NOTES ON
THE DOCTORAL PROGRAM
IN PHYSICS AT BROWN

These notes are addressed to all current and incoming PhD students in Physics, to be used as a planning guide in the first year and as a progress checklist and reference resource throughout the PhD years. Pertinent University web resources should be regarded as the primary references for degree requirements and options.

November 2015
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Advising & Communication</td>
<td>3-4</td>
</tr>
<tr>
<td>Digest of Program & Requirements</td>
<td>4-7</td>
</tr>
<tr>
<td>Transitional Master's Degree</td>
<td>4</td>
</tr>
<tr>
<td>Qualifying Examination</td>
<td>4-5, & Appendix</td>
</tr>
<tr>
<td>Preliminary Examination & Advancement to Candidacy</td>
<td>5</td>
</tr>
<tr>
<td>Final Oral Examination</td>
<td>5</td>
</tr>
<tr>
<td>Academic Standing</td>
<td>6-7</td>
</tr>
<tr>
<td>Courses – Core and Advanced</td>
<td>7-8</td>
</tr>
<tr>
<td>Course Waivers & Transfers</td>
<td>7-8</td>
</tr>
<tr>
<td>Research in Graduate Study</td>
<td>8-9</td>
</tr>
<tr>
<td>Interdepartmental Research Projects</td>
<td>9</td>
</tr>
<tr>
<td>Teaching Experience & Professional Development</td>
<td>9-10</td>
</tr>
<tr>
<td>Financial Support</td>
<td>10-11</td>
</tr>
<tr>
<td>For International Students</td>
<td>11</td>
</tr>
<tr>
<td>Appendix: Qualifying Exam Information</td>
<td>12-13</td>
</tr>
</tbody>
</table>
A. INTRODUCTION

The aim of the Doctoral Program in Physics is to train professional physicists grounded in the fundamental principles, facts and methods of the discipline who are able to plan and execute original investigations leading to new and useful knowledge. The program is not career-oriented or slanted toward specific fields of specialization. The temporary specialization demanded by a student's research is conceived as a part of the academic experience and, in many cases, will be abandoned upon graduation, entailing neither loss nor waste. Similarly the Doctoral Degree in Physics imposes no career commitment. It certifies a command of certain intellectual tools of broad validity and physics' modes of thought as well as a facility in attacking the unknown. Of course, it enables one to practice research and/or teaching in Physics.

These aims underlie the two broad phases of the graduate program: courses and research. The intent is to retain the maximum of individual freedom which is consistent with attainment and demonstration of a professional level of competence in both phases. The system of grades, examinations and associated requirements has three functions: to certify achievement of the program objectives, to monitor progress toward them, and to identify students of highest promise and accomplishment in a systematic way. They are meant to protect the University against devaluation of its degrees, the student against an unprofitable investment of time and effort, and both against the ineffective distribution of limited resources for financial support.

Faculty members are willing and able to give information, advice and assistance at all stages of graduate work. They have a real interest in the individual student, a stake in his/her present progress and future career, and respect for his/her privacy and dignity as a person. The student/faculty ratio has remained low, contact is meant to be informal and unconstrained, and each student should come to know and be known by a number of faculty members in a short time. The number and effectiveness of these interpersonal contacts depends largely on the student's own initiative. In general, faculty members will not seek a student out but will welcome him/her.

B. ADVISING & COMMUNICATION

The Department has traditionally been distinguished by a relaxed and informal interaction among its faculty members and graduate students. We count this tradition as one of our assets and consciously seek to preserve it, but in order to do so, we rely on student initiative and participation. In-course contact, seminars, and colloquia are convenient occasions for students to become acquainted with faculty members.

No less important than interaction with the faculty, and equally dependent upon initiative and participation is the communication among graduate students at various levels of advancement. The grapevine is a unique and important source of information which should not be neglected. Students should not hesitate to ask other students questions and to utilize the many student resources available, including the mentor program and graduate student coffee hour.

