuf )j

Assuming p ≥ 3 (and using if ≥ 1), we can factor out p2if+1 from
(
p
j

)
(pifuf )j for j ≥ 2, and have

1 + pif+1ua + p2if+1u2f (...)

Therefore

|fp − 1| = 1

p
|f − 1|

An analogous inductive argument as in the previous cases shows that for sufficiently large k, OrdM (1+pkZp)
increases exponentially in k.

We are left with the special case of p = 2. Luckily, a direct calculation will work. Let Mn =

[
an bn
cn dn

]
as usual, and a = 1 + 2iaua, b = 2ibub, c = picuc, and d = 1 + 2idud. Moreover, we want to find the least n
such that

Mn(0 + 2kZ2) = 0 + 2kZ2 ⇐⇒ |bn| ≤ 2−k

0 + 2kZ2 has orbit length 2j for some j. Consider squaring M :

M2 =

([
1 + 2iaua 2ibub

2icuc 1 + 2idud

])2

=

[
1 0
0 1

]
+ 2

[
2iaua 2ibub
2icuc 2idud

]
+

[
2iaua 2ibub
2icuc 2idud

]2
=

[
1 0
0 1

]
+

[
2ia+1ua 2ib+1ub
2ic+1uc 2id+1ud

]
+

[
22iau2a + 2ibicubuc 2ibub(2

iaua + 2idud)
2icuc(2

iaua + 2idud) 22idu2d + 2ib+icubuc

]
So

b2 = 0 + 2ib+1ub + 2ibub(2
iaua + 2idud) = 2ibub(2 + 2iaua + 2idud)

Since 2 + 2iaua + 2idud isn’t a unit, |b2| < |b|. If both ia, id ≥ 2, then in fact |2 + 2iaua + 2idud| = 1
2 , so

|b2| = 1
2 |b|. However, 2 + 2iaua + 2idud might not have norm exactly 1

2 - this scenario could occur if either
ia = 1 or id = 1. In a worst-case scenario, we could have 2 + 2iaua + 2idud = 0, in which case M2 fixes
0 + 2kZ2.

If |2 + 2iaua + 2idud| < 1
2 but 2 + 2iaua + 2idud 6= 0, then |b2| = 1

2l
|b| for some fixed l. However, this

scenario required ia = 1 or id = 1, or in other notation, |a − 1| = 1
2 or |d − 1| = 1

2 . Using the above
calculation, we can observe that

a2 = 1 + 2ia+1ua + 22iau2a + 2ibicubuc
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Each of 2ia+1ua, 22iau2a, and 2ibicubuc have norm at least 1
4 , so |a2−1| < 1

2 . Analogously, |d2−1| < 1
2 . Since

this property avoids the issue we encountered above, we can rerun our calculation and precisely determine
|b4| = 1

2 |b2|. Continuing inductively,

|b2m | =
1

2m−1
|b2| =

1

2m+l−1 |b2|

For sufficiently large k, showing OrdM (0 + 2kZ) increases exponentially in k when k is large.

If (2+2iaua +2idud) = 0, then a+d = 0, or a = −d. Plugging into the determinant equation ad−bc = 1,
−a2 = 1 + bc. Reduce this equation mod 4: b and c are both divisible by 2, so bc vanishes, and we are left
with a2 ≡ −1 mod 4. This equation has no solutions, so we arrive at a contradiction.

If b = 0, then we conjugate as in the p > 2 case and repeat that argument. If b = c = 0, then as before
set e = 1, f = a

d = 1 + 2ifuf , and fm =
(
a
d

)m
= (1 + 2ifuf )m. Then

Mm(1 + 2kZs) = 1 + 2kZ2 ⇐⇒ |fm − 1| ≤ 2−k

We know this point has order 2n for some n, so we’ll analyze the effect of squaring f :

f2 = (1 + 2ifuf )2 = 1 + 2if+1uf + 22ifu2f

Certainly |f2 − 1| < |f − 1|, but |f2 − 1| = 1
2 |f − 1| fails if if = 1, or |f − 1| = 1

2 . However, as long as
2if+1uf + 22ifu2f 6= 0, we will instead obtain some l so that |f2 − 1| = 1

2l
|f − 1|. But now |f2 − 1| < 1

2 , so
we can induct on the above calculation and obtain

|f2m − 1| = 1

2m−1
|f2| =

1

2m+l−1 |f2|

The proof now follows as in p > 2. If in fact 2if+1uf + 22ifu2f = 0, then f2 = 1 and f = ±1, contradicting
our assumptions.

