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Chapter 1

Preface

This is an honor thesis of Yilong Yang, a senior math student at Brown University. This thesis is supposed to
be mainly expository and partly original. This thesis is written under the supervision of Richard Schwartz.

In this thesis I plan to first introduce some general tools for studying billiards and flat structure, from
the most basic setup of billiards to some more sophisticated tools like holonomy representation. These will
be the contents for Chapter 2 and 3.

Then I will use these tools to present the proofs of known facts in the current literature. In particular,
I shall present Patrick Hooper’s proofs that there are no stable periodic billiard path in right triangles, and
neither in isosceles triangles with base angle π

2n where n ≥ 2 is a power of 2. I shall also mention some
corollaries about billiard path in rhombi and rectangles. These will be the first four sections of Chapter 4.

Finally, I will present my own work that a parallelogram with one angle π
4 and modulus 1 has no stable

periodic billiard path. This will be in the last section of Chapter 4.
For prerequisites, Chapter 2 assumes only basic planar geometry. For most of Chapter 3 and 4, the reader

should know what is a geodesic and a flat metric structure, and along with some basic knowledge in algebraic
topology. In particular, the reader is supposed to be familiar with fundamental groups, covering spaces, deck
transformation, singular homology theory, smooth manifolds, Riemannian metric on manifolds and geodesics.
The discussion about Veech dichotomy and some part of Chapter 4 will require some knowledge of hyperbolic
geometry.

The knowledge assumed for this thesis can be found on most textbooks on the subject of algebraic
topology [1], smooth manifolds [2], differential geometry [3], hyperbolic geometry [4] and Riemann surfaces
[5]. Any fact used outside of these sources will be either proven, or given a reference.

I want to thank my great advisors and friends Professors Richard Schwartz and Patrick Hooper who
refer me to this amazing field and offer me constant support. Their program McBilliard and McBilliard2
are amazing sources of inspiration. They can be found on Hooper’s website http://wphooper.com/visual/

web_mcb/ and http://wphooper.com/visual/mcb2/.
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Chapter 2

Introduction to Mathematical
Billiards

In this chapter I will try to present a basic setup of billiards. For more detailed introduction, see the book
Geometry and Billiards by Serge Tabachnikov [6].

2.1 Basic Setup

Figure 2.1.1: The trajectory of a
bouncing billiard ball

A mathematical billiard consists of a domain (the billiard table) and a
mass point (the billiard ball) that moves freely and without fraction in
the domain. The mass point shall move in straight line until it hits the
boundary of the domain. Then the movement of the ball will be reflected
according to the law of reflection, i.e. angle of incidence equals angle of
reflection. See Figure 2.1.1. The study of billiards is to figure out the
nature of this motion, i.e. the trajectory of the billiard ball. We shall
make the following formal definitions.

Definition 2.1.1. A billiard table is a domain T ∈ R2 bounded by a
simple closed piecewise differentiable curve γ. In this case γ is called the
boundary curve .

Figure 2.1.2: A periodic billiard
path

Definition 2.1.2. An orientable line segment is a smooth curve ` :
[0, 1] → R2 with zero second derivative. Its starting point is `(0) and
ending point is `(1), and its vertices are the starting point and the
ending point of it.

Definition 2.1.3. A billiard path is a sequence of oriented line segments
{si}i∈Z inside of a billiard table T with boundary curve γ, such that the
ending point si is the starting point of si+1, and all starting and ending
points of these line segments are nonsingular points on γ. Finally, for
each i ∈ Z, let v be the ending point of si. Then the angles si and si+1

make with the tangent line of γ at v are complementary, i.e. the motion
from si to si+1 obeys the law of reflection.

Definition 2.1.4. A billiard path is called periodic if the sequence {si}
is periodic. See Figure 2.1.2.
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In this thesis we are interested in the case where the billiard table T is a polygon. For the sake of
rigorousness we shall also give a definition of polygons here. This definition shall agree with all our knowledge
about polygons in basic geometry.

Definition 2.1.5. A polygon is a domain T ∈ R2 bounded by a simple closed piecewise linear curve γ. An
n-gon is a polygon T whose boundary curve γ has exactly n linear pieces. These linear pieces will be called
the edges of the polygon, and the singular points will be called the vertices of the polygon.

A major conjecture of the field is the following:

Conjecture 1. Every polygon admits a periodic billiard path.

However, proving this turns out to be far more difficult than expected. In fact, whether every triangle
admits a periodic billiard path is still an open problem. The best known result so far is that every triangle
with no angle more than 100 degree will have a periodic billiard path [7],[8]. The target of this honor thesis is
to try attacking this conjecture with tools from differential geometry about geodesics, and algebraic topology
about covering spaces and homology theory. The main idea would be to represent a billiard path on a billiard
table as a geodesic on certain flat Riemannian surface, and construct a translation surface as a covering space
of that flat surface.

2.2 Orbit Types and Unfolding

Definition 2.2.1. A labeling of an n-gon is a bijection between the set of edges of the n-gon to the set
Z/nZ = {1, 2, 3, ..., n}, where adjacent edges (i.e. edges sharing a vertex) are sent to adjacent numbers in
Z/nZ. A polygon with a labeling is called a labeled polygon .

In the future, we shall treat all polygons as labeled.

Definition 2.2.2. For an n-gon T ∈ R2 and any billiard path {si} in it, let wi be the label of the edge
containing the ending point of si for each i ∈ Z. Then {wi} is a sequence of labels. This is called the orbit
type of the billiard path.

Figure 2.2.1: The unfolding of the triangle in Fig-
ure 2.1.2 according to the orbit type 123123

For example, the orbit type of the path in Fig-
ure 2.1.2 is 123123. Clearly the orbit type of a periodic
billiard path is periodic. We will show that the con-
verse is also true, see Proposition 2.2.6. We will also
show that two billiard paths are ”almost the same” if
they have the same orbit type, see Proposition 2.2.5.

To prove the two propositions, we need an impor-
tant tool, the unfolding. When the billiard ball in a
polygon hits the boundary, instead of reflecting the
motion of the ball, we can reflect the polygon about the edge it hits, and then allow the billiard ball to go
straight through. In this way, we keep reflecting the polygon and the billiard path will be a straight line
through this sequence of polygons. This sequence of polygons forms an unfolding. See Figure 2.2.1.

To be more formal, we shall give the following definition.

Definition 2.2.3. Given a polygon T ∈ R2 and any sequence of labels of edges {wi}i∈Z, let T0 be the polygon
T , and for each i, we let Ti+1 be the polygon obtained by reflecting Ti about the edge with label wi. This
way we inductively construct a sequence of polygons {Ti}, which is called the unfolding corresponding
to the label sequence . Take their union in R2, we have D =

⋃
i∈Z Ti which is the unfolding domain .

If {wi} happens to be the orbit type for a billiard path {si} of T , then we also say this is the unfolding
corresponds to the billiard path .

Definition 2.2.4. Let {si} be a billiard path in T with corresponding unfolding {Ti}. Then each Tj has a
corresponding billiard path {si,j}. Then the unfolding representation of {si} is the union L =

⋃
i∈Z si,i,

which would be a straight line contained in the unfolding domain D.
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Proposition 2.2.5. In a polygon T , if two billiard paths {si} and {`i} have the same orbit type, then si is
parallel to `i for all i ∈ Z.

Proof. Suppose the orbit type is {wi}. Let {Ti} be the corresponding unfolding, and let D be the unfolding
domain. WLOG we can rotate and translate everything so that the unfolding representation of {si} is the
straight line coincide with the x-axis. Let L ⊂ D be the unfolding representation of {`i}.

Now Ti is the same polygons with the same size for all i, so let d > 0 be the diameter of Ti for all i.
Suppose L is not horizontal. Then it can be parameterized by x = ay+b for some a, b ∈ R. Then we can find
a point (x0, y0) on L with y0 > d and x0 = ay0 + b. Then as L ∈ D, (x0, y0) ∈ Ti for some i ∈ Z. However,
as Ti has diameter d and it intersects with the positive x-axis, all points in Ti will have y coordinates less
than or equal to d, contradiction. So we conclude that L is parallel to the x-axis. Then our statement is
true.

The above proposition shows that an orbit type determines the billiard path “up to translation”. So we
can classify billiard paths first by their orbit types.

Proposition 2.2.6. In a polygon T , a billiard path is periodic iff its orbit type is periodic.

Proof. The necessity is clear. To see sufficiency, let {si} be any billiard path with periodic orbit type {wi}
with minimal period p. Now let k = p if p is even and k = 2p if p is odd, so that k is always even. k will be
referred to as the minimal even period in the future. Let {Ti} be the unfolding corresponding to {wi}, D be
the unfolding domain, and L be the unfolding representation of {si}. Now for each Ti, let ci be its centroid.
As k is even, T0 and Tk should have the same orientation, i.e. we can obtain Tk from T0 by a translation
plus rotation. Let t : R2 → R2 be the translation, and r : R2 → R2 be the rotation centered on ck such that
f = r ◦ t will send T0 to Tk. Then by periodicity, fn would send T0 to Tnk.

We connect the points ..., c−2k, c−k, c0, ck, c2k, c3k, ... by line segments. Suppose r is not a rotation by a
multiple of 2π, then ∠c0ckc2k is not a multiple of 2π. Then the points c0, ck, c2k will determine a circle S. (In
case ∠c0ckc2k is an odd multiple of 2π, c0 and c2k will coincide, so S will be the circle with diameter c0ck.)
Now because f is a rigid motion and fn(c0ck) = cnkc(n+1)k and fn(∠c0ckc2k) = ∠cnkc(n+1)kc(n+2)k, we can

see that cnk lies on S for all n ∈ Z. Now let o be the center of S, and let d = sup{|p − o| : p ∈
⋃k
i=0 Ti},

which exists as
⋃k
i=0 Ti is compact. Then by periodicity we have d = sup{|p− o| : p ∈

⋃
i∈Z Ti = D}. Let S′

be the closed ball centered at o with radius d, then D ⊂ S′ must be bounded. However, the straight line L
is contained in D and cannot be bounded, contradiction. So, r must be a rotation by a multiple of 2π. We
conclude that T0 and Tk differ only by a translation.

Now s0 ends in the edge w0, and sk ends in the edge wk = w0 in the same direction. Rotate and scale
everything so that the edge w0 of T is the line segment from (0, 0) to (1, 0). Let s0 ends in (a, 0) and sk
ends in (b, 0), and suppose a 6= b. WLOG let b > a. Then by periodicity of the unfolding, s2k would ends in
(b+ (b− a), 0), and snk would ends in (a+n(b− a), 0). For n large enough, we would have a+n(b− a) > 1,
then snk would be out of the polygon Tnk, contradiction. So, we can only have a = b. So s0 and sk would
be line segments in T ending in the same spot with the same direction. So the billiard path would repeat
itself ever since. So the billiard path is periodic.

Corollary 2.2.7. If a billiard path is periodic, let {Ti} be the corresponding unfolding, and let p be the
minimal even period. Then Tp can be obtained from T0 by a translation, and this translation is in the
direction of the unfolding representation L of the billiard path.

2.3 Space of Labeled n-gons and Stable Periodic Billiard Path

Given a particular polygon, there are many ways to label its edges, and different ways of labeling will give the
same billiard path different orbit types. So to study billiard paths by the orbit type, it would be convenient
to have a space of labeled n-gons.

Definition 2.3.1. The space of labeled n-gons is P̃n = {n-gons in R2 with a labeling}.
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Proposition 2.3.2. P̃n can be seen as an open subset of R2n.

Proof. Consider the map f : P̃n → R2n such that for each labeled polygon T , let vi ∈ R2 be the vertex
between edges i and edges i + 1, then f(T ) = (v1, ..., vn) ∈ R2n. Since each polygon is determined by its

vertices, and the ordering of its vertices determines its labeling, we see that this map is injective. So P̃n can
be seen as a subset of R2n.

Now if the collection of n vertices v = (v1, ..., vn) form a labeled polygon, let r = 1
2 mini,j |vi − vj |.

Let Bi be the open ball in R2 with center vi and radius r, and consider the open set R = ΠBi. For any
p = (p1, ..., pn) ∈ R, then pi ∈ Bi for all i, and consider the polygonal curve γ by joining p1p2, ..., pnp1. This
is a closed piecewise linear curve. Now if vivi+1 and vjvj+1 are disjoint line segments, then the vertices of
these two line segments are at least 2r units apart, so points on one of the line segments will be at least 2r
apart from points on the other. So pipi+1 and pjpj+1 cannot intersect. So γ indeed determines a polygon
T . We give the edge with vertices pn, p1 the label 1, and give the edge with vertices pi, pi+1 the label i+ 1.

Then p ∈ P̃n. So R ⊂ P̃n. So P̃n is open.

However, this space is too large for our purpose. For example, congruent labeled polygons will have the
same configuration of billiard paths.

Definition 2.3.3. A function f : R2 → R2 that is the composition of a rigid motion and a scaling is called a
congruence maps. For any unlabeled polygon T and T ′, if f : T → T ′ is a congruence map, then f would
induce a bijection between edges of T and edges of T ′. Let ` : {edges of T} → Z/nZ be any labeling for T ,
then we will have an induced labeling for T ′, defined by f∗`(a) = ` ◦ f(a) for each edge a of T ′.