Formal mechanisms for faculty advising are as follows: one faculty member is designated Director of Graduate Studies (DGS), who chairs a Graduate Advising Committee. The responsibilities of the DGS and this committee include:

- maintaining an open line of communication with the faculty as a whole on matters of general or individual concern
- providing individual advising (available at all stages but of particular importance in the period before a research affiliation is established)
- ensuring an awareness of each student's progress within the graduate program
The DGS also serves as a liaison with the Graduate School (DGS).

One member of the Graduate Advising Committee will discuss with each incoming student the choice of the first year course program. This member will continue to advise the student on his/her progress throughout the initial stage of study. This advising will include four scheduled meetings during the first year in the program. Once an association with a research supervisor has been established by the student (usually at the end of the first year), the principal advising responsibility shifts to the research advisor.

A member of the department administrative staff, the Student Affairs & Programs Manager, is available to assist students with all graduate matters.

C. DIGEST OF PROGRAM AND REQUIREMENTS

In brief, the requirement for a Ph.D. degree in Physics consists of successfully completing:

- six prescribed core courses
- four advanced courses
- a qualifying examination
- a preliminary examination (oral), and
- an original investigation under the sponsorship of a particular faculty member (research supervisor) leading to a final thesis and a thesis defense examination.

Normally, the first year is spent wholly on the prescribed core courses, although it is highly desirable that a research field be chosen and, if possible, an understanding reached with a research supervisor before the end of that year.

In the second year, the core courses should be concluded, one or two advanced courses taken in the chosen specialty area, and active work begun with a research group.

In the third year, formal course work usually ends with two more advanced courses. An independent research project gets underway, thereafter absorbing the student's full effort until it is completed and embodied in the formal thesis.

Students can earn a Transitional Master's Degree (ScM) prior to the PhD. This transitional degree recognizes a significant level of academic achievement beyond an undergraduate degree. Its minimum requirements consist of eight courses which would normally include the core courses (PHYS 2010, 2030, 2040, 2050, 2060, 2140) and other 2000 level courses. No more than two courses can be research courses. Courses outside the Department or 1000-level courses may be substituted by permission of the DGS. At least half of the grades in the core courses (and any 1000-level courses) must be B's or better under the ABC/NC option, or must represent performance of equivalent quality under the S/NC option (a written recommendation from the instructor will be required in this case) or else the student must have passed the Qualifying Examination for the PhD in Physics. Ordinarily, a thesis is not required for the ScM but the Department reserves the right to require a thesis in special cases. Such a decision is made no later than one semester after the student announces to the Department Chair his/her candidacy for a Master's Degree in Physics.

The Qualifying Examination normally taken at the start of the second year, is the Department's primary instrument for admitting students into the upper levels of the Ph.D. program. Its purpose is to evaluate whether a student’s understanding of fundamental general physics is adequate for success in independent physics research. It may be taken in the spring of the first year by
prepared students (permitting an earlier start on research), or deferred in the case of a first-year program that did not include the normal complement of core courses. See the appendix for more details.

The Preliminary Examination, which should be taken during the third year, evaluates a student's ability to understand and orally convey a physics research topic of current interest. Successful completion of this exam marks a student's formal Advancement to Candidacy.

PROCEDURES FOR THE PRELIMINARY EXAMINATION

- Students are to identify, in consultation with their research advisor by the end of the second year, a three person faculty committee, who will serve as their Preliminary Exam Committee. This committee, which will guide and inform the research work of the student over the graduate career and, in most instances, will also serve as the Thesis Defense Committee, should include the research advisor and two other members of the Department. Other members outside the Department can serve on the committee subject to the prior approval of the Director of Graduate Studies, but at least two members of the committee must have appointments in Physics, with one having his/her primary appointment in the Department.

- At least two weeks prior to taking the Preliminary Exam, a student submits an abstract to his/her committee. The abstract provides a brief description (approximately one typed 8-1/2 x 11 page in length) of the topics that the student will present and in which they are willing to be tested during the exam. The topic may be in the area of the student's research or may represent a specific research paper, provided its subject is dealt with in sufficient generality, perhaps preceded by an appropriate introduction formulated by the student.