Since the p = 2 case is taken care of, we are done. �

This addresses the question of finding orbits of exponentially increasing length on some branch. Since
we’d like orbits of exponentially increasing length on more than one integral branch, we need to work out
some subtleties related to how we proved lemma 3.6.

3.4 Conjugation and Generalizing to Multiple Branches

Lemma 3.7 Let M ∈ PSL(2,Zp), M 6= I be an identity-like matrix, and

M =

[
a b
c d

]
For at least two integer branches B1, B2 of Tp and for sufficiently large k, there exist points p1, p2, ... ⊂ Bi

such that pi ∈ Ki+k and OrdM (pi) increases exponentially in i.

Proof. This proof will break down into checking several cases. First, assume b 6= 0. Since b 6= 0, we apply
the proof from lemma 3.6, and see directly that points of the form 0 + pkZp has exponentially increasing
orbits under M with respect to k.

Now, let M ′ =

[
1 −e
0 1

]
for some unit e ∈ Zp. Then

M ′M(M ′)−1 =

[
1 −e
0 1

] [
a b
c d

] [
1 e
0 1

]

=

[
1 −e
0 1

] [
a b+ ae
c d+ ec

]
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=

[
a− ec b+ ae− de− e2c
c d+ ec

]
Notice that the term b + ae − de − e2c is a quadratic polynomial with respect to e. Moreover, since b 6= 0,
this polynomial is nonzero, and so only has finitely many solutions e ∈ Zp. Since each branch not containing
0+pZp contains infinitely many possible choices for e, choose any e such that −ce2+e(a−d)+b 6= 0. For this
choice of e, 0 + pkZp has exponentially increasing orbits under M ′M(M ′)−1, so e+ pkZp has exponentially
increasing orbits under M .

We can now turn to the case where b = 0. If c 6= 0, we can conjugate:[
0 −1
1 1

] [
a b
c d

] [
1 −1
1 0

]
=

[
d− c −c

a+ (c− d) a+ c

]
Since −c 6= 0 and conjugation preserves orders of elements within each integral branch (although the branches
and the points themselves could be shuffled), this reduces to the previous case.

If both b = 0 and c = 0, then we know from the proof of lemma 3.6 that 1 + pkZp has exponentially
increasing orbits under M . Moreover, since M(z) = a

dz,

M(2 + pkZp) = 2 + pkZp ⇐⇒ 2
a

z
− 2 ∈ pkZp

If p 6= 2, this condition is equivalent to a
z − 1 ∈ pkZp since 2 is a unit. If p = 2, then

2
(a
z
− 1
)
∈ 2kZ2 ⇐⇒

a

z
− 1 ∈ 2k−1Z2

The above expression, in the context of the proof of lemma 3.6 in the case of p = 2, implies that OrdM (2 +
2kZ2) = 1

2OrdM (1 + 2kZ2) for sufficiently large k. Lastly, observe that 2 + pkZp lies on a different branch
than 1 + pkZp - this last point is worthy of some elaboration, since different behavior occurs for p = 2 and
p > 2. When p > 2, 1 + pZp and 2 + pZp are both adjacent to 0 + Zp, and lie on the branches containing
1 + pkZp and 2 + pZp, respectively. When p = 2, points of the form 2 + 2kZ2 lie on the branch with 0 + 2Z2

as the vertex adjacent to 0 + Z2. �

We now have all the ingredients we need in the p-adic case, and can turn our attention to the case of
Fp((x)).

4 Analyzing PSL(2,Fp[x])

4.1 Geometric Preliminaries

Assume N ∈ PSL(2,Fp[x]) is conjugate to an element of PSL(2,Zp) as tree automorphisms. In other words,
there exists some M ∈ PSL(2,Zp) and some ϕ ∈ Aut(Tp) so that

N = ϕ ◦M ◦ ϕ−1

We will also assume that M is identity-like, since our analysis of actions on PSL(2,Zp) focused on matrices of
this type. We can use the conjugacy equation above to determine a substantial amount of basic information
about N .

