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1 Introduction

A large literature in medicine, demography, sociology and economics documents that circumstances early in
life affect health and mortality throughout the lifetime (for recent summaries see Almond and Currie, 2011
and Almond et al., 2017). But there are several important gaps in our knowledge. For example the effects
of early conditions are not always visible in the short term but appear to emerge later on in life. Sometimes
the impact of policies fade and then re-appear. Thus the impact of early conditions varies depending on
the age at which they are measured, but there is no well known explanation for these patterns. The extent
to which selection due to selective mortality affects findings is also not clearly understood but it is often
hypothesized as a potential explanation for the various findings in the empirical literature. To understand
the consequences of early circumstances, and design optimal investment or compensation policies, it is
necessary to have a model of how health and mortality over the lifetime are affected by inputs and insults
at various ages. Yet there is no known parametric model of the production of health over the lifetime. As
Almond et al. (2017) note “a structural, well calibrated model of investments in early childhood and human
capital formation could help fill in the gaps in our knowledge.”

In this paper we provide a unified law of mortality that tracks the evolution of health and mortality from
birth to death. Cohort mortality rates exhibit a remarkably consistent pattern, high in infancy and old age,
and low but variable during reproductive ages. The stability and consistency of this shape across human
populations and primates, suggests there exists an underlying “law of mortality” and health (Gompertz,
1871, Carnes et al. 1996, Bronikowski et al., 2011).1 Our model is a simple dynamic model of the evolution
of the health stock that accounts for these basic features of mortality age-profiles and can be characterized
by only five parameters in its simplest form. In the spirit of the classic demographic work by Vaupel et
al. (1979), populations are born with an initial distribution of health (or frailty), and individuals with low
levels of health die. But this distribution of health is dynamic over the lifetime. As in the seminal Grossman
(1972)model, health is treated as a stock that can increase with (health) resources but otherwise deteriorates
with age. But crucially, unlike Grossman’s model, these resources as treated as stochastic. Finally individu-
als can also die from external causes or accidents, unrelated to “biological” processes and health status–this
last force is not necessary to explain the basic age-profile of mortality. But accidents play an important role
in explaining observed deaths during the reproductive period, while biological processes are most visible
in childhood and old age. The key implication of the model is that, if mortality depends on health, then the
observed age-profile of mortality imposes strong restrictions on models of the evolution of the health stock
over the lifetime (among survivors). Thus the evolution of health in the population can be infered from its
mortality over the lifetime.

The model makes very specific predictions about how the effects of in-utero shocks and socio-economic
status affect later health and mortality and helps rationalize findings in the literature. For example the
model predicts that, in the absence of compensatory responses, negative in utero shocks increase mortal-
ity at every age but the effect falls over time. However among survivors, health declines exhibit a non-
monotonic pattern with age: the effects are large initially, fade by adolescence and slowly start rising with
age. Similarly, permanent changes in the level (or the variance) of resources result in changes in health and
mortality that vary with age in a surprising manner. Moreover these conclusions are not always the same if

1Most notably Gompertz (1820), Gompertz (1825), Gompertz (1862), Gompertz (1871) noted log mortality is linear after 45. Models
that succesfully predict mortality from birth to death typically model the hazard rates (or some function of the rates, like survival
or probabilities of dying in a given interval) using complex mathematical models. Carriere (1992) for instance shows a mixture of
gompertz, Weibull, inverse Gompertz and Inverse Weibull can fit the data nicely. We provide an more in depth discussion of how our
model compares to others in the literature later in the paper.
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we express them in levels or in percentage changes.
We show that our model provides an excellent characterization of the age-profile of mortality for (se-

lected) cohorts born since the early 19th century. Using the method of simulated moments and cohort life
tables from the Human Mortality Database, the estimation recovers five (or more) parameters from each
cohort table and can be used to predict life expectancy and conduct counterfactual simulations. We also
estimate parameters for primates using data from Kohler et al. (2006) and we show that our model can also
accurately describe the evolution of their mortality.

We then use the model to investigate how shocks before age 25 affect health and mortality thereafter.
We demonstrate that temporary and permanent changes have very different effects on the age-profile of
health and mortality. We illustrate our findings by estimating the effects of WWII, a temporary but large
shock. Our model also captures well the effect of the 1918 flu pandemic, though one period shocks are more
difficult to identify. Consistent with the empirical findings in the literature, we find that both WWII and the
flu pandemic had long lasting “scarring” effects on mortality, despite the fact they also killed a substantial
number of individuals in the short run. These effects vary depending on the age at which the negative
shocks are experienced, and they are typically largest if they occur at ages with low mortality rates.