Definition 2.3.4. Two labeled polygons T, T ′ ∈ P̃n, with labeling `, `′ respectively, are said to be congruent
if there exists a congruence map f : T → T ′ such that f∗` = `′.

Proposition 2.3.5. Congruence is an equivalence relation.

Proof. It is reflexive because all T ∈ P̃n is congruent to itself through the identity map. If T is congruent to
T ′ through map f , and T ′ is congruent to T ′′ through map g, then T is congruent to T ′′ through map g ◦ f .
Finally, as rigid motions are invertible with inverse again a rigid motion, and the same is true for scaling, we
see that a congruence map will have an inverse a congruence map. So if T is congruent to T ′ through map
f , then T ′ is congruent to T through map f−1.

Proposition 2.3.6. If T, T ′ ∈ P̃n are two congruent polygons, and w = {wi} is certain orbit type. Then T
has a billiard path with orbit type w iff T ′ has a billiard path with orbit type w.

Proof. Let {si} be a billiard path for T with orbit type w, then {f(si)} would be a billiard path for T ′. The
ending point of f(si) would lie on the edge whose preimage on T has label wi. Then this edge will also have
label wi. So {f(si)} will have orbit type w as well. The other direction follows from the fact that congruence
is an equivalence relation.

The above proposition says that we can work only on congruence classes of labeled polygons and ask if
they have billiard paths of certain orbit type. So the main objects of interests are the following.

Definition 2.3.7. The space of labeled n-gons modulo congruence is Pn = P̃n/ ∼, where ∼ is the
congruence relation among n-gons, and we endorse Pn with the quotient topology.

Proposition 2.3.8. Pn can be seen as an open subset R2n−4.

Proof. For each congruence class, pick any representative with vertices (v1, ..., vn). Then we translate so
that v1 = (0, 0), and rotate and scale so that v2 = (1, 0), and we finally reflect so that v3 is in the upper
half plane. This gives a map from Pn to an open subset of R2n−4. It is trivial to check that this map is a
well-defined embedding.

6



Definition 2.3.9. Given an orbit type w = {wi}, its orbit tile T (w) ⊂ Pn is the set of all congruence
classes of labeled n-gons which have a billiard path with orbit type w. An orbit type is stable if its orbit
tile is an open set. A periodic billiard path is stable if its orbit type is stable.

Now we can restate Conjecture 1.

Conjecture 2. Given n ≥ 3,
⋃

periodic orbit types w T (w) = Pn.

Observe Figure 2.2.1 again. Clearly the unfolding domain has two “boundaries”, an upper one and a
lower one, both piecewise linear. The following definition and proposition formalize this observation.

Definition 2.3.10. Given a polygon T and a periodic orbit type {wi} with minimal even period p, let {Ti}
be the corresponding unfolding. For each Ti, let bdryi be the union of all its vertices and all its edges with
edge-label different from wi−1 or wi. The boundary of the unfolding domain D is the union of all bdryi.

Proposition 2.3.11. The boundary of the unfolding domain is always the union of two unique piecewise
linear curve.

Proof. For T0, clearly bdry0 has two connected components, both are piecewise linear curves (here we treat a
single vertex as a piecewise linear curve). Let us denote these as u0 and `0. Now suppose ∪ni=−nbdryi is the
union of two disjoint piecewise linear curve, let the one contain u0 be un and let the one contain `0 be `n.
Then for Tn+1, bdryn+1 also has two connected components, both piecewise linear, and they are connected
to un, `n through the two vertices of the wn edge of Tn respectively. So we can extend un and `n to include
these two components respectively. Note that as no piece in bdryn+1 can contain both vertices of wn, this
extension is unique. Similarly we also extend them uniquely to include the two pieces in bdry−n−1. This
way we obtain un+1 and `n+1. Then we are done by induction.

Definition 2.3.12. Given two piecewise linear curve γ, γ′ ⊂ R2, we say they are separable if there is a
straight line L ⊂ R2 such that γ and γ′ are contained in the two distinct connected components of R2 − L.

Lemma 2.3.13 (Periodic Billiard Path Existence Lemma). Given any polygon T and any periodic orbit
type w = {wi} with minimal even period p and unfolding {Ti}, then T admits a billiard path with orbit type
w iff the two piecewise linear curves in the boundary of the unfolding domain are separable.

Proof. First let us prove sufficiency. Let L be the unfolding representation of the billiard path {si} whose
orbit type is w. Then L is a straight line contained in the unfolding domain D. Since L only touch the edge
wi−1 and wi of Ti, it is disjoint from the two piecewise linear curves in the boundary of the unfolding domain,
and since L ⊂ D, the two curve of D must be on different side of L, i.e. L separates the two piecewise linear
curves in the boundary of the unfolding domain. Then we are done.

Now for necessity, let L be the line separating the two piecewise linear curves in the boundary of the
unfolding domain D. Then clearly L ⊂ D, and for each Ti, L intersects Ti only with its wi−1 and wi edges.
Now clearly Ti and T are congruent as labeled polygons, so let fi : Ti → T be a congruence map. Let
ti = L ∩ Ti, and si = fi(ti) for all i. I claim that {si} is a periodic billiard path in T with orbit type wi.
Indeed, as fi are label preserving, each si start in edge wi−1 and ends in edge wi. Since Ti and Ti+1 differs
only by reflection r : Ti+1 → Ti about wi edge, we see that fi+1 = fi ◦ r. Now as r is a reflection, and ti and
ti+1 are on the same line L and they connect on the a single point on wi+1, we see that ti and r(ti+1) hit the
same point on the wi+1 edge of Ti, and their angles with wi+1 edge are complementary. So the same must
be true for fi(ti) = si and fi(r(ti+1)) = fi+1(ti+1) = si+1. So {si} is a periodic billiard path with orbit type
w.

The above lemma is nicely exemplified by Figure 2.2.1.
Now we can move on the discussion of stable periodic billiard path and the unstable ones. Intuitively,

stable billiard path are those that survives any small perturbation of the polygon. So it is more effective to
use stable periodic orbits to cover Pn. However, there are many polygons without stable periodic billiard
path, e.g. all right triangles [9]. So an understanding of the unstable ones is also important.
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Proposition 2.3.14. Given an unstable periodic orbit type with nonempty orbit tile, assuming the relation∑n
i=1 θi = (n − 2)π where θi are all the inner angles. There exists a unique nontrivial linear relation over

R on inner angles such that any n-gon whose congruence class is in that orbit tile will satisfy this linear
relation. Furthermore, the coefficients of this relation can be taken to be in Z. On the other hand, for a
stable periodic orbit type with nonempty orbit tile, there is no such linear relation.

Proof. Fix an arbitrary periodic orbit type. For any n-gon T in its orbit tile, let θi be the angle between
edges i and i + 1 for all i ∈ Z/nZ. We will use [s, t] to denote

∑
i∈{s,s+1,...,t−1}⊂Z/nZ θi. The i-th vertex

would be the vertex for the angle θi.
Let w = {w1, ..., w2p} be a single minimal even period for the given periodic orbit type, and let {Ti} be

the unfolding for the orbit type. For each k ∈ Z+, T2k+1 is obtained from T2k−1 by reflecting through the
edge w2k−1 and then reflecting through the edge w2k. So from T2k−1 to T2k+1 would be a translation plus
a rotation of degree 2[w2k−1, w2k]. Now since T1 to T2p+1 is just a translation as in Corollary 2.2.7, we have∑p
k=1 2[w2k−1, w2k] = 0. This is a linear relation with even integer coefficients on inner angles, and it is

satisfied by all n-gons in the orbit tile of the given orbit type.
If this is trivial or equivalent to the relation that the sum of inner angles is (n− 2)π, then for all n-gons

T , let {Ti} be the corresponding unfolding, then from T0 to T2p is a translation. Let P be any polygon
whose congruence class is in the orbit tile. Let D be its unfolding domain. Then by the periodic billiard path
existence lemma, the boundary of the unfolding domain is the union of two separable piecewise linear curves.
Let L be such a separating line, and let r > 0 be the minimal distance from any point of the boundary of
the unfolding domain to the line L.

Let Q be a polygon such that the i-th vertex of it is less than ε > 0 away from the i-th vertex of P
for all i, where ε is a small value to be determined. Note that the set of all such n-gons forms an open
neighborhood of P . We translate, rotate and scale Q to obtain Q′ such that the centroid of Q′ is the same
as P , and in the unfolding the centroid of Q′2p is the same as P2p. Note that the amount of translation and
rotation for ε small enough can be made arbitrarily small. So the i-th vertex of Q′ can be made arbitrarily
near to the i-th vertex of P . Now once corresponding vertices of P0, Q

′
0 can be made arbitrarily near, then

the corresponding vertices of P1, Q
′
1 can also be made arbitrarily near, and so forth. So we set ε > 0 so small

that the corresponding vertices of Pi, Q
′
i are less than r away for all i ∈ {0, 1, ..., 2p − 1}. This is possible

since we only required this for finitely many i.
Now by periodicity, corresponding vertices of Pi, Q

′
i are less than r away for all i ∈ Z. Then the two

piecewise linear curves in the boundary of unfolding domain for Q′ will never touch the line L, and L will
be in this unfolding domain. Then by periodic billiard path existence lemma, Q′ has a periodic billiard path
with the given orbit type, and thus does Q. So, the orbit tile for the orbit type is open. So the orbit type is
stable.

Now if the linear relation
∑p
k=1 2[w2k−1, w2k] = 0 is nontrivial and not equivalent with the relation that

the sum of inner angles is (n − 2)π. Then this linear relation gives a hypersurface of P, and as the orbit
tile is a subset of this hypersurface, it cannot be open. So the orbit type is unstable. However, by similar
arguments as above we can see that the orbit tile is an open subset of this hypersurface.

Finally, suppose there is any other linear relation over R on inner angles satisfied by all polygons in the
orbit type. If the orbit type is stable, this means that the orbit tile is contained in a hypersurface, and thus
not open, contradiction. If the orbit type is unstable, then this means that the orbit tile is contained in two
distinct hypersurfaces. Then their intersection cannot be open in each of the hypersurfaces, contradiction.
So we are done.

Definition 2.3.15. The linear relation in the above proposition is called the canonical linear relation
for the orbit type.

Definition 2.3.16. A finite sequence of labels (w1, ..., wp), where wi ∈ {1, ..., n}, is said to be well-balanced
if for each k ∈ {1, ..., n}, #{wi : i is even and wi = k} = #{wi : i is odd and wi = k}.

For example, the sequence 123123 is well-balanced, but 12341234 is not.

Proposition 2.3.17. A periodic orbit type is stable iff a single minimal even period of it is well-balanced.
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Proof. Let f(θ1, ..., θn) = 0 be the canonical linear relation for the orbit type w = {wi} with minimal even
period 2p, and let w′ = {w1, ..., w2p}. We shall show that, assuming the relation

∑n
i=1 θi = (n − 2)π, w′ is

well-balanced iff f ≡ 0.
Now for any a, b, c ∈ Z/nZ, we clearly have by definition [a, b]+[b, c] = [a, c]+S where S is a multiple of the

sum
∑n
i=1 θi. This sum is a multiple of π, so 2S is a multiple of 2π, and thus 2S = 0. So 2[a, b]+2[b, c] = 2[a, c].

As a result, if w′ is well balanced, we have f ≡ 0.
On the other hand, suppose f ≡ 0. Let [a, b] be an interval in f , i.e. [a, b] = [w2k−1, w2k] for some k. Now

θb−1 is contained in even number of intervals, and so does θb, but [a, b] does not contain θb any more. So,
there exists [b, c] an interval of f . Because f has finitely many intervals, keep doing this, we can eventually
find an interval ending in a, and all these intervals we find sums up to 0. Now we throw these intervals away
from f as they sum up to 0. if there is no other interval left, then clearly w′ is well balanced. Otherwise we
pick any interval left, and repeat the above process. As f has finitely many intervals, eventually there will
be no interval left, and we see that w′ is well-balanced.

Corollary 2.3.18. If an orbit type has odd minimal period, then it is stable.
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Chapter 3

Billiards, Geodesics and Homology

3.1 The Fundamental Correspondence between Geodesics and Bil-
liard Paths.

Figure 3.1.1: The
double of a quadri-
lateral

The idea of billiards is to imitate the motion of light. We know light always travels
through some form of geodesics. Therefore, one should expect some relation between
billiard paths and geodesics. This chapter serves to illustrate this relation and some
of its immediate consequences.

We start by building a flat Riemannian manifold corresponding to each polygon,
the double of the polygon.

Definition 3.1.1. Given an n-gon P , its double DP is the union of two copies of
P with boundary identified in the canonical way, and with vertices removed. See
Figure 3.1.1. This is topologically a sphere with n punctures.

Definition 3.1.2. Given a polygon P , there is a natural folding map φ : DP → P that send each copy of
P in DP to P by the identity map. The preimage of each edge of P is called an edge of DP .

Proposition 3.1.3. The double DP of a polygon P has a natural flat Riemannian manifold structure.