- The first forty minutes of the exam is devoted to a prepared presentation by the student. He/She should expect questions, based upon his/her graduate course work and relevant to the topic under discussion.

- A two-thirds favorable vote is necessary to pass. The exam may be retaken as needed.

After the Ph.D. thesis is completed and approved, there is a Final (Oral) Examination – often called defense of the thesis. Rules of the Graduate School require that this Final Examination take place within five years after the Preliminary Examination, unless special circumstances justify an extension. The Preliminary and Final Examinations mark the formal beginning and completion of the independent research work. In general, the Thesis Defense Committee for the Final Examination will consist of the same faculty who served on the student's Preliminary Exam, though changes can be made in consultation with the research advisor and the Director of Graduate Studies. These faculty members also serve as research and career mentors to the student over the course of his/her thesis work.

An aggregate of three years of full-time study while in residence at Brown is required and is automatically satisfied in the normal program of classroom and research courses. It may be possible to meet part of this requirement by transfer of credit from another institution.

It is the individual student's responsibility to make sure, before appearing for the Final Examination, that all of his/her Departmental and University requirements have been met.
Academic Standing

The following criteria which define Good Standing also set out the normal progress of a Physics graduate student's career at Brown. Every student admitted to the graduate Physics program enters in Good Standing, and it is the expectation and desire of the Physics Faculty that all Physics graduate students will remain in Good Standing, completing a Ph.D. degree.

Students appointed as Teaching Assistants or Research Assistants are required to take three full courses per semester. Students holding Brown University or U.S. Government sponsored scholarships or Fellowships are required to take four full courses per semester. Reading and research courses may only be taken by first year students either as a fourth course or under special circumstances with permission of the Director of Graduate Studies. Note: You cannot drop a course without consulting with the Director of Graduate Studies first.

A student will be in Good Standing if he or she:

- Passes three approved courses each semester if a Teaching Assistant, or four courses if holding a Fellowship, after two semesters of graduate study at Brown; then passes or is excused from taking the remainder of the "core" courses by the end of four semesters of graduate study at Brown and achieves the following core course grade record: no NC's and at least 50% B's or better by the end of two semesters and no remaining NC's or I's and 50% B's or better by the end of four semesters.
- Passes the Qualifying Exam and receives faculty approval to continue a graduate career in Physics by the end of his or her fourth semester of graduate study at Brown.
- Establishes a plan for financial support with a research advisor who can guide his or her PhD research effort within two semesters of passing the qualifying exam or by the start of his or her fifth semester of graduate study, whichever comes first. The relationship with the research advisor is expected to remain through the student's PhD study. This relationship and the associated plan of support must be endorsed by the department chair.
- Passes the Preliminary Oral Exam by the end of the sixth semester of graduate study at Brown.
- Satisfactorily performs any teaching and/or research duties.

A student failing to meet at least one of these criteria is not in Good Standing unless a prior exception has been made by the Department Chair in consultation with the Director of Graduate Studies. Examples of exceptional circumstances include illness, inadequate preparation for some graduate courses and/or postponement of the Qualifying Exam, or personal problems. A record of any exception and the relevant reasons will be kept by the Chair and the Director of Graduate Studies along with each student's course grades, Qualifying and Preliminary Exam results and current standing.

It is expected that all core courses will be taught and taken ABC/NC. For any Physics graduate student who passes a core course with an S, the instructor will prepare an evaluation form for the Chair. The evaluation will include an equivalent ABC letter grade for use in establishing standing.

It is anticipated that students in Good Standing will so continue. It is also anticipated that in addition to the requirements in Section A. above, students will perform satisfactorily in all courses. Records of course grades will be kept by the Director of Graduate Studies, who will inform the faculty if an advanced graduate student (third year or beyond) is not doing satisfactorily in courses. At an appropriate meeting, the Physics Faculty will discuss the performance of graduate students. Those fulfilling the above criteria are assured automatic Good Standing. The standing of those students who do not meet these criteria will then be discussed by the Faculty.
In addition, if a student is not in Good Standing, then either: the Department Chair, after consultation with the Director of Graduate Studies and the student's research supervisor (if there is one), may discontinue the student's teaching assistantship if the student has not been taken on as a research assistant, or the research supervisor, after consultation with the Department Chair and the Director of Graduate Studies, may discontinue the student's research assistantship. These decisions will be communicated to the student and the Physics Faculty in writing as soon as possible.