We end by investigating implications for optimal investment by age. If we assume that resources are
independent of health, we find that optimal health investments are u-shaped in age: they are highest at
birth, fall with age and rise again with age. Although optimal investments affect the shape of mortality,
they do not fundamentally change it–mortality remains highest at young and old ages. The model also
implies that lifetime investment and initial stocks are complementary, and there are also strong “dynamic”
complementarities between investments at different ages, as in Cunha and Heckman (2007). We consider
extensions of this optimal investment model, including making per period resources depend on health.

This paper is organized as follows. We first describe the data and the basic observations that motivate
our model. We then describe the model and its properties. Then we estimate the model for several popu-
lations. We then investigate how shocks affect the evolution of health and mortality and discuss the profile
of optimal investments. We finish by considering some possible applications of the model, and discuss the
limitations of this work.

2 Basic mortality patterns from the Human Mortality Database

We study the evolution of health and mortality among French women born between 1816 and 1947 using
data from the Human Mortality Database (HMD). The HMD provides population and death counts by age,
birth-year and gender collected through vital registration systems (birth and death certificates) and cen-
suses, from 1816 up to 2015. The availability and quality of the data for old ages is limited, so imputations
are used for all ages above 90.2 We focus specifically on French women for convenience.3 France has the
second longest time series of cohorts that can be followed from birth to age 100, after for Sweden, and it has
the largest population among countries with long time-series. Using the population and death counts we
compute mortality rates by age as the number of deaths divided by the population at that age (technically
we are computing probability, rather than the rate, of dying at a given age). We then use these to compute

2These data constitute the highest quality and longest data available to study cohort mortality. But it has some important limitations.
Exact population counts are only available for census years, intercensal years are estimated. Migration is not accounted for. The
accuracy of the data also falls substantially for years during which the territory changed, which often correspond to wars (1861, 1869,
1914, 1920, 1939, 1943, 1945, 1946).

3All studies of health and mortality investigate men and women separately. A full analysis of gender differences and their evolution
is beyond the scope of this paper.
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the survival rates (See Appendix 8 for details). 4 For all birth cohorts we observe mortality rates from birth
to age 100, except for the most recent cohorts. Cohort life expectancy was around 40 for the 1816 cohort and
it rose to about 69 for the 1923 cohort, the last cohort with mortality rates up to age 90.5

Figure 2 shows mortality rates by age, for selected birth cohorts of French women (panel a). It plots the
log (base 10) of the mortality rate by age for women born in France between 1860 and 1940. It shows that
(the logarithm of) mortality has the shape of a “tick mark”: it starts very high early in life, plummets to low
but variable levels in adolescence and young adulthood, and then rises with age starting in middle age. If
we examine the data by decade as in Appendix Figures 19 and 20 we see that this pattern is the norm across
all cohorts, and is very similar (though not identical) for men. Panel b of Figure 2 shows that although there
is some variation across countries, the shape of mortality is also very similar across countries for a given
cohort so the evolution of cohort mortality for France is representative of the evolution in other European
countries.

Several other features of the shape of mortality are noteworthy. First after middle age, log mortality
rises almost linearly with age–this regularity was first noted by Gompertz in 1820 and has since led to the
“search for a unified law of mortality.” Second, mortality rates have declined for every age: across cohorts
the curves are shifted downwards in almost parallel fashion. The steep decline in infant mortality between
1860 and 1940, could have resulted in higher mortality in older ages by leaving more frailer individuals
alive.6 But the curves do not cross–the mortality rate in old age is lower for cohorts with lower infant
mortality rates, as has been noted by Finch and Crimmins (2004).

Third, the greatest deviations (in logs or proportional terms) from the tick-mark shape occurs during
reproductive ages. There are visible “spikes” corresponding to war years, as can be seen for cohorts born
around 1920 who experienced WWII from age 19 to age 25. Even in the absence of wars, for example for
the cohorts born in 1860, there is a visible rise in mortality after age 15, which demographers refer to as a
“hump” (Preston et al. 2000,Thiele, 1871),

Lastly for the most recent cohorts, there are almost no humps or visible spikes. The adoloscent hump
is barely visible for the most recent 1940 cohort. The tick-shape is most clearly visible for this most recent
cohort. This observation motivates our basic model which seeks to describe “natural” mortality in the
absence of “external” causes that do not depend on external factors or choices such as whether to have
children or events like war.