Proof. The fact that DP is a smooth manifold is trivial. So we only need to construct the Riemannian
metric.

Let the P1, P2 be the two copies of P without vertices in DP . Let P ′1, P
′
2 be the interior of P1, P2

respectively. Then for each edge wi of P , let Ui = P ′1 ∪ P ′2 ∪ w′i where w′i ⊂ DP is the edge of DP
corresponding to wi. Clearly these Ui are open subsets of DP . However, if we reflect P about edge wi to
get Q, and we take the interior V of P ∪Q, then this open subset of R2 is clearly homeomorphic to Ui. Let
φi : Ui → V be this homeomorphism. Then we can pull back the flat metric structure from V to Ui.

Now we have a flat metric structure for all Ui. For any i, j, Ui ∩ Uj = P ′1 ∪ P ′2, and the metric on Ui
restricted to this intersection is clearly just the one induced by the metric on P . So the metric structure on
these Ui agrees with each other, and this gives us a flat metric structure on DP .

The target of this section is the following theorem:

Theorem 3.1.4 (Fundamental correspondence between billiard paths and geodesics). For a polygon P ,
there is a one-to-one correspondence between complete geodesics on DP and billiard paths on P , such that:
(1) A billiard path on P is periodic iff its corresponding geodesic on DP is closed. (2) A periodic billiard
path on P is stable iff its corresponding closed geodesics on DP is null homologous.

We shall break it into two parts.
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Proposition 3.1.5. For a polygon P , there is a one-to-one correspondence between complete geodesics on
DP and billiard paths on P , such that a billiard path on P is periodic iff its corresponding geodesic on DP
is closed.

Proof. Step 1: Let us first find a complete geodesic for each billiard path. Fix a billiard path {si} in P .
Let P1, P2 be the two distinct copies of P without vertices in DP , and let j1 : P1 → DP, j2 : P2 → DP
be the inclusion maps. Now {si} can also be seen as billiard paths on P1, P2, so we can have geodesic
segments {ji(si)} on DP where ji = j1 when i is odd, and ji = j2 when i is even. I claim that their union
γ =

⋃
i∈Z ji(si) form a complete geodesics.

Now for each i, ji(si) is a geodesic segment ending in an edge in one copy of P in DP . ji+1(si+1) is a
geodesic segment starting in the same edge at the same point. So all these si will connect to each other,
and their union γ is a piecewise geodesic curve. Now suppose si ends in edge wi, and we construct Ui as in
Proposition 3.1.3, then the interior of the curve ji(si) ∪ ji+1(si+1) would be a straight line segment in Ui.
So γ satisfies the geodesic condition at the ending points of each ji(si) as well. So γ is a geodesic. To show
that γ is a complete geodesic, we fix a point p, the starting point of s0. Then we want to show that γ is
bi-infinite from p, i.e.

∑
i≥0 length(si) =

∑
i<0 length(si) =∞.

Suppose
∑
i≥0 length(si) < ∞. Then we know limi→∞ length(si) = 0. Then ∀ε > 0∃N ∈ Z+ such that

length(si) < ε for all i ≥ N . Now let D be the set of disjoint pair of edges of P . This is clearly finite. Set
ε < 1

2 min(w,w′)∈D dist(w,w
′) where dist(w,w′) is the minimal distance between any points on w and any

points on w′. This is positive for (w,w′) ∈ D as w,w′ are disjoint. Because D is finite, ε > 0. Now we find
the corresponding N ∈ Z+ such that length(si) < ε for all i ≥ N . Suppose the line segment sN in P has
vertices on edge e and edge e′, then as length(sN ) < ε < min(w,w′)∈D dist(w,w

′), edges e and e′ must share
a vertex. Further more, as length(si) + length(si+1) < 2ε < min(w,w′)∈D dist(w,w

′) for all i ≥ N , we see
that for all i ≥ N , if si ends in edges e and e′, then so does si+1. So by induction, all si ends in e, e′ for
i ≥ N . Now let {Ti} be the unfolding for {si} and let L be the unfolding representation for {si}. Because
si ends in e, e′ for all i ≥ N , from Ti to Ti+1 after TN is just reflection about e or e′ alternatively. So, let
θ be the inner angle between e, e′, the motion from Ti to Ti+2 after TN is a simple rotation of degree 2θ
around the vertex v between e, e′. Now for any integer M > N with same parity as N , then TM is a rotation
around v with degree (M −N)θ, and the straight line L goes through all Ti between TN , TM . So we must
have (M −N)θ < π. But let M →∞, we have θ = 0, contradiction. So

∑
i≥0 length(si) =∞. Similarly we

have
∑
i<0 length(si) =∞, so γ is a complete geodesic.

Step 2: Now for each complete geodesic γ on DP , we can treat it as a function γ : R → DP . Let
C = {c ∈ R : γ(c) is on an edge of DP}. Now for each point p ∈ C, γ(p) is on an edge of DP . Let U
a small neighborhood of γ(p) containing on other edges than the one containing γ(p). Then γ−1(U) is a
neighborhood of p. Furthermore, as the geodesic γ cannot touch two points on the same edge without going
through other edges, we conclude that γ−1(U) ∩ C = {p}. So C is discrete. It is also closed because the
union of all edges is closed in DP and C is the preimage of this union. So C is countable. Further more,
because maximal geodesics in P have finite length and γ has infinite length, each time γ enters a copy of
P , it must leave it eventually, so C cannot have upper bound or lower bound. So, if we index the element
of C by their order, i.e. C = {ci}i∈Z with ci > cj iff i > j, then we can define s′i = [ci, ci+1] ⊂ R, and⋃
s′i = R. Let φ : DP → P be the folding map, and define si = φ ◦ γ(s′i), then I claim that {si} is a billiard

path in P . If so, then the map γ → {si} here is clearly an inverse of the correspondence in Step 1. So the
correspondence between billiard paths and complete geodesics is indeed one-to-one.

For all i, si is clearly an oriented line segments, and its vertices are clearly on edges of P . The ending
point of si is φ◦γ(ci+1), which is exactly the starting point of si+1. Finally, let wi be the edge containing the
ending point of si, and we construct the corresponding open subset Ui of DP as in Proposition 3.1.3. Then
as the interior of γ(s′i)∪γ(s′i+1) is a part of γ, it is a geodesic in Ui. By the definition of the metric structure
on Ui, after the folding map, the motion from si to si+1 will automatically satisfy the law of reflection. So
{si} is indeed a billiard path.

Step 3: For a periodic billiard path {si} with minimal even period 2k, let γ be the corresponding geodesic
in DP as constructed in Step 1. Then j0(s0) is a geodesic segment in P2 ⊂ DP . Now as 2k is even, j2k(s2k) is
also a geodesic segment in P2. Finally, because j2k = j0 by definition and s0 = s2k, we have j0(s0) = j2k(s2k),
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so γ closed up.
Now suppose γ is a closed geodesic in DP . Then the sequence {s′i} as in Step 2 is clearly periodic. So

the billiard path {si} = {φ ◦ γ(s′i)} is periodic. So, we have proven property (1) of the correspondence.

For the second part, we will need some more sophisticated tools introduced in the next section.

3.2 Holonomy Representation

We shall generalize the ideal of unfolding by constructing the universal covering space for the double of a
polygon, and introduce the holonomy representation as a tool. For a more detailed introduction, see reference
[10].

For any n ≥ 3, let G be the free product of n copies of Z/2Z, and let the generators for these Z/2Z be
g1, ..., gn. Let P be any labeled n-gon. Then let gi(P ) be the polygon obtained by reflecting P about its
edge with label i. Now fix an n-gon P , and let P ′ be P without vertices. For each g ∈ G, if g = a1a2...ak
is its expression in generators g1, ..., gn, then Pg = a1 ◦ ... ◦ ak(P ′). Let G(P ) =

⊔
g∈G Pg. Now we identify

an edge of Pg with an edge of Pg′ iff the edges identified have the same label i, and g′ = gi · g. After this

identification, let’s denote the result D̃P . See Figure 3.2.1.

Figure 3.2.1: Part of the uni-
versal covering space of the dou-
ble of a triangle, where triangles
are treated as having no over-
lap. Vertices should be treated
as thrown away.

Definition 3.2.1. In the construction above, the height of g ∈ G is the
minimal integer k such that we can express g as product of generators
g = a1...ak. g has height 0 iff g is the identity element.

Proposition 3.2.2. Each g ∈ G with height k > 0 has a unique minimal
expression g = a1...ak in generators.

Proof. Suppose g = a1...ak = b1...bk are two minimal expression. Then
a1...akb

−1
k ...b−11 = e the identity. But then as a1...ak and b1...bk are

minimal the only cancellation has to be akb
−1
k = 0. After cancellation,

for the same reason we must have ak−1b
−1
k−1 = 0, and so on. After finitely

many steps, we have ai = bi for all i.

Intuitively, the D̃P constructed above is obtained by keep reflect-
ing (unfolding) P in all possible ways, and glue these resulting polygons
through their edge of reflection. Thus this is indeed a generalization of
the unfolding. Now each reflection change orientation. We can define a
map π : D̃P → DP that maps positively oriented copies of P in D̃P to
one copy of P in DP , and maps negatively oriented copies of P in D̃P to
the other copy of P in D. This is indeed a covering map. Now we want
to show that it’s the universal cover.

Proposition 3.2.3. In the construction above, D̃P is the universal covering space of DP . It has a natural
flat Riemannian manifold structure induced by its covering of DP .

Proof. D̃P is clearly a covering space of DP by construction, and the second statement is trivial. So we only
need to show that D̃P is simply connected. Let γ be any closed curves with base point v ∈ Pe ⊂ D̃P , where
e is the identity element of G, i.e. Pe is P itself without vertices. Define the height k of γ be the maximal
height of g ∈ G such that γ ∩ int(Pg) 6= ∅, where int means the interior. Such k is not infinity because a
close curve is compact. We shall perform induction on k, the height of γ.

Let g ∈ G be the one with height equal k, such that γ ∩ int(Pg) 6= ∅. Now if γ is disjoint from the edges
of Pg, then by continuity γ is entirely contained in Pg. So, because Pg is simply connected, g = e and γ is
null-homotopic. Note that this is the case k = 0.

If γ exits or enters Pg through an edge with label i of Pg, then γ intersects with int(Pgi·g). If g = a1...ak
is a minimal expression of g in generators, then gi · g = gia1...ak. But then as gi · g cannot have height k+ 1,
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we have gi = a−11 = a1, so such i is unique. In other words, γ only exits or enters Pg through the edge with
label i, and not with any other edge. Now let α be any connected component of γ ∩ Pg. Then α must start
from some point in i edge, and end in some point in i edge. As Pg is simply connected, α is homotopic to
a curve α′ starting from the same point and ending in the same point, but entirely contained in the i edge.
Do this for all connected components of γ ∩Pg, we obtain a homotopy from γ to a closed curve γ′ which has
no intersection with int(Pg). Keep doing this for all g ∈ G with height equal k and γ ∩ int(Pg) 6= ∅, we end
up with γ homotopic to a closed loop γ′ of height k − 1. Then we are done by induction hypothesis.

Now we shall generalize the ideal of unfolding domain.

Proposition 3.2.4. There is a locally isometric immersion of D̃P into R2.

Proof. Recall that P as a polygon can be seen as a subset of R2. Then this will induce an embedding of
each Pg into R2 by performing the reflection required by g on P ⊂ R2. Furthermore, Pg and Pg·gi are clearly

embedded to share the edge i. So this induce a locally isometric immersion of D̃P into R2.

Definition 3.2.5. The above immersion is called the developing map.

Corollary 3.2.6. Given a polygon P and a billiard path {si}, let γ be the corresponding complete geodesic

on DP . Let γ̃ be the lifting of γ to a geodesic on D̃P , and let {Pi}i∈Z be the sequence of copies of P passed

through by γ̃ on D̃P . Then dev(
⋃
i∈Z Pi) is the unfolding domain corresponding to the billiard path {si}.

Proof. This is just by the definition of the developing map and the unfolding domain.

Given a periodic billiard path {si} with minimal even period k in a polygon P , let {Pi} be the unfolding.
Then the rigid motion transforming P0 to Pk is a translation. Now we want to generalize this idea and
construct a map from closed curves on DP to orientation preserving isometries on R2, i.e. rotation plus
translation.

Lemma 3.2.7. Let Aut(D̃P ) be the group of deck transformations of D̃P over DP . Then for any f ∈
Aut(D̃P ), f(Pe) = Pg for some g ∈ G with even height. Here e is the identity of G.

Proof. Let P0, P1 be the two copies of P without vertices in DP . If Pg is in the preimage of P0, then all Ph
adjacent to Pg will be in the preimage of P1. The same is true the other way. Now WLOG suppose Pe is in
the preimage of P0. For any Pg in the preimage of P0, from P0 to Pg, we must go through even number of
edges. So g = a1...ak is an expression of g in generators with k even. Now all cancellations happen in pairs,
so in the minimal expression of g in generators, the length of the expression is still an even number. So g
has even height. Now f is a deck transformation, so it must send Pe to some Pg in the preimage of P0, so g
has even height.