D. COURSES

The six prescribed *core courses* are:

Physics 2010 Techniques in Experimental Physics
Physics 2030, 2040 Classical Theoretical Physics I & II
Physics 2050, 2060 Quantum Mechanics
Physics 2140 Statistical Mechanics

No student should be asked to repeat work already done, and those who believe they have substantially covered the content of any of the core courses should ask (at their first advising meeting, or of the Director of Graduate Studies at any time) to be excused from taking the corresponding course(s) in the list above. Conversely, significant gaps in undergraduate preparation are sometimes filled by taking one or more 1000-level courses in the first year. Such courses carry full graduate credit if the grade is B or better.

After the first semester, a student who has done graduate work before coming to Brown may request transfer credit for courses so taken, provided their content does not duplicate course work he/she has done or will do at Brown, subject to a limit of eight courses for the Ph.D. Such a transfer of credit in effect incorporates the courses into the Brown program. Although a given course taken elsewhere may qualify both for a credit transfer and a waiver of one of this Department's core courses, this is not necessarily so:

- A waiver excuses the student from one of the Department's required courses but does not contribute to either residence or tuition requirements.
- A credit transfer reduces both of the latter, but may have no effect on the Department's specific course requirement.

Beyond the core courses, Ph.D. candidates are expected to pass *four advanced courses*, in addition to research courses, to strengthen and update their knowledge of their chosen research fields while developing breadth.

Two of the courses acquaint students with at least two of the major research areas of the department. The courses 2070, 2100, 2170, 2200, 2280, 2300, 2410, and 2630 are suitable for meeting this requirement. At least one of the courses must fall outside a student's research area. Some sets of these courses like 2100 and 2280, and 2070, 2170, 2200 and 2300 overlap strongly enough that students can only use one of the set towards the requirement. Higher level courses, such as 2420, can also be taken to meet this requirement. The breadth course offerings may expand as new courses emerge. Students can consult with the DGS about selecting a course that may not be currently on this list.

The remaining two courses help students along their research path. The student's own taste and the supervisor's recommendations are both vital guides in their selection and it should be possible to accommodate both. These courses are expected to be from the 2000 level; PHYS 2020, Mathematical Methods of Engineers and Physicists is an acceptable choice. The rest can
be from offerings of other departments subject to the approval of the Director of Graduate Studies. The Department's offerings at this level vary from year to year. The student should consult the Department's annual listing of course announcements. Special courses can sometimes be arranged in response to student requests, given sufficient numbers and sufficient lead time. Reading courses can only be counted towards the advanced course requirement upon approval by the Director of Graduate Studies using the Advanced Course Permission Form. However, a generic research course cannot be used to satisfy the advanced course requirement.

The sequence of advanced courses in the various fields of specialization shades almost imperceptibly into the various weekly series of topical seminars and departmental colloquia. These are a major constituent of the graduate program, and regular attendance and occasional participation are expected of each student. They provide not only contact with the current literature but also a first-hand experience in professional Physics research. (It is possible to learn from less exciting visiting speakers as well as the most stimulating ones.)

The normal full-time course load for Teaching or Research Assistants is three courses at a time, and four for others. After the first year, fewer classroom courses are taken and a full-time registration is maintained by the assignment of course credits for research activity (designated PHYS2980/2981). If all core and advanced courses have been taken, registration should be for Research (PHYS2980/2981) at triple credit each semester until 24 tuition credits have accrued. After 24 tuition credits have been accumulated, Thesis Preparation (PHYS2990/2991) is usually the appropriate course to take. A similar adjustment is occasionally made in the first year, e.g., in the cases of foreign students for whom special work in English is recommended (See also: H. FOR INTERNATIONAL STUDENTS). The concept of full-time load is a federally defined prerequisite for the tenure of federal fellowships.

Individual course registrations are submitted online via the University's Banner registration system.