3 A parsimonious model of health and death

In this section we provide a characterization of the evolution of health and mortality based on frailty, in the
spirit of Vaupel et al. (1979) (and similar to the idea of vitality in recent work by Li and Anderson, 2013).
But here the distribution of frailty is dynamic over the lifetime, similar to models of in-utero shocks (Bozzoli
et al., 2009 and Bruckner and Catalano, 2007). Health is treated like a stock, affected by investments and

4We have no information on the distribution of births and deaths within a year. So we make no adjustments for the fact that the
deaths in the first year do not correspond to individuals born in the first year. While this is technically not ideal, we prefer to show
the results using the fewest assumptions. The HMD reports probabilities (qx) that make adjustments based on a series of standard
assumptions in epidemiology. As Appendix Figure 26 in the shows, our naively computed probabilities are very similar to the ones
they compute but they make fewer assumptions.

5See Appendix Figure 8. These gains resulted initially from declines in infant and child mortality–life expectancy at age 20 starts
increasing substantially only towards the end of the 19th century. And life expectancy at age 40 increases substantially only after
WWII. Between 1816 and 1947 France experienced several infectious disease epidemics, and three large wars (the Franco-Prussian war
in 1870, WWI 1914-1919, and WWII 1939-1945), which temporarily lowered life expectancy significantly.

6Infant mortality in France fell from roughly 17 percent in 1860 to about 8 percent in 1940 in the HMD.
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Figure 1: The evolution of mortality rates for women in France
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Note: Figures plot the log (base 10) of the mortality rate by age for a given birth cohort using the the Human Mortality Data. Panel a
shows several cohorts of French women. Panel b shows data for women in six European countries with data for both 1860 and 1940
(Belgium, Denmark, the Netherlands, Sweden, France, and Norway). We do not show the 1816 data because only one other European
country (Sweden) has data for the 1816 cohort.

subject to depreciation, as in models of human capital (Grossman 1972 and Cunha and Heckman 2007).
This basic model can predict the evolution of mortality in the absence of external causes–we examine the
role of external causes of death later.

3.1 A model of “natural mortality”

Assume individuals are born with an initial health level H0. This initial health endowment differs across
individuals in the population and has an unknown distribution. Every period the environment provides
resources I to all individuals which increase H . In addition individuals in the environment are more or less
lucky, and experience an idiosyncratic shock εt to their resources. For example in a stationary environment
I characterizes the amount of food that a given country produces, but a given person might receive less if for
instance rain was unusually low in their location. The variance of εt captures how unequal the distribution
of resources within the population is. These idiosyncratic shocks are assumed to be i.i.d. every period.
Finally the health stock is subject to depreciation every period d(t) which is increasing in t (d′(t) > 0) :
every period there is a “user cost”, reflecting cumulative death cell and organ damage. Together these
forces determine the evolution of the health stock.

People die when their stock of health first crosses a threshold H , which is fixed throughout the lifetime
and identical for all individuals. Formally let Dt = I(Ht ≤ H,Dt−1 = 0) denote the random variable equal
to one if the individual dies in period t. Therefore we have that the population’s health and mortality can
be characterized by the following dynamic system:
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D0 = 0

Ht = Ht−1 − d(t) + I + εt if Dt−1 = 0

Dt = I(Ht ≤ H,Dt−1 = 0)

with I ∈ R.7 Note that if Dt = 1 then Ht is undefined–we do not observe the health of individuals if they
die. Given this model, the mortality rate at time t is MRt = P (Dt = 1|Dt−s = 0∀s < t).

To make this model tractable, we make a few parametric assumptions. We assume that H0 follows a
normal distributionN(µH , σ

2
H) which is consistent with the observed distribution of birth weights and other

traits measured at birth (Wilcox and T RUSSELL, 1983). We will also assume that the shocks to resources
every period follows a normal distribution εt ∼ N(0, σ2

ε), because in simulations a normal shock provides a
reasonaly fit, though it is ex-ante less clear that these are normally distributed.8 Finally we will assume that
d(t) = δtα with δ ∈ (0,∞), α ∈ (0,∞) which allows for the depreciation to increase over time.

