MMI News

Epigenetic control of pheromone MAPK signaling determines sexual fecundity in Candida albicans

A central theme in biology is to understand how different signaling outputs can be accomplished by changes to signal transduction pathways. Here, we examined epigenetic differences between two cell states in the human fungal pathogen Candida albicans. We show that cells in the “white” state are sterile due to multiple bottlenecks in MAPK signaling relative to mating-competent “opaque” cells. Alleviation of these bottlenecks by reverse engineering effectively converts sterile white cells into sexually competent cells. These results have broad implications for understanding how epigenetic changes can impact MAPK expression and signaling output, including events associated with tumorigenesis. We also propose a model for how the white-opaque switch gained control of sexual reproduction in Candida during evolution.