Proposition 3.2.8. There is a group homomorphism hol : π1(DP ) → Isom+(R2), such that for all a ∈
π1(DP ), the following diagram commutes:

D̃P
ψ(a)- D̃P

R2

dev

?
hol(a)- R2

dev

?

Here dev is the developing map, ψ is the isomorphism from π1(DP ) to the deck transformations of the

universal cover D̃P .
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Proof. For any a ∈ π1(DP ), as ψ(a) is a deck transformation from D̃P to itself, it will send Pe to Pg for
some g ∈ G with even height. Here e is the identity in G as usual. Since g has even height, let g = a1...ak
be the minimal expression for g in generators with k even. Then recall that each generator gi corresponds
to a reflection about the edge i, so g corresponds to k reflections. As k is even, g corresponds to an element
in Isom+(R2). Let this element be hol(a). This expression is unique as the minimal expression of g in
generators is unique. So hol : π1(DP )→ Isom+(R2) is well-defined. Also note that by the definition of the
developing map, we have dev(Pg·h) = hol(a)dev(Ph) for all h ∈ G.

Now for each h ∈ G, we have dev ◦ψ(a)(Ph) = dev(Pg·h) = hol(a)◦dev(Ph). Because for each h ∈ G, the
developing map restricted to Ph is an isometric embedding of Ph into R2, we have a commutative diagram:

Ph
ψ(a)- Pg·h

R2

dev

?
hol(a)- R2

dev

?

Now because D̃P =
⋃
h∈G Ph, we have the commutative diagram for D̃P as desired.

Finally, we need to check group homomorphism. For any a, b ∈ π1(DP ), suppose ψ(a) sends Pe to Pg
and ψ(b) send Pe to Ph. Then ψ(a · b) = ψ(a) ◦ψ(b) will send Pe to Pg·h. Now the composition of reflections
in g is hol(a), and the composition of reflections in h is hol(b). So the composition of reflections in g · h is
hol(a) · hol(b). So hol(a · b) = hol(a) · hol(b).

Definition 3.2.9. The map hol : π1(DP )→ Isom+(R2) is the holonomy map of DP .

Now we go further to examine the first homology group on DP , and complete Step 4 in Theorem 3.1.4.
We know H1(DP,Z) is the abelianization of π1(DP ).

Proposition 3.2.10. The abelianization of Isom+(R2) is the group on unit circle S1.

Proof. We know an element of Isom+(R2) is a translation plus rotation. So we have a map ab : Isom+(R2)→
S1 by forgetting the translation, i.e. ker(ab) is the normal subgroup of all translations. Now because S1 is
an abelian group, we know the commutator subgroup C of Isom+(R2) must be contained in the kernel of
ab. On the other hand, any f ∈ ker(ab), then f is a translation. Let r0 be the rotation by π around the
origin of R2, and let f ′ be half of the translation of f . Then we have f = r−10 f ′−1r0f

′ ∈ C. So C = ker(ab),
and ab is indeed the abelianization.

Definition 3.2.11. The holonomy representation for homology is the homomorphism holab : H1(DP,Z)→
S1 descended through abelianization from the holonomy hol : π1(DP )→ Isom+(R2). i.e. if we let ab denote
the abelianization map, we have a commutative diagram:

π1(DP )
hol - Isom+(R2)

H1(DP,Z)

ab

? holab - S1

ab

?

Given an n-gon P , we know DP is topologically a sphere with n-punctures, each corresponding to a
vertex of P . We can label vertices of P according to its labeling of edges, i.e. vertex i is the one between
edge i and edge i+ 1. So, we can label punctures of DP . In the following discussion, we shall let αi be the
homology class represented by a simple closed loop around the puncture i, such that each αi starts inside P0,
enters P1 through the edge i, and then exits P1 through the edge i+ 1, and returns to its original position
in P0. We know H1(DP,Z) '

⊕n−1 Z, and any n− 1 of α1, ..., αn would generate it.
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Proposition 3.2.12. For a polygon P , let θi be the inner angle for the vertex i. Then the holonomy
representation for homology is defined by αi 7→ 2θi.

Proof. Let P0, P1 be the two copies of P without vertices forming DP , and let D̃P be the covering space with

Pe covering P0. Then for each i, αi is lifted to a curve α̃i from Pe to Pgi+1·gi , so hol(̃(αi)) is the reflection
about edge i, then about edge i + 1. This is a rotation around vertex i of P with radius 2θi. So we are
done.

Proposition 3.2.13. For a periodic billiard path {si} on a polygon P , let γ be the corresponding closed
geodesic on DP . Then holab(γ) = 0. Furthermore, let f(θ1, ..., θn) be the canonical linear relation for the
orbit type of {si}. Then γ = 1

2f(α1, ..., αn).

Proof. Let γ̃ be the geodesic segment by lifting of the geodesic γ from DP to D̃P , starting from a point in Pe
and ending in Pg for some g ∈ G. Then by Corollary 3.2.6 and Corollary 2.2.7, the rigid motion transforming
Pe to Pg is a translation. In particular, treating γ as a member of H1(DP,Z), then holab(γ) = 0.

Now let γ = g(α1, ..., αn) for some linear relation g over R. Then 0 = holab(γ) = holab(g(α1, ..., αn)) =
g(holab(α1), ..., holab(αn)) = 2g(θ1, ..., θn). This is a linear relation on inner angles with coefficients in Z.
Suppose it is trivial or equivalent to

∑n
i=1 θi = (n− 2)π, then g is either trivial or equivalent to the sum of

its arguments. As
∑n
i=1 αi = 0 in the homology class, we have γ = g(α1, ..., αn) = 0, so it’s null-homologous.

Let {wi} be the orbit type of {si} with minimal even period k. Then w1, ..., wk is also the sequence of edges
we hits by going along γ once on DP . Note that this finite sequence w1, ..., wk determines the homology
class of γ, and it is well-balanced iff γ is null homologous. So if γ is null-homologous, the billiard path {si}
is stable, and so f = 2g ≡ 0 assuming

∑n
i=1 θi = (n− 2)π.

Suppose 2g(θ1, ..., θn) = 0 is not trivial or equivalent to
∑n
i=1 θi = (n − 2)π. Then this can only be the

unique non-trivial canonical linear relation. So f = 2g.

We finally have enough tools to prove the second part of the fundamental correspondence.

Proposition 3.2.14. For a polygon P with a periodic billiard path {si}, let γ be the corresponding closed
geodesic on DP . Then γ is null-homologous iff {si} is stable.

Proof. Let {si} be a periodic billiard path on P , and let γ be its corresponding closed geodesic on DP . If
the billiard path is not stable, then the canonical linear relation is not trivial, so γ is not null-homologous.
On the other hand, if the billiard path is stable, then the canonical linear relation is trivial, so γ is null
homologous.

3.3 The Minimal Translation Surface

Figure 3.3.1: A translation sur-
face. Edges with the same la-
bel are identified with transla-
tion, and vertices shall be treated
a thrown away.

The universal cover of DP is a really large and complicated space. We
shall construct a more elegant covering space for DP , the minimal trans-
lation surface, which is easier to study. Then we shall introduce some
basic properties of translation surfaces.

Definition 3.3.1. A translation surface is a flat Riemannian manifold
obtained by taking the union of polygonal subsets of R2 with edges glued
together pairwise by translation, such that each geodesic is a collection
of line segments in the same direction. We throw away vertices as usual.
See Figure 3.3.1

Translation surfaces are naturally Riemannian manifolds (in fact a
Riemann surface with a chosen holomorphic 1-form). Their Riemannian
metric is obtained by pulling back metrics on the polygons forming it.
When we refers to a translation surface, we are referring to this Rieman-
nian manifold structure, i.e. if two translation surfaces differ only by rigid
motions, we will treat them as the same translation surface.
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Definition 3.3.2. Let ab : π1(DP ) → H1(DP,Z) be the abelianiza-
tion map. Then the minimal translation surface for P is MT (P ) =

D̃P/ker(holab ◦ ab).

Figure 3.3.2: The minimal trans-
lation surface for the triangle
with angles π

2 ,
π
3 ,

π
6

Informally, the minimal translation surface is the surface we obtain if
we identify all pairs of polygons in D̃P if they differ only by translation.
See Figure 3.3.2 for an example. It’s therefore clearly a translation sur-
face. In fact, it is the smallest one that covers DP . We have the following
proposition:

Proposition 3.3.3. If X is a connected translation surface that is also
a covering space of DP , then X is a covering space of MT (P ).

Proof. We know D̃P is the universal cover, so it is a covering space for
X as well. Let φX : D̃P → X and φMT : D̃P →MT (P ) be the covering
maps. Let G be the free product of n copies of Z/2Z, and let {Pg}g∈G be

the polygons making D̃P as usual. Then if Pg, Ph are identified by φX , then as X is a translation surface, we
must have that Pg, Ph differs only by translation. So φMT descends to a covering map φ : X →MT (P ).

Proposition 3.3.4. Any closed geodesic in DP will lift to a closed geodesic on MT (P ).

Proof. Let γ be a closed geodesic on DP , then hol(γ) is a translation. So lift γ to γ̃ on D̃P based inside Pe,
we know by Corollary 3.2.13 that γ̃ end in a polygon Pg which differs from Pe only by translation. So Pe
and Pg will be identified in MT (P ). So γ lifts to a closed geodesic in MT (P ).

The main approach to study stability of billiards in this thesis is to find connections between geodesics
on the minimal translation surface, and see how these connections affect their homology class down in DP .
The connections between geodesics here are mainly through affine automorphism of the minimal translation
surface, which we shall now describe.

Definition 3.3.5. An affine diffeomorphism for a translation surface X is an orientation preserving
diffeomorphism φ : X → X to itself with constant derivative. These maps form the group of affine
diffeomorphism of X, denoted by Aff(X).

Definition 3.3.6. The area of a translation surface Area(X) is the sum of area of all the polygons forming
it. This is clearly the area determined by the Riemannian metric structure on X.

Proposition 3.3.7. The derivative of any affine diffeomorphism will be a constant matrix in SL(2,R).

Proof. Let A be the derivative of an affine diffeomorphism φ. Then as φ is an orientation preserving diffeo-
morphism, by definition det(A) > 0. Now Area(X) = Area(φ(X)) = det(A)Area(X), so as Area(X) 6= 0,
we have det(A) = 1. So A ∈ SL(2,R).

Definition 3.3.8. The subgroup Γ(X) = {A ∈ SL(2,R) : A is the derivative of some φ ∈ Aff(X)} of
SL(2,R) is the Veech group of X.

Now recall from hyperbolic geometry that the group SL(2,R) acts on the hyperbolic plane H2. So we
have the following definition:

Definition 3.3.9. A subgroup Γ of SL(2,R) is a lattice if the quotient H2/Γ has finite hyperbolic area.

Finally we have our major theorem connecting the Veech group of MT (P ) with billiards on P . Note
that this is a paraphrase, as the original statement would require knowledge of ergodic theory. For a proof
of this theorem, see reference [11].

Theorem 3.3.10 (Veech Dichotomy). Let X be a translation surface, and suppose Γ(X) is a lattice. Then
for any direction θ in R2, either all complete geodesics on X with direction θ is closed, or all complete
geodesics on X with direction θ are dense on X.
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Corollary 3.3.11. Given a polygon P with Γ(MT (P )) a lattice, and given a direction θ in R2. Then either
all billiard paths {si} with some si in direction θ are periodic, or all billiard paths {si} with some si in
direction θ are dense in P .

We end this section by introducing one more tool to study translation surfaces, the cylinder decomposition
and Dehn twists.

Definition 3.3.12. A cylinder is a parallelogram with one pair of parallel edges identified by translation,
with vertices removed. The other pair of edges will become the upper boundary and lower boundary
depending on the labeling of the parallelogram (edge with smaller i ∈ {1, 2, 3, 4} as a label is the upper one).
The modulus of the cylinder is the base-altitude ratio of the parallelogram forming it, where the base is
either the upper or the lower boundary. A cylinder decomposition in direction θ of a translation surface
X is a collection of cylinders {Ci}i∈Z/kZ such that all upper and lower boundaries of these cylinders have
direction θ, and if we identify the lower boundary of each Ci with the upper boundary of Ci+1 by translation,
we recover our translation surface X. A cylinder decomposition is commensurable if the moduli of these
Ci are rational multiples of each other.

Definition 3.3.13. A matrix A ∈ SL(2,R) is parabolic if trA = ±2.

Proposition 3.3.14. A ∈ SL(2,R) is parabolic iff it is conjugate to either

(
1 k
0 1

)
or

(
−1 k
0 −1

)
for some

k ∈ R in SL(2,R).

Proof. The necessity is clear, because trace of a matrix is invariant under conjugation. For sufficiency, let
λ1, λ2 be its eigenvalues, then λ1 + λ2 = 2 and λ1λ2 = 1.

Suppose they are complex conjugates. Let λ1 = a+ bi with a, b ∈ R and b 6= 0. Then a2 + b2 = λ1λ2 = 1,
so a2 < 1. Then −2 < 2a < 2, and λ1 + λ2 6= ±2, contradiction. So λ1, λ2 ∈ R. Then λ1λ2 = 1 and
λ1 + λ2 = ±2 yield λ1 = λ2 = ±1. Now let J be the Jordan normal form of A and let A = PJP−1 be the

corresponding decomposition. Then J must be either

(
1 k
0 1

)
or

(
−1 k
0 −1

)
for some k ∈ R in SL(2,R).