In this model health is a latent unobserved construct that determines observed mortality. Appendix
Figure 21 illustrates for the first two periods the dynamic relationship between population health and mor-
tality rates implied by this model. The initial distribution is normal. In the first period it moves right (if
I is positive and larger than the aging term) and gets wider (because of εt). Then the individuals to the
left of the threshold, die (these individuals were either born frail or had large negative shocks). The infant
mortality rate (the fraction of individuals that die in the first period) is given by the area under the curve
below the threshold. In the second period this truncated distribution moves right again (if I is large relative
to d(1)). And the population receives a new shock, generating mortality again.

Notice that in the absence of a shock there would be no deaths in period 2 – or in any period thereafter,
until the depreciation term becomes large enough to push the distribution below the threshold. This illus-
trates that stochastic nature of the process is essential to generate mortality at every age, and it is one key
feature that differentiates this model from previous ones, like the Grossman (1972) model. An implication
is that the distribution of health at any age (and therefore the mortality rate) is a function of the entire his-
tory of shocks and investments. This is also clear in the definition of MRt which conditions on survival
in every previous period. The second key feature of the model is the accelerating aging component, which
eventually moves the distribution closer and closer to the threshold, guaranteeing the eventual death of the
entire population. This follows Grossman (1972), and is consistent with biological models of senescence
(Armitage-Doll, 1954 or Pompei Wilson, 2002).9

Although the model is simple, it does not have closed form solutions for the mortality rate at a given
age. The continuous-time analogue of our model would be a Brownian motion with a nonlinear drift, where
death occurs at the first time this diffusion process hits a threshold set at zero. These kinds of models are
used to model companies’ default probability and to price securities in finance (e.g. Lando 2004). This
literature has established that except for the particular case of a constant, linear, drift, these models do not
admit a closed-form solutions for the parameters–we have an even more complex case with a potentially
increasing drift. In addition we are also tracking the distribution of such Brownian motions, rather than
individual ones.

7We could impose some restrictions on these parameters. For example the share of individuals that survive to reproductive ages is
never been observed to be much below fifty percent–this would appear to be a requirement of species that do not disappear.

8This could be relaxed but in simulations we found that log normal errors for instance resulted in counterfactual mortality rates.
9See Gavrilov and Gavrilova 1991, and Weibul 1951 for attempts at biological microfoundation drawing on reliability theory from

engineering.
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This basic model has 7 parameters. But notice that the expression for mortality in the first period (shown
in 21) is just the standard expression for the Probit model, which requires a scale and location normalization:
the threshold H and the standard deviation of the initial distribution σH are not identified: we can subtract
H and divide by σH on both sides of the expression determining the probability of dying and leave the
mortality rate unchanged. So without loss of generality we set H = 0 and σH = 1.10 Thus in its simplest
form, this model characterizes the biological evolution of health and mortality of a cohort using 5 (rescaled)
parameters: one for the mean initial health (µ0), two govern the aging process (δ, α), and two characterize
the effects of environment, in the form of average investments (I) and the variance of these investments or
shocks (σ2

ε ). We then interpret µH as the distance from the threshold of the initial distribution in standard
deviations of the initial distribution. All other parameters are also expressed in “standard deviation” units,
except for α which is “scale free”– it does not depend on the initial distribution. The proposition below
shows that these normalized parameters can be identified by observing the mortality rates by age of a given
cohort.

Proposition 1: The model is identified up to scale (σ2
H = 1) and location (H = 0). (See appendix for

proofs.)11

3.2 The behavior of health and mortality over the lifetime

We now describe the behavior of this model and then go on to analyze the effect of changes in each of its
underlying parameters. Let Ĥt ≡ E [Ht | Ht > 0] denote the average health in the living population with
age t and σHt ≡ V ar [Ht | Ht > 0] the variance of health among the living.

Proposition 2: Basic Properties of the model (See appendix for proofs.)

1. Everyone dies with probability 1: limt→∞ Pr (Ht = 0) = 1.

2. For sufficiently high I (relative to σ2
εand σ2

H ) mortality rates declines (up to some age t1) and then
increases with age: MRt −MRt−1 ≤ 0 if t ≤ t1 and MRt −MRt−1 ≥ 0 if t > t1. (If I is sufficiently
negative then mortality rates increase from birth onward).

3. The average health of the living increases and then decreases with age: Ĥt − Ĥt−1 ≤ 0 if t ≤ t2 and
Ĥt − Ĥt−1 ≥ 0 if t > t2 for some t2.