E. THE RESEARCH COMPONENT IN GRADUATE STUDY

Many students enter graduate school without a clear preconception of which specific research field attracts them most strongly. It is an important function of the first year to evoke such a preference, through courses, colloquia and seminars, and informal discussions with faculty and other graduate students. The primary aim should be to establish a choice of field before the end of the first year, so that active association with a research group can begin during the first summer at Brown. It is not intended to force a premature choice; changes of direction are possible, but the sooner a reasoned choice can be made and acted upon, the smoother will be the transition from course work to research. (See also: G. FINANCIAL SUPPORT).

Establishment of a research connection obviously requires not only concentrated thought but substantial initiative on the part of the individual concerned. Three steps are involved:

- learning what kinds of work are going on and, hence, what is available
- estimating what opportunities, duties and daily life might be in those groups of interest
- establishing a personal connection

Colloquia and seminars (especially those specifically related to current departmental activities), and discussions with the Director of Graduate Studies or any faculty member with whom a student has become acquainted will help in the first stage. Students should talk at length with other graduate students and supervisors in the groups that are of interest. The last, of course, is accomplished by a direct approach to the faculty member with whom students would like to work,
an expression of their interest, and a request to be accepted as a research student. Students should begin this process well before the end of Semester II of their first year in the program.

The Department aims at giving all possible freedom to every student in the choice of doctoral research, including the right to change fields for good reason. However, practical obstacles may arise, notably, that the preferred research group or groups cannot at that time handle any more students. It is very important that students explore a variety of research opportunities across several fields of physics.

Interdepartmental research projects carried out entirely in a related department are possible in connection with a Ph.D. in Physics. Specific proposals should be discussed, in advance of any commitment, with the advisor as well as with the outside faculty members who may be involved. In such cases, a Physics faculty member is associated with the program as liaison, the student is subject to the normal Physics Department requirements, and the thesis must be approved by both departments involved.

The Department assumes proper Ph.D. research to be of publishable quality, and thesis results are expected to be published in the professional literature. In all stages of the work, the supervisor has the primary role in evaluating the quality of the research. The research proposal may be considered by other faculty members in the student's Preliminary Examination, and the completed project should be approved by thesis readers representing the Department. A member of another department may also act in this role if his/her familiarity with the project is adequate. In general, the thesis readers will be the same faculty who served on the student's Preliminary Exam Committee, though changes can be made in consultation with the research advisor. The members of the Preliminary Exam Committee can thus be drawn upon for informal counseling while the research is in progress.

F. TEACHING EXPERIENCE AND PROFESSIONAL DEVELOPMENT

Teaching experience is an integral part of graduate study in Physics at Brown, whether or not students serve as teaching assistants. Certainly such experience will be valuable to those who aim toward careers involving teaching, but it is also widely maintained that teaching experience has relevance comparable to that of research in graduate education.

Although more than half of doctoral students in Physics hold teaching assistantships for at least a year (usually the first), the Department will do its best to accommodate students who would choose to teach, either additionally or, perhaps, later in their program. Sessions dedicated to teaching are included in the departmental Ph.D. Orientation at the start of each year. Because students may teach in later years, all first year students, regardless of mechanism of support, are required to attend these sessions.

The Department also has a doctoral student peer mentor program, which is a student-run initiative providing support for incoming Ph.D. students and a platform for graduate fellowship and professional development. The goals are to improve teaching, to foster community within the department, and to promulgate professional development opportunities and resources. The program includes a series of teaching assistant training exercises during Orientation, the assignment of community mentors and teaching assistant mentors from the upper level graduate classes, and special training sessions and social events throughout the year. It also features a regular graduate student coffee hour. The program runs on student involvement and, therefore, welcomes new ideas and volunteers.
The University provides a multitude of resources for teaching and professional development, including:

- Sheridan Center for Advanced Teaching and Learning
- CareerLab
- Writing Center

Students are encouraged to participate in the programs offered as suits their professional development.