Furthermore, because detP 6= 0, we can let P ′ = 1
detP P . Then A = P ′JP ′−1 with P ′, P ′−1 ∈ SL(2,R). So

we are done.

Corollary 3.3.15. A parabolic matrix A 6= ±I has a unique eigenvalue and any two eigenvectors are
multiples of each other by a real number.

Proposition 3.3.16. Let P be a parallelogram making a cylinder C. Let v be the vector representing the
identified pair of edges of P , and let u be the vector representing the other pair. Let A be the matrix such
that u 7→ u, v 7→ v + ku for some k ∈ Z. Then ±A ∈ SL(2,R) and they are parabolic. And there is an
orientation preserving diffeomorphism φ : C → C with constant derivatives A and fix the boundaries of C,
and another orientation preserving diffeomorphism φ′ : C → C with constant derivatives −A and swapping
the boundaries of C.

Figure 3.3.3: The Dehn twist on a cylinder formed by the
parallelogram with vertices (0, 0), (2, 0), (1, 1), (3, 1). Here
the matrix A is parabolic and maps (1, 0) to (1, 0) and maps
(0, 1) to (2, 1).

Proof. Let’s first prove the statement about
matrix A. Find B ∈ GL(2,R) such that u 7→
(1, 0) and v 7→ (0, 1). This is possible because,
as u, v makes a parallelogram, u, v are linearly
independent. Consider BAB−1. This matrix
maps (1, 0) to (1, 0) and maps (0, 1) to (k, 1).

So this is

(
1 k
0 1

)
, and it’s conjugate to A. So

±A ∈ SL(2,R) and are parabolic.
Let An be the matrix in the proposition

when k = n. Then clearly An = (A1)n and
−An = −A0(A1)n for all n, so it is enough to
prove the proposition for A1 and −A0.
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Figure 3.3.4: A Dehn twist for a translation surface

Now treat the parallelogram P as a
subset of R2. By applying a rigid mo-
tion and scaling, we can assume that
u = (1, 0), v = (x, y), and P has cen-
troid on the origin. Then P is symmet-
ric about the origin. Now −A0 corre-
sponds to the rotation of π around the
origin, so apply −A0 to P will clearly
fix P and reverse the direction of u, v.
So −A0 induces an orientation preserv-
ing diffeomorphism φ′0 on C with deriva-
tive −A0, and it swaps the upper and
the lower boundaries of C.

Now applying a congruence map,
we can assume that P has vertices
(0, 0), (1, 0), (x, y), (x + 1, y). Clearly
y 6= 0, otherwise P will not be a par-

allelogram. Then A1 =

(
1 1

y

0 1

)
. So the

parallelogram A1(P ) will have vertices
(0, 0), (1, 0), (x + 1, y), (x + 2, y). Then
by cutting and reassembling, we see that
A1(P ) and P actually form the same
cylinder, See Figure 3.3.3. So A1 in-
duces an orientation preserving diffeo-
morphism φ1 on C with derivative A1

and fixing the boundaries of C. So we
are done.

Definition 3.3.17. The above diffeo-
morphism is the Dehn Twist of the
cylinder. See Figure 3.3.3.

The following proposition is used in
the proof of Veech Dichotomy, but it is
also important for our purpose.

Proposition 3.3.18. Let X be a trans-
lation surface with Γ(X) a lattice. Then a matrix A ∈ Γ(X) with A 6= ±I is parabolic iff there is a commen-
surable cylinder decomposition {Ci} in the direction of an eigenvector of A, and the affine diffeomorphism
φ ∈ Aff(X) with derivative A induces Dehn twists on each of these cylinders.

Definition 3.3.19. By abuse of notation we also call the above affine diffeomorphism a Dehn twist for
the translation surface X.

For an example, see Figure 3.3.4
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Chapter 4

Some Applications

The most efficient way to cover up Pn, the space of labeled n-gons up to congruence, is to use stable periodic
billiard paths, as their orbit tiles are open. Therefore it is important to understand which polygon does not
admit a stable periodic billiard path, which this chapter tries to explore.

I will show that right triangles have no stable periodic billiard paths, and no isosceles triangles with a
base angle π

2n with n ≥ 2 a power of 2 has stable periodic billiard paths. Then as a corollary we have that
no rhombi with one angle π

n with n ≥ 2 a power of 2 has stable periodic billiard paths. Both proofs about
triangles are mainly following proofs of Patrick Hooper.

Then I shall show that no rectangles have stable periodic billiard paths. If the reader is willing to assume
that squares have no stable periodic billiard paths, then this section is independent from section 4.1 and 4.2.

Finally, I shall present my own work proving that parallelograms with one angle π
4 and modulus 1 has

no periodic billiard paths. This is independent from other sections as well.
All the proofs for the main theorems in the following sections have roughly the same general approach:

Step 1: We start by calculating at the minimal translation surface, and try to find a nice representation of
the surface if possible. We shall also calculate the Veech group and the group of affine automorphisms.
Step 2: We try to use the affine automorphisms and the Veech group to build relations between closed
geodesics and reduce the problem to finitely many cases. We do this usually through some form of enumer-
ation theorems like Theorem 4.2.10 and 4.5.5, or by pairing up geodesics like Proposition 4.1.7.
Step 3: Finally we use homology and cohomology to obtain criteria for stability, and solve the problem by
computing those finitely many cases left.

This is the main strategy used in Section 4.1, 4.2 and 4.5.

4.1 Right Triangles

The main theorem here is the following one:

Theorem 4.1.1 (Hooper [9]). Right triangles have no stable periodic billiard path.

To prove this theorem, we shall first focus on the right triangles whose non-right angles are irrational
multiples of π. We shall first give an explicit description of its minimal translation surface.

Proposition 4.1.2. Let T be a right triangle whose non-right angles are irrational multiples of π. Reflecting
T about one of its legs, we obtain an isosceles triangle, and then reflecting this triangle about its base, we
obtain a rhombus R0. Let θ be an angle of R0. Let Ri be R0 rotated counterclockwise by iθ about the vertex
at θ for all i ∈ Z. These rhombi {Ri}i∈Z, with vertices and centroids removed, form a unique translation
surface, and this surface is the minimal translation surface. MT (T ). See Figure 4.1.1.
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Figure 4.1.1: The minimal translation surface for a
right triangle T . Edges with same label are identified
by translation.

Proof. Let (a, a′) and (b, b′) be the two pairs of
parallel edges of R0. Then we can label edges of Ri
accordingly such that it’s compatible with the rota-
tion. Now R0 and R1 have one edge in common, so
WLOG suppose it is a of R0 and b of R1. Then a of
Ri and b of Ri+1 will be the same edge for all i ∈ Z.
As the two non-right angles of T are irrational multi-
ples of π, we see that θ is an irrational multiple of π.
In particular, Ri, Rj cannot differ only by translation
when i 6= j. So only edges b, b′ of Ri+1 and a′ of Ri
will be in the same direction as a of Ri. We identify
a of Ri with b of Ri+1, and a′ of Ri with b′ of Ri+1.
We do this for all i ∈ Z. This way, each edge of all
Ri are identified to some other edge, and we obtain a
connected translation surface X.

Now each Ri contains four copies of T by construc-
tion, each copy contains a unique edge of Ri. So we color the ones containing to a, a′ of Ri black, and the
rest white. This way we have a coloring scheme where no adjacent copies of T on X have the same color.
See Figure 4.1.1. Let φ : X → DT be the map mapping black copies of T on X to T0 of DT , and white
copies on X to T1 of DT , where T0, T1 are the two copies of T making DT . Then clearly φ is a well-defined
covering map. So X is a covering space of DT . Then X must also be the covering space of MT (T ) by the
universal property of minimal translation surfaces.

Figure 4.1.2: The edges a, a′, b, b′ of R0 and R1

Suppose T ′, T ′′ are two copies of T in X that get
identified by the covering map X → MT (T ). Then
T ′, T ′′ differs only by translation. WLOG say T ′ is the
copy of T in R0 containing a. Then T ′′ has an edge
in the same direction of a. There are only three other
possibilities, and none differs from T ′ by translation.
So T ′ = T ′′. So X = MT (T ).

Proposition 4.1.3. The group of deck transforma-
tions Deck(MT (T )) ' Z×Z/2Z, where Z is generated
by rotation counterclockwise by θ around the common
vertex of all Ri, and Z/2Z is generated by rotating
each rhombus 2π around its centroid.

Proof. Adopt the black and white coloring scheme as
in last Proposition. The generator r of Z and the generator i of Z/2Z are clearly deck transformations,
as they map the black copies to black copies, and white copies to white copies. Furthermore, they clearly
commute. So we only need to show that they generate all of Deck(MT (T )).

Let f be a Deck transformation. Let T ′ ⊂ R0 be the copy of T containing edge a of R0. Then T ′′ = f(T ′)
must also be a black copy of T , so it is in some Rj and contains edge a or a′ of that Rj . Suppose it contains
edge a. Then r−j ◦ f(T ′) = T ′. Then by the uniqueness of the lifting property, we have r−j ◦ f = id the
identity map. So f = rj . Now suppose T ′′ contains a′. Then r−j ◦ i ◦ f(T ′) = T ′, so f = i ◦ rj . So r, i indeed
generate Deck(MT (T )).

Proposition 4.1.4. For any closed geodesic γ on MT (T ), γ and i(γ) are disjoint.

Proof. i acts on the set of all directions on MT (T ) by a rotation of π. So γ and i(γ) are in opposite direction.
Then γ and −i(γ) will be in the same direction, where −i(γ) would means the same curve as i(γ) but travels
in the opposite direction. If γ ∩ i(γ) 6= ∅, then γ,−i(γ) will have at least one point in common, and they
are geodesics in the same direction. So γ = −i(γ) and −γ = i(γ). Now as γ is a simple closed loop, it
is topologically a circle. And as i maps γ to −γ, i would induce an orientation reversing automorphism
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of the circle, which must have 2 fixed points. However, nontrivial deck transformation has no fixed point,
contradiction. So γ and i(γ) are disjoint.

Proposition 4.1.5. A closed geodesic γ intersects with opposite edges of Rj an equal number of times for
all j ∈ Z.

Proof. If γ is disjoint with Rj , then we are done. Suppose otherwise, and WLOG assume γ(0) ∈ Rj . Let α
be the direction of γ. If α is the direction of one pair of parallel edges of Rj , then γ must intersects that pair
of edges an equal number of times, and γ will be disjoint from the other pair, so we are done. So suppose
α is not the direction of either pair of edges of γ. Then given α, there is a unique edge where γ enters Rj
from Rj−1, and a unique edge where γ enters Rj from Rj+1, and a unique edge where γ exits Rj to Rj−1,
and a unique edge where γ exits Rj to Rj−1. Now Rj connects with Rj+1 through one pair of its parallel
edges a, a′, and connects with Rj−1 through the other pair b, b′. WLOG let a, b be edges where γ can enter
Rj . If a connected component of γ ∩ Rj enters Rj from a and exists through a′, or enters Rj from b and
exits through b′, then we are fine. Let m be the number of connected components enters from a and exits
through b′, and let n be the number of connected components enters from b and exits through a′. I claim
that m = n, which will clearly prove our statement.

In fact, a geodesic segment enters Rj from a and exits through b′ iff it goes from Rj+1 to Rj to Rj−1,
and a geodesic segment enters Rj from b and exits through a′ iff it goes from Rj−1 to Rj to Rj+1. As γ is
a closed geodesics, the numbers of above two cases must agree. So m = n.

Corollary 4.1.6. For a closed geodesic γ, γ ∪ i(γ) intersects each edge of Rj an even number of times.

Proposition 4.1.7. For any closed geodesic γ, γ and i(γ) cuts MT (T ) into at least two pieces, one of which
is a twice punctured cylinder with boundary γ and i(γ).

Figure 4.1.3: The black piece is a cylinder in MT (T ).
The geodesic γ is labeled by Roman numerals by
order.

Proof. We shall introduce a new coloring scheme on
MT (T ). For each Rj , we first cut it into pieces along
γ, i(γ). Recall that all Rj on MT (T ) share a vertex.
Let the piece in Rj containing this common vertex
be white, and then we color the rest of Rj such that
no two adjacent pieces have the same color. We do
this for all Rj . It’s easy to check that this becomes a
coloring scheme where MT (T ) are divided into white
pieces and a black pieces, and the boundaries of these
pieces are γ and i(γ). See Figure 4.1.3.

Now all vertices of Rj are contained in the white
pieces by Corollary 4.1.6. We fill in the punctures on
the centroids of these rhombi for now. I claim that
the black pieces are all connected and they form a
cylinder.