First, note that M fixes 0 + Zp. If we let ϕ(0 + Zp) = v0 = r + xk0Fp[x], then

N(r + xk0Fp[x]) = ϕ(M(ϕ−1(r + xk0Fp[x]))) = ϕ(M(0 + Zp)) = ϕ(0 + Zp) = r + xk0Fp[x]

So N fixes v0. Since ϕ is a tree automorphism, it induces a bijection between vertices adjacent to 0 + Zp

and vertices adjacent to v0. Since M fixes all vertices adjacent to 0 + Zp, a calculation similar to above will
show that N fixes all vertices adjacent to v0.
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More generally, let L′k be the set of vertices of distance k from v0. ϕ necessarily induces a bijection
Lk ↔ L′k for every k, and by properties of conjugation the existence of an element of order O under M in
Lk implies the existence of an element of order O under N in L′k, and vice-versa.

We should look at the p+ 1 v0-branches of Tp in relation to N . Since the term ’integral branch’ doesn’t
make sense now that v0 rather than 0+Zp is the branch point, we’ll instead use the term ’downward branch’
to refer to the p branches of v0 not containing ∞ at their boundary. As a tree automorphism, ϕ necessarily
sends branches of 0 + Zp to branches of v0.

Lemma 4.1 Let N and M be as above. Then an integral branch of 0+Zp containing points of exponentially
increasing order is mapped to a downward branch of v0.

Proof. We know from lemma 3.7 that there are at least two integral branches of 0+Zp containing points
of exponentially increasing order. At most one of these branches can be mapped to the single non-downwards
branch of v0, so the other must be mapped to a downwards branch. �

Our plan is now to show directly that no downwards branch of v0 can contain points of exponentially
increasing order. First, note that since N fixes the non-downwards branch containing ∞ at its boundary,
N cannot send any ball on a downwards branch to the inverse of a ball. Moreover, since all balls on
the intersection of some L′k with a downward branch have the same radius, N fixes the radii of balls on
downward branches. Combining these two facts, we obtain that for any q+xkFp[x] on a downwards branch,
N(q + xkFp[x]) = N(q) + xkFp[x].

Lemma 4.2 Fix k ≥ 0 and assume that q = xlquq for some unit uq and lq ∈ Z, so that q + xkFp[x] lies on
a downwards branch of v0. Assume that for some m, Nm is of the form

Nm =

[
1 + xlaua xlbub
xlcuc 1 + xldud

]
for some units ua, ub, uc, ud and integers la, lb, lc, ld ≥ max(k + 1, k + 1− 3lq). Then Nm fixes q + xkFp[x].

Begin with

Nm(q)− q =
(1 + xlaua)q + xlbub
xlcucq + (1 + xldud)

− q

=
(1 + xlaua)q + xlbub − xlcucq2 − (1 + xldud)q

xlcucq + (1 + xldud)

We want to show this expression is in xkFp[x]. Since lc, ld ≥ 1, the norm of xlcucq + (1 + xldud) =
xlcucq + q + xldudq will be p−(lc+lq) if lc + lq < 0, and 1 otherwise. But the norm will certainly be at least
1! Therefore

(1 + xlaua)q + xlbub − xlcucq2 − (1 + xldud)q ∈ xkFp[x]

implies
(1 + xlaua)q + xlbub − xlcucq2 − (1 + xldud)q

xlcucq + (1 + xldud)
∈ xkFp[x]

But
(1 + xlaua)q + xlbub − xlcucq2 − (1 + xldud)q = xlauaq + xlbub − xlcucq2 − xldudq

= xla+lquauq + xlbub − xlc+2lqucu
2
q − xld+lquduq

If lq ≥ 0, then by la + lq, lb, lc + 2lq, ld + lq ≥ k + 1, the above expression must be in xkFp[x]. If lq < 0,
then la, lb, lc, ld ≥ k+ 1− 3lq, and la + lq, lb, lc + 2lq, ld + lq ≥ k. Therefore, the above expression must be in
xkFp[x]. Either way, we obtain

Nm(q)− q ∈ xkFp[x]

⇐⇒ Nm(q + xkFp[x]) = q + xkFp[x]

�

So by calculating powers of N , we can find an upper bound for OrdN (q+xkZp). This calculation is much
less finicky than in the p-adic case, especially since we’re only looking for an upper bound.
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4.2 Showing Orbit Lengths are Linear in k

Lemma 4.3 Let N ∈ PSL(2,Fp[x]) be an identity-like matrix such that N 6= I, and assume

N =

[
a b
c d

]
Also fix q ∈ Fp((x)) and v0 ∈ Tp, and assume N fixes both v0 and its branches. Lastly, assume q + xkZp lies
on a downward branch of v0 for all sufficiently large k. Then for such sufficiently large k, OrdN (q + xkZp)
is bounded above by a linear function of k.

