Antiferromagnetic Quantum Oxide Tunnel Junctions for Beyond-CMOS Electronics
This proposal seeks to design, develop, and characterize a revolutionary antiferromagnetic tunneling junction based on epitaxial quantum oxide thin films to improve the efficiency, scalability, functionality, and bandwidth of beyond-CMOS electronics and magnetic sensors. Most modern spin-based electronic devices, such as magnetic tunnel junctions, use elemental ferromagnetic metals as active materials (e.g. Co, Fe, Ni, and their alloys). Although well-studied, these simple materials systems suffer from numerous inherent limitations. These include slow and lossy precessional dynamics, large stray fields which prevent device scaling and disturbance immunity, sizable power consumption, and poor signal to noise ratios. We aim to integrate quantum antiferromagnetic oxides into spintronics with the development of a model antiferromagnetic tunnel junction to overcome these challenges. This can only be enabled by our cross-disciplinary approach which combines atomically precise synthesis techniques and device physics. Such a device will enable high bandwidth (THz) operations, low energy (attojoule) control, high sensitivity (femtoTelsa), and high on-off device ratios (>500%) suitable for beyond-CMOS technologies. Such high sensitivity, material stability, and scalability can also enable non-invasive imaging, detection, and sensing of minute electromagnetic signals in biological systems and energy storage/conversion devices. This work will strengthen Brown University's relevance in quantum oxide materials synthesis and applications.
PI: Lucas Caretta, Assistant Professor of Engineering
Co-PI: Gang Xiao, Ford Foundation Professor of Physics, Professor of Engineering