Note that γ is a closed geodesic. So the sequence
of rhombi it passes will be periodic. Let this sequence
be {Rin}n∈Z, and let the corresponding connected piece of γ in Rin be γn. Then for each γn inside Rin , one
side of it will be colored white, and the other side will be colored black. Let the unique connected black piece
touching γn in Rin be Bn. Then the sequence {Bn}n∈Z must be periodic as γn is periodic. Furthermore
every connected black pieces in any rhombus Ri must be touching some γn for some n ∈ Z, so every black
piece must be one of {Bn}. Let {B1, ..., Bp} be a single period, then the whole black piece of MT (T ) is⋃p
n=1Bn. Now each Bn will be a polygonal piece with a part of γ and a part of i(γ) as a pair of its edges,

and for the other two edges, one is glued to Bn+1 and the other is glued to Bn−1. It follows that
⋃p
n=1Bn is

a cylinder C. Now clearly i(C) = C, and i swaps its boundaries. Such a map must have two fixed points on
C. But fixed points on C must not be on MT (T ). So the two fixed points must be centroids of some rhombi.
So throw away the centroids, C will be a twice punctured cylinder.
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Proposition 4.1.8. If the two non-right angles of a right triangle T are irrational multiples of π, then T
has no stable periodic billiard path.

Proof. Let {si} be any periodic billiard path on the triangle T , and let γ′ be the corresponding closed
geodesic on DT , and lift this geodesic to a closed geodesic γ on MT (T ). We know γ, i(γ) bounds a twice
punctured cylinder on MT (T ), and the punctures corresponds to the centroids of two rhombi. Let α1, α2

be two properly oriented small circular disk around the punctures so that γ + i(γ) + α1 + α2 will be the
boundary of the cylinder with two open disk removed around the two punctures. Note that α1, α2 will either
both be counterclockwise, or both clockwise. Then we know this sum is null-homologous. Let [α] be the
homology class for any closed loop α. Then [γ] + [i(γ)] + [α1] + [α2] = 0.

Now let p : MT (T ) → DT be the covering map, and let α0 be a properly oriented small circular disk
around the vertex of DT corresponding to the right angle of the triangle, such that p([α1]) = p([α2]) = [α0].
As p(γ) = γ′, and i is a deck transformation, we have p([γ]) = p([i(γ)]) = [γ′]. So we have 2[γ′] + 2[α0] = 0,
and so [γ′] = −[α0] 6= 0. Then by Theorem 3.1.4, the periodic billiard path cannot be stable.

Proof of Theorem 4.1.1. All right triangles up to congruence can be parameterized by its smaller non-right
angle, which take values in (0, π2 ). This corresponds to a curve R ⊂ P3. Now suppose a right triangle has a
stable periodic billiard path, then let U be the orbit tile. Then U ∩R is an open subset of (0, π2 ). So there
exists a triangle T with non-right angles irrational multiples of π in U , and therefore it has a stable periodic
billiard path, contradiction.

Corollary 4.1.9. Let T ′ be an isosceles triangle with angles irrational multiple of π. Let {si} be a periodic
billiard path on T ′. Then there exists a periodic billiard path {s′i} of the same orbit type on T ′, such that it
passes through the midpoint of the base of T ′ twice in its single minimal even period.

Proof. Let T be the right triangle such that T and its reflection along one of its legs will form the isosceles
triangle T ′. Then note that MT (T ) and MT (T ′) are the same surface except that, on MT (T ′), the centroids
of rhombi Ri are no longer removed. Now for any periodic billiard path on T ′, lift it to a close geodesic γ
on MT (T ′). If γ and i(γ) intersect, then we know in fact −γ = i(γ), and i would have two fixed points on
γ. The only fixed points of i are centroids of the rhombi, so γ passes through two such centroids. So the
periodic billiard path on T ′ passes through the midpoint of the base of T ′ twice in its single minimal even
period. Now suppose γ and i(γ) are distinct. Then we know they bound a cylinder with two centroids of
rhombi in it. We know this cylinder is the union of a family of geodesics in same direction as γ, and each
of them is either disjoint from the two centroids, or containing both. So there must exist γ′ closed geodesic
in the cylinder that passes through two centroids. Then fold it back to billiard path, it has the same orbit
type as the original billiard path, and it would pass through the midpoint of the base of T ′ twice.

4.2 Isosceles Triangles

Figure 4.2.1: The
double of V3 and
the generators of
the homology

The main theorem here is the following one:

Theorem 4.2.1 (Hooper, Schwartz[12]). An isosceles triangle has a stable periodic
billiard path iff its base angles are not π

2n for n a power of 2.

We shall not prove the whole theorem. However, we shall discuss it for isosceles
triangles with base angle π

2n for n ∈ Z and n ≥ 2. In particular, we will prove that
when n is a power of 2, this isosceles triangles will have no stable periodic billiard path.

Definition 4.2.2. We call isosceles triangle with base angle π
2n the Veech point Vn

for all n ∈ Z and n ≥ 2.

Theorem 4.2.3 (Hooper). The isosceles triangle Vn has a stable periodic billiard path iff n is a power of 2.
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Figure 4.2.2: The minimal translation
surface for V3. Roman numerals and
small letters are labels of edges, and
capital letters are labels for the pieces
after cutting.

In fact when n = 2, V2 is a right triangle, so we know it has
no periodic billiard path. So from now on we can in fact assume
n ≥ 3.

Here is an outline for the proof:
Step 1: We start by showing that MT (Vn) is a translation sur-

face obtained from two 2n-gons, calculate its Veech group, and
calculate how the covering map φ : MT (Vn) → DVn acts on ho-
mology and cohomology.

Step 2: We find 2n − 1 geodesics as the standard geodesics,
and establish an enumeration theorem to show that any geodesic
can be mapped to one of these standard geodesics by an affine
automorphism. We use this fact to build a stability criteria on
cohomology.

Step 3: When n is a power of 2, we will show a pattern on
cohomology such that the stability criteria can never by achieved.
So Vn will have no stable periodic billiard path.

Step 4: When n is not a power of 2, we will find explicit
geodesics on MT (Vn) that satisfy the stability criteria. So Vn in
this case will have stable periodic billiard paths.

We shall first need a description about the double of Vn and its minimal translation surface.
We know the double DVn is topologically a sphere with three puncture, so H1(DVn,Z) = Z2. Let α1, α−1

be loops each winding counterclockwise once around a distinct puncture corresponding to a base angle of Vn.
See Figure 4.2.1. Clearly α1, α−1 generate the homology group. Now we can proceed to minimal translation
surface.

Proposition 4.2.4. MT (Vn) is a translation surface formed by two regular 2n-gons.

Proof. Reflecting V0 about its base, we obtain a rhombus R0. Let θ = π
n be the angle of the rhombus which

corresponds to a base angle of Vn, and let the vertex there be P . Then we can rotate R0 counterclockwise
around the vertex P by iθ to obtain Ri for all i ∈ Z/2nZ. Now let a, b be the edges adjacent to P in R0,
and let a′, b′ be the edges parallel to a, b respectively in R0. We glue edges a, a′ of Ri to edges b, b′ of Ri+1

respectively for all i ∈ Z/2nZ. This is clearly MT (Vn), because if you reflect any copy of Vn in this surface,
you would obtain another copy of Vn in it up to translation, and such copy is unique. Recall that DVn will
have two copies of Vn, so we color the isosceles triangles on MT (Vn) covering the first copy black, and the
ones covering the second copy white. Now cut and reassemble, we do not change the surface, and we shall
get two regular 2n-gons forming MT (Vn). See Figure 4.2.2.

Definition 4.2.5. We define the direction of a geodesic on MT (Vn) to be the angle it makes with the
diagonal of R0 ⊂MT (Vn) which corresponds to the base of Vn.

Figure 4.2.3: β1, β−1 and γk for even k on MT (V4).

Theorem 4.2.6 (Veech). The Veech group Γ(MT (Vn))
is a hyperbolic (n,∞,∞) triangle group. It is gener-
ated by two of its parabolic elements, which fix the
direction of angle 0 or π

2n . The affine automorphism
corresponding to each of the two parabolic elements is
a single Dehn twist in each cylinder of the cylinder
decomposition in the respective direction.

For a proof of this theorem, see reference [13].
Now we shall find a basis {β1, β−1, γ1−n, ..., γn−1}

for the homology group of MT (Vn), which by count-
ing Euler characteristics is isomorphic to Z2n+1. See
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Figure 4.2.3 and 4.2.4. Here β1, β−1 are counterclock-
wise simple closed loop around the center of each reg-
ular 2n-gon respectively. γn with n even are all in
the horizontal order, and m > n iff γm has higher
y-coordinate in the left polygon than γn. Here we
choose γ0 to be right below the centers of the two
polygon. Similarly for the ones with n odd, they are
in the direction of π

2n , and we order the index so that
in the left polygon, one with larger y-coordinate will
have higher index. We can arrange them such that γk
only intersect with γk+1 and γk−1 for all k. Figure 4.2.4: γk for odd k on MT (V4).

Proposition 4.2.7. {β1, β−1, γ1−n, ..., γn−1} is indeed a basis for H1(MT (Vn),Z).

Figure 4.2.5: `k for odd k on MT (V4).

Proof. First, label all edges of the two polygon form-
ing MT (Vn). Note that edges that are identified
have the same label, and we treat these labels as
members of Z/(2n)Z. Now let `i be a simple loop
around the hole between edge i and i + 1, see Fig-
ure 4.2.5 and 4.2.6. Clearly {`1, ..., `2n, β1, β−1} gen-
erates the whole of H1(MT (Vn),Z). (They are not a
basis though, because their sum is 0).

Now express {β1, β−1, γ1−n, ..., γn−1} in the basis
above. Then

γn−1 = −`dn+1
2 e

γ1−n = `dn+1
2 e+n

γk − γk−1 = `dn+1
2 e+(−1)kdn−k

2 e
for all k ∈ n− 1, ..., 2,−1, ..., 2− n

γ1 − γ0 + β1 = `1

γ0 − γ−1 − β−1 = −`n

So, elements of {β1, β−1, γ1−n, ..., γn−1} generates all
of {`1, ..., `2n, β1, β−1}, and therefore they generates
all of H1(MT (Vn),Z) ' Z2n+1. So, this must be a
basis.

Figure 4.2.6: `k for even k on MT (V4).

With this basis, we can find the dual basis for
cohomology {β∗1 , β∗−1, γ∗1−n, ..., γ∗n−1}.

Proposition 4.2.8. If we let φ : MT (Vn)→ DVn be
the natural covering map, then

φ∗(βi) = 2nαi

φ∗(γk) = (n+ k)α1 − (n+ k)α−1 when k > 0

φ∗(γk) = −(n− k)α1 + (n− k)α−1 when k < 0

φ∗(γ0) = nα1 + nα−1

Proof. In the above proof, we have {`1, ..., `2n, β1, β−1} generating the whole of H1(MT (Vn),Z). Here clearly
φ∗(βi) = 2nαi, and φ∗(`i) = α1 − α−1.
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Here we shall adopt the convention that γn = γ−n = 0. Then γk − γk−1 = `j for some j depending on
k for all k ∈ {n, n− 1, ..., 2,−1,−2, ..., 1− n}. As a result, we have φ∗(γk) = (n+ k)α1 − (n+ k)α−1 when
k > 0, and φ∗(γk) = −(n− k)α1 + (n− k)α−1 when k < 0.

Let ρ be the affine automorphism of MT (Vn) which rotate everything by π. This is clearly a deck
transformation of the covering φ : MT (Vn)→ DVn, so

φ∗(ρ(γk)) = (φ ◦ ρ)∗(γk) = φ∗(γk)

Then φ∗(γk + ρ(γk)) = 2φ∗(γk)

Then γ0 + ρ(γ0) = β1 + β−1

Then 2φ∗(γ0) = 2nα1 + 2nα−1

Then γ0 = nα1 + nα−1.

Definition 4.2.9. We define φ∗1, φ
∗
−1 ∈ H1(MT (Vn),Z) to be the element such that φ∗(h) = φ∗1(h)α1 +

φ∗−1(h)α−1.

Then we can use Proposition 4.2.8 to express φ∗1, φ
∗
−1 in the dual basis {β∗1 , β∗−1, γ∗1−n, ..., γ∗n−1}.

Now we choose the basis {β∗1 , β∗−1, γ∗1−n, ..., γ∗n−1} precisely because γi is a closed geodesic for each i. In
fact, we have the following theorem.

Theorem 4.2.10 (Enumeration Theorem). If γ is a closed geodesic on MT (Vn), then there exists γ′ ∈
{γ1−n, ..., γn−1} and ψ ∈ Aff(MT (Vn)) such that ψ(γ) is homologous to γ′.

Proof. Let θ be the direction of γ. Then as γ is a closed geodesic, by Veech Dichotomy all geodesics in
direction of θ are closed. As a result, there exists a parabolic element C ∈ Γ(MT (Vn)) such that C has θ as
a fixed direction. Let A,B be the parabolic elements generating Γ(MT (Vn)) with eigendirection 0, π2n .