4. The variance of health among the living increases and then falls: σĤt − σĤt−1
≤ 0 if t ≤ t3 and

σĤt − σĤt−1
≥ 0 if t > t3 for some t3.

Figure 2 illustrates (for a specific set of parameters) the evolution of the distribution of the health stock
as cohorts age in this model. This distribution at age 1 is truncated at the threshold, it moves right and
broadens until age 40. Then it starts moving left and eventually becomes triangular at the threshold. At any
given age after infancy and before old age, the distribution of health is very close to a normal distribution
despite truncation, because it is approximately equal to a sum of normal distributions. This is consistent
with the observation that health related stocks like heights, which grown from birth until maturity are

10More precisely we need to normalize 2 out of three parameters. We find it more intuitive to normalize the threshold rather than
the initial mean, but this choice is arbitrary.

11We prove all propositions using the specific parametrization we used. More general proofs might be possible to derive but they
would require making assumptions about the distributions. We leave this to future work.
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Figure 2: The evolution of the health distribution over the lifetime
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Note: Simulated data for a population of 500,000 individuals. For this simulation we use the following parameters: I=0.3575753,
δ=0.0004789, σ=0.8353752, α=1.7883, µ0=0.925079.

close to normally distributed (for example Limpert et al. 2001 show that either a normal or a log normal
distribution fits female heights well).

Figure 3 shows that the model reproduces the age-profile of mortality well: (log) mortality starts high
and plummets to very low levels by adolescence. It remains low and variable until around age 40, and
then it starts rising almost linearly with age. The initially high infant mortality rate is mostly a result of
many infants born with low health endowment, though there are also unlucky babies with large negative
shocks. In childhood, mortality rates depend mostly on the the variance of the shock, and on the size
of the mean investment level which pulls the distribution away from the threshold. But eventually the
depreciation process becomes larger than the investment and an increasing number of individuals fall below
the threshold in old age.

The figure also shows the evolution of health. Over the lifetime, health and mortality are moving in
opposite directions. Average population health increases and reaches a peak in mid-life.12 This pattern is
consistent with the evolution of self-reported health by age for US cohorts (Deaton and Paxson, 1998) and
UK cohorts (Contoyannis et al. 2004), and with the age-profile of productivity which depends on health.
The variance of health increases and then falls, due to selective mortality. In a sense health behaves like
consumption: cohort consumption inequality increases with age, so long as shocks to consumption are not
perfectly correlated across individuals (Deaton and Paxson 1994, Deaton and Paxson, 1997). And then it
falls because of truncation.

12Although we do not observe health, we can sometimes observe disease and disability rates which are also functions of health.
Define morbidity as having a level of health that is above the dying threshold but below some other arbitrary threshold. In
the model morbidity is also a u-shaped function of age like mortality (results not shown), being high among children, reach-
ing low levels from ages 20 to 60, and increasing thereafter. Contemporary data also show that hospitalization days (a rough
proxy for morbidity) are indeed u-shaped. For example see hospitalization rates by age for the US, which are available here
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/NHIS/SHS/2014_SHS_Table_P-10.pdf
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Figure 3: Age profile of population health and mortality
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Note: Simulated data for two population of 500,000 individuals each. The baseline model is simulated using µ = 0.925, I = 0.35, σ =
0.83, α = 1.78, δ = 0.0005.

3.3 Relationship to previous literature

There have been several attempts in the demographic literature to generate a unified model of mortality.
Many models, like Gompertz’s, only account for mortality after a certain age (Li and Anderson, 2013).
Therefore these models do not lend themselves to a formal exploration of how early conditions affect mor-
tality later in life. A very popular model proposed by Heligman and Pollard (1980) uses 8 parameters to
describe the probability of dying at a given age for all ages. More recently Sharrow and Anderson (2016)
propose a 6 parameter model, which fits the period tables well, but these represent weighted average of
cohort tables. Palloni and Beltrán-Sánchez (2016) also propose a model with few parameters that tracks
“Barker frailty”. Our model differs in one fundamental aspect from these models: like the seminal Gross-
man model, we model individual’s stock of health and its evolution, rather than directly modeling the
mortality rate of a population. This approach allows for an easy characterization of how factors at a given
age affect mortality at later age because we can model inputs into health directly.

In spirit our model differs substantively from Grossman’s in two dimensions. First, as discussed above,
here health evolves stochastically because of the random shocks, which are key to generate mortality at
all ages. An attractive consequence relative to the Grossman model is that we do not assume a fixed hori-
zon–the age at death is naturally determined by health and health investments in a stochastic manner.
Second this model explicitly accounts for initial health conditions and traces the effect of mortality on the
distribution of health among the living at any age. Thus we explicitly account for health-based selection.