Fix some sufficiently large k ≥ 0, so that q+xkZp = xlquq +xkZp lies on a downwards branch of v0. Let

Nm =

[
am bm
cm dm

]
By the preceding calculation, our goal is to find sufficiently large m so that all elements of Nm − I have
norm less than or equal to p−max(k+1,k+1−3lq). Assume a = 1 + xlaua, b = xlbub, c = xlcuc, and d = xldud,
such that ua, ub, uc, ud are all units and la, lb, lc, ld ≥ 1. Consider raising N to the pth power:

Np =

[
1 + xlaua xlbub
xlcuc 1 + xldud

]p
=

([
1 0
0 1

]
+

[
xlaua xlbub
xlcuc xldud

])p

=

p∑
j=0

(
p

j

)[
xlaua xlbub
xlcuc xldud

]
We now use the fact that p divides

(
p
j

)
for all 1 ≤ j ≤ p − 1. Moreover, since our base ring Fp[x][x] has

characteristic p, all terms in the above binomial expansion will vanish except the first and last. We’re left
with [

1 0
0 1

]
+

[
xlaua xlbub
xlcuc xldud

]p
Now, let lm = min(la, lb, lc, ld) ≥ 1 be the minimal valuation of the entries, so that[

xlaua xlbub
xlcuc xldud

]
= xlm

[
xla−lmua xlb−lmub
xlc−lmuc xld−lmud

]
The above matrix is still an element of PSL(2,Fp[x]), so all of its entries will remain in Fp[x] under matrix
exponentiation. Looking at [

xlaua xlbub
xlcuc xldud

]p
= (xlm)p

[
xla−lmua xlb−lmub
xlc−lmuc xld−lmud

]p
we see that after multiplying (xlm)p = xplm back into the matrix, the minimal valuation of the entries will
be at least xplm .

Define the maximal norm of an identity-like matrix N to be the maximum of the norms of the entries of
N − I. For N above, its maximal norm is p−lm by definition of lm, the minimal valuation. We have shown
that Np has maximal norm at most p−plm .

Np is still identity-like, so we can induct on the above calculation and conclude that the maximal norm
of Npi

is less than or equal to p−p
ilm . After substituting in equivalent definitions, lemma 4.2 directly states

that if the maximal norm of Npi

is less than p−max(k+1,k+1−3lq), then Npi

fixes q+xkFp[x]. But the maximal

norm of Npi

is bounded above by p−p
ilm , and

p−p
ilm ≤ p−max(k+1,k+1−3lq) ⇐⇒ pilm ≥ max(k + 1, k + 1− 3lq)

Now, max(k+ 1, k+ 1− 3lq) increases linearly in k, and lm is fixed. Therefore, the least power pi such that
pilm ≥ max(k + 1, k + 1 − 3lq) also increases linearly in k for sufficiently large k, and is in fact bounded
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above by p ∗max(k + 1, k + 1 − 3lq). But this power pi is exactly what we need to raise N to in order to
guarantee it fixes q + xkFp[x]. Notice we want to determine the rate of growth of pi, rather than i, since pi

is what we’re raising N to.

There are other cases to consider where a = 1, b = 0, c = 0, or d = 1. As long as N 6= I, these cases
follow by a very similar argument. �.

Corollary 4.1 Let N , q, and v0 be as in lemma 4.2. Let v0 = q0 + xk0Fp[x]. Then for sufficiently large k,
OrdN (q + xkFp[x]) is bounded above by a linear function of k − k0.

Proof. This follows directly from the assertion that OrdN (q + xkFp[x]) is bounded above by a linear
function of k, since k is itself a linear function of k − k0. �.