Now as Γ(MT (Vn)) is the (n,∞,∞) triangle group, we know C is either conjugate to a power of A, or
conjugate to a power of B. So exists D ∈ Γ(MT (Vn)) such that DCD−1 = Ak or Bk for some k ∈ Z− {0}.
Then D must map direction θ to 0 or π

2n . Let ψ be an affine automorphism with derivative D. Then ψ(γ)
must be in the direction of 0 or π

2n , and therefore homologous to one of ±γ1−n, ...,±γn−1,±(γ0− β1− β−1).
Now, γ0 − β1 − β−1 can be obtained from −γ0 by a rotation of 2π on MT (Vn) which is clearly an affine
automorphism. Furthermore, −γk can be obtained from γk by flipping MT (Vn) left-side-right, which is also
an affine automorphism. So we conclude that, eventually, we can choose ψ ∈ Aff(MT (Vn)) such that ψ(γ)
is homologous to one of {γ1−n, ..., γn−1}.

So we need to see how the elements of Aff(MT (Vn)) act on homology and cohomology.

Proposition 4.2.11. Aff(MT (Vn)) is generated by an involution σ (element of order 2), the right Dehn
twist τe in direction 0 (γk in this direction will have k even), and the right Dehn twist τo in direction π

2n (γk
in this direction will have k odd).

Proof. We have a natural map d : Aff(MT (Vn)) → Γ(MT (Vn)) by taking derivative. Then any affine

automorphism ψ will have derivative

(
1 0
0 1

)
, i.e. ψ is a “translation” on Aff(MT (Vn)). Recall that MT (Vn)

is made up by two 2n-gons, so the only possibilities are either ψ is the identity, or ψ is the map that swaps the
two 2n-gons, in which case we call this affine automorphism σ. σ is clearly an involution. Now, we know the
derivative of τe, τo generates the Veech group Γ(MT (Vn)). Therefore σ, τe, τo generates Aff(MT (Vn)).
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Now by checking one by one, we have the following results on homology:

σ∗(βi) = β−i

σ∗(γk) = γ−k

τo∗(βi) = βi

τo∗(γk) = γk for odd k

τo∗(γk) = γk + γk−1 + γk+1 for even k

τe∗(βi) = β−i

τe∗(γk) = γk for even k

τe∗(γk) = γk + γk−1 + γk+1 for odd k 6= ±1

τe∗(γk) = −β−k + γk + γk−1 + γk+1 for k = ±1.

On cohomology, we have the following results:

σ∗(β∗i ) = β∗−i

σ∗(γ∗k) = γ∗−k

τ∗o (β∗i ) = β∗i

τ∗o (γ∗k) = γ∗k for even k

τ∗o (γ∗k) = γ∗k−1 + γ∗k + γ∗k+1 for odd k

τ∗e (β∗i ) = β∗−i − γ∗−i
τ∗e (γ∗k) = γ∗k for odd k

τ∗e (γ∗k) = γ∗k−1 + γ∗k + γ∗k+1 for even k.

Here s∗, t∗o, t
∗
e are pull backs.

With all the above discussion, we can have a very elegant criteria for stability of billiard paths.

Lemma 4.2.12 (Stability Lemma). For any periodic billiard paths on Vn, let γ be the corresponding closed
geodesic on MT (Vn). Then γ = w(γk) for some w ∈ Aff(MT (Vn)) and k ∈ {1−n, ..., n− 1}. Then the path
is stable iff for w∗(φ∗1), w∗(φ∗−1), when expressed in the basis {β∗1 , β∗−1, γ∗1−n, ..., γ∗n−1}, has coefficient 0 for
γ∗k.

Proof. Recall that φ : MT (Vn)→ DVn is the natural covering map. Then

The path is stabel

⇐⇒ φ(γ) is null homologous

⇐⇒ φ∗1(γ) = φ∗−1(γ) = 0

⇐⇒ φ∗1(w(γk)) = φ∗−1(w(γk)) = 0

⇐⇒ w∗(φ∗1)(γk) = w∗(φ∗−1)(γk) = 0

⇐⇒ w∗(φ∗1), w∗(φ∗−1), when expressed in the basis {β∗1 , β∗−1, γ∗1−n, ..., γ∗n−1}, has coefficient 0 for γ∗k .

Now we can finally begin our proof of Theorem 4.2.3. We shall break it down into several propositions.

Proposition 4.2.13. Let w be an affine automorphism of MT (Vn). Then there exists odd integers r, s such

that w∗(φ∗i ) ≡
∑n−1
j=1−n ic(j)γ

∗
j mod 2n. Here c(j) = r(j + n) if j is odd, and c(j) = s(j + n) if j is even.

Proof. The proof is by induction. When w is the identity, then set r = s = 1, the statement is clearly true.
Suppose the statement is true for w0 with r = r0, s = s0. Then for σ◦w0, we can let r = −r0, s = −s0, and

then the statement will be true. For τ±1o ◦w0, set r = r0, s = s0∓2r0, and for τ±1e ◦w0, set r = r0∓2s0, s = s0.
The by computation the statement is true in both cases.
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Proposition 4.2.14. For n a power of 2, Vn has no stable periodic billiard path.

Proof. Assume n = 2m. For all j ∈ {1− n, ..., n− 1}, we have 1 ≤ j + n ≤ 2n− 1. So j + n 6≡ 0 mod 2m+1.
Since r, s in the above proposition are odd, we have c(j) 6≡ 0 mod 2n for all j. So the stability lemma
implies that no billiard path is stable.

Finally, we quote the following proposition without proof. The proof can be done by a (somewhat
complicated) direct calculation, and can be found in the joint paper by Schwartz and Pat [12]. These
propositions plus the above one will complete the proof of theorem 4.2.3.

Proposition 4.2.15. Suppose n ≥ 3 is odd. Then a closed geodesic in the homology class (τe ◦ τ−1o )
n−1
2 ◦

τ
n−3
2

e (γn−2) in MT (Vn) projects to a stable periodic billiard path in Vn via the folding map MT (Vn)→ Vn.

Proposition 4.2.16. Suppose n is even and not a power of 2. Then n = 2ab for an odd integer b ≥ 3 and

an integer a ≥ 1. Let ψ = (τe ◦ τ−1o )
n
2 ◦ τ

b−1
2

o . Then a closed geodesic in the homology class w(γn−2a+1)
projects to a stable periodic billiard path in Vn via the folding map MT (Vn)→ Vn.

4.3 Rhombi

The same as last section, we shall not discuss the general case of rhombi. The rhombi of our interests will
be those with one angle equal π

n with n ≥ 2. We shall show the following theorem.

Theorem 4.3.1. A rhombi Rn with on angle π
n has no stable periodic billiard path when n is a power of 2.

Proof. If we reflect the isosceles triangle Vn along its base, then we would obtain Rn. Therefore, there is a
natural covering map p : DRn → DVn. Suppose Rn has a stable periodic billiard path. Then we can find γ
a null-homologous closed geodesic on DRn. Then p(γ) will be a null homologous closed geodesic on DVn. So
p(γ) will project to a stable periodic billiard path on Vn. Then n must not be a power of 2. This concludes
our proof.

Corollary 4.3.2. A square has no stable periodic billiard path.

4.4 Rectangle

Here we shall made a conjecture:

Conjecture 3. All parallelogram with one angle π
2n for n a power of 2 will have no stabel periodic billiard

path.

We shall only prove a very special case of it here. The first case is of course when n = 1, in which case
the parallelogram must be a rectangle.

Theorem 4.4.1. A rectangle R has no stable periodic billiard path.

Figure 4.4.1: The minimal trans-
lation surface for a rectangle

We begin by looking its minimal translation surface.

Proposition 4.4.2. MT (R) is isometric to a torus with a flat metric
and with four punctures.

Proof. One can clearly see that π1(DR)/ker(holab ◦ ab) has only four
elements, which can be represented by the group generated by vertical
reflection and horizontal reflection (i.e. Z/2Z × Z/2Z). So the minimal
translation surface would looks like four rectangle glued up together and
throwing away vertices. See Figure 4.4.1. Edges identified by translation have the same label in the figure.
Note that the gluing pattern is exactly how a torus is obtained, and the metric is clearly a flat metric. So
our statement is true.
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Figure 4.4.2: The two moduli for
a parallelogram. Here b is the
base and h is the height, and
their ratio is the modulus.

Definition 4.4.3. Choose an edge of a parallelogram as the base. The
modulus of the parallelogram is the ratio of its base and its height. See
Figure 4.4.2. Note that by different choice of base edge, we have two
moduli for each parallelogram.

Corollary 4.4.4. A billiard path in a rectangle is periodic iff its slope
is a rational multiple of the modulus, and it’s trajectory is dense in the
rectangle iff its slope is an irrational multiple of the modulus.

By Corollary 4.3.2, we already know that a square has no stable periodic billiard path. Now we have the
following observation.

Definition 4.4.5. Let em : R2 → R2 be the stretching map defined by the matrix

(
m 0
0 1

)
for each m ∈ R+.

This map acts as a stretching on the plane horizontally by a factor of m.

Proposition 4.4.6. Let S be a square, and let R be any rectangle with a modulus m. WLOG we can
assume the sides of R has length 1,m respectively. Then em induces a one-to-one correspondence between
closed geodesics on DS and on DR, and also between null-homologous closed geodesics on DS and on DR.

Figure 4.4.3: The covering of
R2 − Z2 over MT (S)

Proof. We know that the plane R2 is a covering space for the torus, and
therefore R2 − Z2 is a covering space for MT (S) in the natural way. See
Figure 4.4.3. Let Lm = em(Z2), then similarly R2 − Lm is a covering
space of MT (R). So the map em : R2−Z2 → R2−Lm descends to a map
e′m : MT (S)→MT (R), and further to a map e′′m : DS → DR. Note that
we also have a map e 1

m
: R2 − Lm → R2 − Z2 as the inverse of em. Then

this map similarly induces the maps e′1
m

, e′′1
m

which are inverses of e′m, e
′′
m

respectively.
Then clearly e′′m and e′′1

m

gives the desired bijection between closed

geodesics on DS and on DR. Furthermore, as they induces isomor-
phism on homology class, this also gives the desired bijection between
null-homologous closed geodesics on DS and on DR.

Corollary 4.4.7. Rectangles have no stable periodic billiard path.

4.5 Parallelogram

Figure 4.5.1: The minimal trans-
lation surface for P1. It has four
holes A,B,C,D, and the edges
with the same labels are identi-
fied via translation.

Now we can move on to parallelogram with one angle π
4 . We shall do

only one case here.

Theorem 4.5.1. A parallelogram P1 with one angle π
4 and modulus 1

will have no stable periodic billiard path.

Here is an outline for the proof:
Step 1: We compute MT (P1), and compute the action of the covering

map φ : MT (P1)→ DP1 on homology and cohomology. In particular, we
shall find a stability criteria: there are elements α∗, β∗, ω∗ of cohomology
groupH1(MT (P1)) such that φ(γ) is null-homologous iff α∗(γ) = β∗(γ) =
ω∗(γ) = 0 for a closed loop γ.

Step 2: We do the cylinder decompositions of MT (P1) in direction
(1, 0), (1, 1), (2, 1) and find a geodesic in each cylinder of each cylinder
decomposition. These are the ten standard geodesics. Then we build
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an enumeration theorem showing that any geodesic on MT (P1) can be mapped to one of these standard
geodesics by an affine automorphism.

Step 3: We show that for any geodesic γ and any affine automorphism ψ, if φ(ψ(γ)) is null-homologous
in DP1, then β∗(γ) is even and α∗(γ) = 2β∗(γ), which none of the ten standard geodesics satisfies.

Step 4: Combine Step 2 and 3, we concludes that there are no stable periodic billiard paths.
We shall first study the minimal translation surface. See Figure 4.5.1. To build this surface, we start

with the parallelogram P1, and let the edges adjacent to an angle π
4 be a, b, and let a′, b′ be the edges parallel

to a, b respectively in P1. Now we reflect P1 about a and b alternatively. Then we are back to the original
parallelogram after exactly eight reflections. This would give us parallelograms P1, ..., P8, where the indices
lives in Z/8Z. Now for each i, the edges a, a′ of Pi are glued to the edges a, a′ of Pi+1 respectively, and the
edges b, b′ of Pi are glued to the edges b, b′ of Pi−1 respectively. This way we obtain the minimal translation
surface.

Figure 4.5.2: Cut and reassemble of MT (P1). The numbers are labels for the pieces. In the right most
figure, edges with the same letter label are glued together by translation.

Figure 4.5.3: The generators ω
and αi

However, this is not the best way to represent this surface. We can cut
and reassemble and obtain a better version. We start from the represen-
tation in Figure 4.5.1. Then we cut each Pi along their shorter diagonal.
and by some rearrangement shown in Figure 4.5.2, we obtain a double
square glued together in a weird way. Note that this is topologically a
double octagon like the minimal translation surface for V4 in section 4.2,
except that the octagon here is not regular, and has four flat angles and
thus looks like a square.

One advantage of this new representation is the following result.

Proposition 4.5.2. Any close geodesic on MT (P1) will have rational
slope.

Figure 4.5.4: The generators βi

Proof. With the new representation, we see that there is a natural map
from MT (P1) to the double of a square. Then the closed geodesic will
be mapped to a periodic billiard path of the square. However, such path
must have rational slope. So we are done.