G. FINANCIAL SUPPORT

The Graduate School guarantees doctoral students five years of financial support, including a stipend, tuition remission, a health-services fee, and a health-insurance subsidy, contingent upon students maintaining satisfactory academic progress in their programs. This support may take the form of a teaching assistantship, research assistantship, fellowship, or proctorship. All graduate student appointments cover the academic year only (September through May) or, in some instances, one semester only. Separate appointments are submitted for the summer. The nine-month, academic year stipend is set by the Graduate School annually and, by present Departmental policy, is the same for all categories of support. Summer funding is guaranteed for four summers, but in some departments, including Physics, the summer funding is provided, not by the Graduate School, but by the Department through departmental funds or faculty research funding. The summer stipend is set by the Department and is contingent upon a number of factors.

In addition to the support available through the University, applicants are encouraged to compete for national and foundation awards available for graduate study. These awards carry valuable prestige. External fellowships awarded in national competition require that the individual student apply. They are publicized via email communication and as resources posted on the Departmental website. Additional information and links on external funding, including the Graduate School’s Incentive Policy, can be found on the Graduate School’s website.

The Graduate School also provides research travel support.

Because they are not yet fully prepared for research, most first-year students in Physics are supported as teaching assistants (TA’s). As soon as possible thereafter, students should try for research assistantships (RA’s), which requires a combination of acceptance and current availability of funds in a research project (see Section E above) as well as external competitive fellowships. Support as a TA for a second year is not guaranteed. A TA's duties are normally in the laboratory component of either an undergraduate or a graduate course. An RA initially goes through the equivalent of on-the-job training and as soon as possible progresses to an individual topic expected to culminate in a Ph.D. thesis. In either case, there is a specific faculty supervisor.

Holders of first year fellowships or the equivalent have no assigned duties other than continuation as full-time students taking four courses each semester. TA’s and RA’s are limited by the rules of the Graduate School to taking three courses each semester.

In keeping with a general aim for the fastest possible progress toward the Ph.D., consistent with good health and good work, graduate students are expected to work at Brown during the summer. The first summer can be a profitable period of assimilation, with some combination of preparation for qualifying examinations, teaching experience, and research apprenticeship. In later summers, the uncommitted time is invaluable for research. Brown does not charge tuition in the summer.
Both the Graduate School and the Department invest substantial resources toward the training and professional development of doctoral students over the course of their graduate careers. As such, students are expected:

- to remain in good academic standing,
- to perform well the teaching and research duties associated with their support by demonstrating both ability and effort in those duties.
- to pass, in turn, the Qualifying and Preliminary Examinations, and to complete the other milestones and benchmarks of the program in a timely manner.
- to engage in research during the summer term as well as the academic year.

H. FOR INTERNATIONAL STUDENTS

The following University offices and programs are devoted to supporting the unique needs of international students at Brown:

- **Office of International Student and Scholar Services (OISSS)**
- **Center for Language Studies**
- **English For International Teaching Assistants**

There is also the local and independent
- **International House of Rhode Island**

Fluency in English is an important skill for physicists and professionals. The department views participation in the appropriate English for International TA's (EINT) classes (as referred by evaluation) as not only important for professional development but as essential and mandatory while students are serving as teaching assistants. The Department encourages students whose native language is not English to take advantage of the opportunities and assistance provided by the above offices and organizations.
APPENDIX: The Qualifying Examination

I. Composition and Duties of the Qualifying Exam Committee

1. The Qualifying Exam Committee (QEC) shall comprise six faculty members appointed by the Departmental Chair to a one year term.
2. The QEC shall be chaired by a second-year member appointed by the Departmental Chair.
3. The QEC is empowered to solicit questions for the Qualifying Examination from faculty members (who are also expected to grade them) and, at their discretion, to formulate questions and delegate their grading to faculty members who are not on the QEC.
4. The QEC shall carry out such other duties connected with the Qualifying Examination as are specified in Departmental rules.

II. Rules Concerning the Qualifying Examination

A copy of the following rules shall be made available to each graduate student of Physics upon entering Brown University.

1. The purpose of the Qualifying Examination is to test whether a student has mastered core physics areas sufficiently well to carry out a successful Ph.D. program in Physics at Brown University.