The following lemma refines the above result by showing that a specific choice of q is not important in
determining the bound.

Lemma 4.4 Let N and v0 be as above, and choose some L′k for sufficiently large k. Then for every q +
xk0+kFp[x] on the intersection of the downwards branches of v0 with L′k, OrdN (q + xk0+kFp[x]) is bounded
above by a linear function that depends on k but not on q.

Proof. In the proof of lemma 4.3, we bounded OrdN (q + xk0+kFp[x]) by pmax((k0 + k) + 1, (k0 + k) +
1 − 3lq), where q is written as xlquq + xk0+kFp[x]. However, if v0 = xr0u0 + xk0Fp[x] for some unit u0
and integer r0, then since q + xk0+kFp[x] lies on a downwards branch of v0, we can assume after possibly
rewriting q + xk0+kFp[x] with a different choice of center that lq ≥ r0, since q ∈ xr0u0 + xk0Fp[x]. But
then pmax((k0 + k) + 1, (k0 + k) + 1 − 3lq) < pmax((k0 + k) + 1, (k0 + k) + 1 − 3r0), so we can use
pmax((k0 + k) + 1, (k0 + k) + 1− 3r0) as our bound. Since r0 does not depend on q and this bound is still
linear in k, we’re done. �

We need one more lemma and corollary before the main proof.

Lemma 4.5 Let n ≥ 1 and p > 2. Then

|PSL(2,Fp[x]/xnFp[x])| = (p2 − 1)p3n−2

2

If p = 2, then
|PSL(2,Fp[x]/xnFp[x])| = (p2 − 1)p3n−2

Proof. We can explicitly identify elements of Fp[x]/xnFp[x] with sums of the form
∑n−1

i=0 aix
i, where

each ai ∈ Fp. The proof then proceeds exactly as in lemma 3.4. �

Corollary 4.2 Let N ∈ PSL(2,Fp[x]) and p > 2. Then N
(p2−1)p

2 is identity-like. If p = 2, then N6 is
identity-like.

Proof. The proof is analogous to corollary 3.1.

4.3 The Main Theorem: Incompatible Asymptotics

We are now ready for our main proof! We’ve already done almost all the work, and now just need to fit the
pieces together.

Theorem 4.1 Let f ∈ PSL(2,Zp), g ∈ PSL(2,Fp[x]), and h ∈ Aut(Tp), such that g = h ◦ f ◦ h−1. Then

Ord(f) = Ord(g) < ∞, and moreover Ord(f) = Ord(g) is a divisor of (p2−1)p
2 . If f and g are identity-like,

then in fact Ord(f) = Ord(g) = 1.
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Proof. Assume Ord(f) and Ord(g) are not divisors of (p2−1)p
2 . We know that

g = h ◦ f ◦ h−1

Raise both terms to the (p2−1)p
2 :

g
(p2−1)p

2 = (h ◦ f ◦ h−1)
(p2−1)p

2

g
(p2−1)p

2 = h ◦ f
(p2−1)p

2 ◦ h−1

By lemmas 3.4 and 4.4, both g
(p2−1)p

2 and f
(p2−1)p

2 are identity-like. Moreover, by assumption on the orders,

g
(p2−1)p

2 6= I and f
(p2−1)p

2 6= I. Therefore, without loss of generality, we can assume that our original f and
g were both identity-like and not equal to the identities of their respective groups. Proceeding from this
assumption, let h(0) = v0 (here we think of h as a function from the p-adic Serre tree to the Laurent Serre
tree), where v0 = q0 + xk0Fp[x]. Define Lk as the kth layer from 0 in the p-adic Serre tree, and L′k as the
kth layer from v0 in the Laurent Serre tree. By lemma 3.7, we can find two integral branches B1 and B2

of 0 such that for a sufficiently large k, each Bi ∩ Lk contains a vertex pk,i such that OrdM (pk,i) increases
exponentially with respect to k. By lemma 4.1, one of these branches, say B1, is mapped to a downwards
branch of v0. Rename B1 = B and pk,i = pk. Since conjugation preserves orders of elements, we can consider
the sequence h(pk) ∈ L′k and determine OrdN (h(pk)) = OrdM (pk). By lemma 4.4, OrdN (h(pk)) is bounded
above by an expression that is linear in k. So the sequence OrdN (h(pk)) is both exponentially increasing
with respect to k, and bounded above by some expression that is linear with respect to k. Let e(k) be the
exponential lower bound and l(k) be the linear upper bound. By

e(k) ≤ OrdN (h(pk)) ≤ l(k)

we have
e(k) ≤ l(k)

for all k. Since any increasing exponential function (i.e. one where the base of exponentiation is strictly
greater than 1) will overtake any linear function for sufficiently large k, we obtain a contradiction. �

4.4 A Corollary for Affine Maps

Theorem 4.1 has a corollary for affine maps. First, a familiar definition:

Definition 4.1 Let f(z) = az + b =

[
a b
0 1

]
∈ Aff(Zp), and let π1 : Aff(Zp) → Aff(Z/pZ) be the standard

projection map. Then f is identity-like if π1(f) = I.

Notice that PSL(2,Zp) and Aff(Zp) have nonempty intersection, and the above definition is equivalent
to the definition of identity-like elements of PSL(2,Zp) on the intersection. An analogous definition holds
in the case of Aff(Fp[x]).

As in the special linear case, we can force f to be identity-like by taking a sufficiently high power:

Lemma 4.6 Let f(z) = az + b ∈ Aff(Zp). Then fp(p−1) is identity-like.

Choosing an element of Aff(Fp) requires selecting a unit a from F∗p and an arbitrary element b from Fp.
Fp has p elements, p− 1 of which are units, so necessarily |Aff(Fp)| = p(p− 1). The lemma now follows from
Lagrange’s theorem and the definition of an identity-like affine map. �

Now, the main result.

Corollary 4.3 Let f ∈ Aff(Zp), g ∈ Aff(Fp[x]), and h ∈ Aut(Tp) so that g = h ◦ f ◦ h−1. Then Ord(f) =
Ord(g) <∞, and additionally Ord(f) = Ord(g) is a divisor of p(p− 1).
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Proof Let f , g, and h be as above. Since g = h ◦ f ◦ h−1, g2 = h ◦ f2 ◦ h−1. Now, let f have matrix
representation M , where

M =

[
a b
0 1

]
and a is a unit. f is not generally an element of PSL(2,Zp), but f2 has matrix representation

M2 =

[
a2 b(a+ 1)
0 1

]
This matrix still isn’t an element of PSL(2,Zp), but notice that f2(z) = a2z + b(a+ 1) can also be written

as f2(z) = az+a−1b(a+1)
a−1 , giving an equivalent matrix representation N for f2:

N =

[
a a−1b(a+ 1)
0 a−1

]
and now N ∈ PSL(2,Zp). This issue of different matrix representations hasn’t arisen so far because while a
given linear fractional transformation k ∈ PSL(2,Zp) may have multiple equivalent matrix representations,
only one of them will have determinant 1. However, in this case considering multiple representations is
crucial to show that f2 ∈ PSL(2,Zp). An analogous argument works to show g2 ∈ PSL(2,Fp[x]). Of
course, if f2 and g2 are in PSL(2,Zp) and PSL(2,Fp[x]), respectively, then their iterates are as well.

Since either p or p−1 is even, 2|p(p−1), and fp(p−1) and gp(p−1) are both identity-like and in PSL(2,Zp)
and PSL(2,Fp[x]), respectively. So theorem 4.1 tells us that fp(p−1) and gp(p−1) are identity maps.

References

[1] Borel, A., Tits, J. (1973). Homomorphismes Abstraits de Groups Algebriques Simplies. Annals of Math-
ematics, vol. 97, no. 3, pp. 499-571.

[2] Margulis, G. A. (1989). Discrete Subgroups of Semisimple Lie Groups. Berlin: Springer-Verlag.

[3] Serre, J.-P. (1977). Trees. Trans. Stilwell, J. Berlin: Springer-Verlag.

[4] Brown, K.S. (1989). Buildings. Berlin: Springer-Verlag.

[5] Armitage, J.V., Parker, J.R. (2007). Jørgensen’s Inequality for Non-Archimedean Metric Spaces. In:
Kapranov, M., Manin, Y.I., Moree, P., Kolyada, S., Potyagailo, L. (eds). Geometry and Dynamics of
Groups and Spaces. Progress in Mathematics, vol. 265. Birkhäuser Basel.
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