Now we shall proceed to find generators for homology group. A ba-
sis for H1(MT (P1)) ' Z9 is {α1, α2, α3, α4, β1, β2, β3, β4, ω}. See Fig-
ure 4.5.3 and 4.5.4. We shall treat their index as in Z/4Z. One can prove
that they are indeed a basis for homology by using simplicial homology.
A basis for H1(DP1) ' Z3 is {λ1, λ2, λ3}. See Figure 4.5.5.

Now let φ : MT (P1) → DP1 be the natural covering map. Then we
have
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Figure 4.5.5: The
generators of DP1

φ∗(ω) = 4λ1

φ∗(ω +
∑

αi +
∑

βi) = 4λ2

φ∗(ω +
∑

βi) = −4λ3

Proposition 4.5.3. φ∗(αi) = λ2 + λ3, φ∗(βi) = −λ1 − λ3 for all i.

Proof. Let r be the counterclockwise rotation by π
2 of both square forming MT (P1)

around their center respectively. Clearly r is an affine automorphism and a deck
transformation. Furthermore, r(αi) = αi−1, r(βi) = βi−1 for all i. As a result,

φ∗(αi) = φ∗(r(αi+1)) = (φ ◦ r)∗(αi+1) = φ∗(αi+1)

for all i. So φ∗(αi) = φ∗(αj) for all i, j, and the same is true for βi by similar arguments. Then
φ∗(ω) = 4λ1

φ∗(ω +
∑
αi +

∑
βi) = 4λ2

φ∗(ω +
∑
βi) = −4λ3

=⇒


φ∗(ω) = 4λ1

φ∗(ω) + 4φ∗(αi) + 4φ∗(βi) = 4λ2 for each i

φ∗(ω) + 4φ∗(βi) = −4λ3for each i

=⇒


φ∗(ω) = 4λ1

φ∗(αi) = λ2 + λ3 for all i

φ∗(βi) = −λ1 − λ3 for all i

Now let {α∗1, α∗2, α∗3, α∗4, β∗1 , β∗2 , β∗3 , β∗4 , ω∗} be the dual basis for cohomology. Then we can define α∗ =∑
α∗i , β

∗ =
∑
β∗i . And we have the following lemma:

Lemma 4.5.4 (Stability Criteria). Any loop γ on MT (P1), φ(γ) is null-homologous in DP1 iff α∗(γ) =
β∗(γ) = ω∗(γ) = 0.

Proof. Let γ be any loop. Then γ =
∑
aiαi +

∑
biβi + kω for some integers ai, bi, k. Then

φ∗(γ) = (
∑

ai)(λ2 + λ3) + (
∑

bi)(−λ1 − λ3) + 4kλ1

= α∗(γ)(λ2 + λ3) + β∗(γ)(−λ1 − λ3) + 4ω∗(γ)λ1

= (4ω∗(γ)− β∗(γ))λ1 + α∗(γ)λ2 + (α∗(γ)− β∗(γ))λ3

Now we have:

(4ω∗(γ)− β∗(γ))λ1 + α∗(γ)λ2 + (α∗(γ)− β∗(γ))λ3 = 0

⇐⇒


α∗(γ) = 0

α∗(γ)− β∗(γ) = 0

4ω∗(γ)− β∗(γ) = 0

⇐⇒ α∗(γ) = β∗(γ) = ω∗(γ) = 0
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Figure 4.5.6: The cylinder de-
composition in the (1,0) direc-
tion

Now what we need is something similar to the enumeration theorem
for isosceles triangles. To build this theorem, we can start by doing the
cylinder decomposition of MT (P1) in different directions. The ones with
direction (1, 0), (1, 1), (2, 1) are shown in Figure 4.5.6, 4.5.7 and 4.5.8. In
Figure 4.5.6, A and B form a cylinder, and C and D form a cylinder. In
Figure 4.5.7 and 4.5.8, polygons forming the same cylinder have the same
label. Within each cylinder of each cylinder decomposition is a family of
closed geodesics with the same homology class. We pick a representative
from each, and we obtain 10 geodesics γ1, ..., γ10. For example, γ1, γ2 are
shown in Figure 4.5.9.

Let τ0 be the Dehn twist in horizontal direction with derivative(
1 4
0 1

)
, and let τ1 be the Dehn twist in (1, 1) direction with derivative(

−2 3
−3 4

)
, and let r be the rotation as before. They generate a subgroup

〈τ0, τ1, r〉 ⊂ Aff(MT (P1)).

Figure 4.5.7: The cylinder de-
composition in the (1,1) direc-
tion

Theorem 4.5.5 (Enumeration Theorem). For any closed geodesic γ,
there exists an affine automorphism ψ ∈ 〈τ0, τ1, r〉 such that ψ(γ) is ho-
mologous to one of ±γ1, ...,±γ10.

This theorem is a corollary of Proposition 4.5.7. However, before we
go into the proof of that Proposition, we need the following theorem
in hyperbolic geometry. For a proof of the theorem and definition of
relevant terms, see the book on hyperbolic manifolds by Ratcliffe [4] and
the Theorem 11.2.2 in this book.

Figure 4.5.8: The cylinder de-
composition in the (2,1) direc-
tion

Theorem 4.5.6 (Poincaré’s Fundamental Polyhedron Theorem on Hy-
perbolic plane). Let Φ be a subset of the group SL(2,R), and let it be a
proper SL(2,R)-side-pairing for a convex polygon P . Suppose when we
glue the edges of P according to the pairing Φ, the resulting hyperbolic
surface is complete. Then P is the fundamental domain of the group in
SL(2,R) generated by Φ.

Proposition 4.5.7. Let G be the subgroup of SL(2,Z) generated by

A =

(
1 4
0 1

)
, B =

(
−2 3
−3 4

)
, R =

(
0 −1
1 0

)
. G acts on L = (Z2 −

{(0, 0)})/ ∼, where (a, b) ∼ (c, d) iff there exist m,n ∈ Z− {0} such that
m(a, b) = n(c, d). (i.e. L is the set of lines with rational slope.) Then
this action has three orbits, one containing direction (1, 0), one containing
direction (1, 1), and one containing direction (2, 1).

Figure 4.5.9: γ1 and γ2

Proof. We start by looking at the action of G on the hyperbolic plane
H2. We adopt the upper half plane model for now. Then A(−2) =
2, A(∞) =∞, soA would send the geodesic through−2,∞ to the geodesic
through 2,∞. R(i) = i, R(1) = −1, so R would send the geodesic segment
from 1 to i to the geodesic segment from −1 to i. Finally, RB(2) =
−2, RB(1) = −1, so RB would send the geodesic through 1, 2 to the
geodesic through −1,−2. Then we obtain a convex hyperbolic pentagon
PH as shown in Figure 4.5.10, and Φ = {A,A−1, R,R−1, RB, (RB)−1} is a
proper SL(2,R)-side-pairing. Furthermore, if we glue the edges according
to the pairing by Φ, then the resulting hyperbolic surface M is clearly
complete. So by the Poincaré’s fundamental polyhedron theorem, PH is a fundamental domain of G.
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Now because the fundamental domain PH have five vertices, all rational points on x-axis together with the
point ∞ can be mapped by to one of the five vertices by elements of G. Further more by the G-side-pairing
on PH, we see that there are exactly three orbits, containing 1, 2,∞ respectively. Now G acts on the rational
points on x-axis together with the point ∞ in the same as G acts on the set L. So the action of G on L has
three orbits, containing (1, 1), (2, 1) and (1, 0) respectively.

Proof of the Enumeration Theorem 4.5.5. We know that γ must have rational slope. Let (a, b) ∈ Z2 be the
direction vector of the slope of γ. Clearly (a, b) 6∼ (0, 0). Then there exists M ∈ G such that M(a, b) ∼
(1, 0), (1, 1) or (2, 1). As the derivatives of τ0, τ1, r are exactly the generators of G, we can find ψ ∈ 〈τ0, τ1, r〉
with derivative M . Then ψ(γ) must have slope (1, 0), (1, 1), (2, 1), so it must be one of the desired geodesics.

Figure 4.5.10: The hyperbolic
polygon PH. Here Roman nu-
merals I,II,III are labels of edges,
and A(III),R(I),RB(II) are how
the matrices A,R,RB identify
pairs of edges of PH.

Now we can analyze the action of the affine automorphism on homol-
ogy. By the enumeration theorem, we will only use the action of τ0, τ1, r,
so we omit the others.

r(ω) = ω

r(αi) = αi−1

r(βi) = βi−1

τ0(ω) = ω

τ0(β1) = β1

τ0(β3) = β3

τ0(α1) = α1 + (α1 + α2 + β1)

τ0(α2) = α2 − (α1 + α2 + β1)

τ0(α3) = α3 + (α3 + α4 + β3)

τ0(α4) = α4 − (α3 + α4 + β3)

τ0(β2) = β2 − (α1 + α2 + β1) + (α3 + α4 + β3)

τ0(β4) = β4 + (α1 + α2 + β1)− (α3 + α4 + β3)

τ1(ω) = ω

τ1(α1) = α1

τ1(α3) = α3

τ1(β1) = β1 − 3α1 − (β4 + β1 + α1)

τ1(β2) = β2 + 3α5 + (β2 + β3 + α3)

τ1(β3) = β3 − 3α5 − (β2 + β3 + α3)

τ1(β4) = β4 + 3α1 + (β4 + β1 + α1)

τ1(α2) = α2 − (β4 + β1 + α1) + (β2 + β3 + α3)

τ1(α4) = α4 + (β4 + β1 + α1)− (β2 + β3 + α3)

These computations yield the following insight:

Proposition 4.5.8. For any closed curve γ on MT (P1) and any g ∈ 〈τ0, τ1, r〉, we have α∗(g(γ) − γ) =
2β∗(g(γ)− γ). In particular, α∗(g(γ)− γ) is always even.

Proof. From the computation above we see that the statement is true when g is τ0, τ1 or r, and γ is αi, βi
or ω. So the statement must be true when g is τ0, τ1 and γ is any closed curve.

The rest is induction. Suppose the statement is true for an element g ∈ 〈τ0, τ1, r〉, then by assumption,
we have:

α∗(g(γ)− γ) = 2β∗(g(γ)− γ).

32



Then we can deduce that:

α∗(τ0g(γ)− γ) =α∗(τ0g(γ)− g(γ)) + α∗(g(γ)− γ)

=2β∗(τ0g(γ)− g(γ)) + 2β∗(g(γ)− γ)

=2β∗(τ0g(γ)− γ)

α∗(τ1g(γ)− γ) =α∗(τ1g(γ)− g(γ)) + α∗(g(γ)− γ)

=2β∗(τ1g(γ)− g(γ)) + 2β∗(g(γ)− γ)

=2β∗(τ1g(γ)− γ)

α∗(rg(γ)− γ) =α∗(rg(γ)− g(γ)) + α∗(g(γ)− γ)

=2β∗(rg(γ)− g(γ)) + 2β∗(g(γ)− γ)

=2β∗(rg(γ)− γ)

Proposition 4.5.9. Let φ : MT (P1)→ DP1 be the natural covering map. For a closed curve γ on MT (P1),
if φ(g(γ)) is null-homologous for some g ∈ 〈τ0, τ1, r〉, then β∗(γ) is even, and α∗(γ) = 2β∗(γ).

Proof. Note that β∗(τ1(βi)− βi), β∗(τ1(αi)− αi), β∗(τ1(ω)− ω) are all even. So β∗(τ1(γ′)− (γ′)) is always
even for any loop γ′. In particular, β∗(τ1(γ′)) is even iff β∗(γ′) is even.

Now note that b∗(τ0(βi)− βi), β∗(τ0(ω)− ω) are even, while β∗(τ0(αi)−αi) is odd. As a result, we have
β∗(τ1(γ′)− (γ′))− α∗(γ′) always even. Now because φ(g(γ)) is null-homologous, α∗(g(γ)) = 0, and because
α∗(g(γ)− γ) is even by the above proposition, we have α∗(γ) even. Finally for any h ∈ 〈τ0, τ1, r〉, we apply
the above proposition again, and we have α∗(h(γ)) even. So for γ′ = hγ for some h ∈ 〈τ0, τ1, r〉, β∗(τ0(γ′))
is even iff β∗(γ′) is even.

Finally β∗(r(γ′)) = β∗(r(γ′)) for all γ′. So by induction, we can conclude that β∗(γ) is even iff β∗(g(γ))
is even. But φ(g(γ)) is null-homologous, so β∗(g(γ)) = 0. So β∗(γ) is even. Finally, by the above proposition
again, α∗(g(γ)− γ) = 2β∗(g(γ)− γ), but α∗(g(γ)) = β∗(g(γ)) = 0, so α∗(γ) = 2β∗(γ).

Proof of Main Theorem 4.5.1. Suppose there is a stable periodic billiard path. Then we can find a closed
geodesic γ on MT (P1) such that φ(γ) is null-homologous. By enumeration theorem we know γ is homologous
to g(γ′) for γ′ ∈ {±γ1, ...,±γ10} and some g ∈ 〈τ0, τ1, r〉. Then we must have β∗(γ′) even and α∗(γ) = 2β∗(γ).
Now we compute the pair (α∗(γi), β

∗(γi)) for each i, none would be the desired one. So our theorem is
proven.
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