2. **Timing of the Qualifying Examination**
 a. The Qualifying Examination will be scheduled near the first week of classes each autumn and spring semester.
 b. Students are ordinarily expected to take the exam at the beginning of their third semester. However, a student may request a postponement or ask to take the Examination earlier. The decision on such requests will be made by the Department Chair after consultation with the Director of Graduate Studies (DGS) and the student's research supervisor if there is one.
 c. A student who fails the exam must take it again at the next sitting or withdraw from the Ph.D. program. In unusual circumstances, the Departmental Chair may allow postponement of this second sitting beyond the fourth semester. A student who has decided to leave after completing work for a Master's degree may take the Examination at the usual time but, upon request, can be excused by the Departmental Chair.
 d. Normally, the graduate career in Physics at Brown University of any student failing the Examination twice will be terminated by the September following the second failure. However, in the event of two failures of the Examination a student may petition, in writing to the Departmental Chair, for a third chance at the next sitting of the Examination. The decision on this petition will be made by vote of the Departmental faculty, acting upon a recommendation made by an ad hoc committee consisting of the Departmental Chair and the Director of Graduate Studies. Factors to be considered in reaching this decision are (i) the student's overall performance in courses, research and the previous Qualifying Examinations, (ii) timing of those Examinations, and (iii) comments of the research supervisor if there is one. A third failure will cause the student's graduate career in Physics at Brown University to be terminated, not later than the next September following that failure.

3. **Format of the Qualifying Examination**
 In January 2003, the Physics Faculty adopted the current format for the Qualifying Exam.
The questions in the Examination will be based on the prescribed core courses for the Ph.D. requirement (except for the laboratory course). The intent of this exam is to test for understanding and knowledge over a broad range of topics. Consequently, the best preparation is a comprehensive review including reading and problem-solving. Every effort is made to make the exam fair and at the appropriate level of difficulty. However, the questions will not necessarily be related to those given in previous exams or to questions or problems in textbooks. As a guide to the wide range of material that should be mastered, a list of suggested textbooks may be found on the department website.

The qualifying examination is a written exam given on a single day. The exam will be based on material from the advanced undergraduate courses through material covered in the first year graduate core courses PHYS 2030, 2040, 2050, 2060, and 2140. Specifically, it will consist of pairs of problems in Classical Mechanics, Electricity and Magnetism, Statistical Mechanics and Thermodynamics, and two pairs of problems in Quantum Mechanics. A student is expected to choose one problem to solve from each pair and thus should submit answers to a total of 5 problems. Each problem is graded out of 10, with 6 considered a passing grade. A student who obtains a grade of 6 or greater on every problem passes outright. Otherwise, each student’s case will be considered individually by the full faculty.

4. Notification of Examination Details
The QEC will set, prior to each exam, the specific timetable for the exams, their grading, the availability of booklets and the Department Faculty Meeting. Students taking the exam will be notified well in advance of this timetable as well as of all other relevant details such as where and when the graded booklets will be available and the specific details as to their inspection.

5. Availability of Examination Results
As soon as possible after tabulation of the results, students shall be notified of their grades on the individual written Examination questions. Students shall be afforded the opportunity to inspect their graded booklets. Students may submit comments on the exam or its grading to the QEC for their review.

6. Faculty Evaluation of the Examination Results
Decisions on whether individual students have passed the Qualifying Exam will be rendered by the Faculty soon after completion of the exams.

The Faculty may also, if it deems appropriate, instruct the Departmental Chair to take steps concerning the future graduate career in Physics at Brown of any student whose status is under review. Such steps may include the requirements that additional courses be taken or that a Master’s thesis be written or that financial aid be discontinued.

7. Eligibility for Examination
Ordinarily only graduate students registered in the Department of Physics may take the Qualifying Examination. Other students who wish to take the Examination may do so at the discretion of the Chair of the Department of Physics.

8. Review of Procedures II-1 through II-7
Annual reviews and revisions of all these procedures may be undertaken in succeeding years when the need appears, provided that prompt written notice of any changes is given to all graduate students affected.

(This appendix revised July 2014)