Recent papers have extended the Grossman model to account for some of these features, most notably
health deficit model developed by Dalgaard and Strulik (2014) and the model by Galama and Van Kipper-
sluis (2015). Dalgaard and Strulik model aging during adulthood as a process of deterministic health deficits
accumulation. This model does not match the entire lifetime mortality process, it can only match mortality
starting in young adulthood and thus it is not well placed to study the consequences of early insults on
later health or mortality.13 Galama and Van Kippersluis (2015) do derive predictions about the life cycle

13Our model differs in other dimensions. In health deficit model, the optimal death time is the same for every individual. Instead,
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Figure 4: Adding accidents to the baseline model
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Note: The baseline parameters are the same as in Figure 3

trajectory of health by socioeconomic status, but the model is general and the predictions are ambiguous.
No paper in economics that we know of has made use of the age-profile of mortality to make inferences
about the evolution of health.

Our basic model is otherwise a much simpler version of the original Grossman model or these more
recent papers. It does not model utility or how to think of optimal health inputs. We consider some of these
issues later in the paper. But the absence of cohort data on incomes, health inputs, and their prices overtime
limits our ability to empirically estimate a richer model for many cohorts. Our contribution is to note that
cohort mortality life tables can be used to identify a basic parametric model of the evolution of health and
mortality, upon which more complex but realistic models can be built.

3.4 Adding accidents to the model

In our baseline model, mortality is purely driven by health. However, many deaths, like accidents and
homicides, strike regardless of the health status of an individual. To account for these “extrinsic” causes of
death in the simplest possible way, we can extend our baseline model with an “accident shock.” Suppose
that a random fraction κ ∈ [0, 1] of the population is killed by an accident in every period. This accident
rate is assumed to be constant over the lifetime and independent of health. Each individual experiences
i.i.d. shock νt drawn uniformly between 0 and 1 every period and dies if this shock is sufficiently high,
regardless of their health.14

Figure 4 shows the effects of adding accidents to the baseline model. Adding accidents increases mor-
tality rates at all ages, but more so during reproductive ages. Around reproductive ages, when biological
causes of death are dampened, accidents become the dominant source of death (in percentage terms). This

in our model aging is fundamentally a stochastic process, which allows us to match closely mortality rates over the whole lifespan.
In addition in our model health is hump-shaped over time in our model while it is strictly declining in the deficit accumulation
framework.

14Intuitively this random accident rate places a floor in the level of mortality that is constant by age: if all health-related deaths
were eliminated, then we would observe this accident rate at every age and its level would uniquely determine the longevity of the
population (1/κ).
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is consistent with empirical evidence that external causes of death (unintentional injury, suicide and homi-
cide) account for a larger share of mortality during these ages today (Remund et al. 2018). Around birth
and in old age, when the average health stock is low, accidents account for a diminishing fraction of deaths,
because many individuals die due to natural causes anyway (competing risks). Although the level of mor-
tality rises when accidents are allowed, the behavior of mortality over the lifetime is otherwise unaffected.
For this reason in what follows we will start by assuming this baseline accident rate is zero.

4 The effect of permanent changes in lifetime conditions on health and

mortality

We now investigate the implications of the permanent differences over the lifetime in conditions across
populations. Proposition 2 summarizes the main qualitative insights, which we the illustrate graphically
and discuss in light of the existing literature.

Proposition 3: Comparative statics (see Appendix 2 for proofs)15

1. Increasing the investment I or the average health at birth µH unambiguously decreases mortality at
all ages: ∂MRt

∂I ≤ 0 , ∂MRt
∂µH

≤ 0.16

2. Increasing any of the aging parameters, δ or α, unambiguously increases mortality at all ages: ∂MRt
∂δ ≥

0,∂MRt
∂α ≥ 0.

3. An increase in σ2
H can increase or decrease the mortality rate at a given age. An increase in σ2

H in-
creases the mortality rate at young ages ∂MRt

∂σ2
H
≥ 0 if δtα ≤ I . Ultimately, an increase in σ2

H generates

selection and reduces mortality in the very old age, for some tσ , ∂MRt+s
∂σ2

H
< 0,∀s>tσ .

4. Investment and health at birth are complements: ∂
2MRt
∂I∂µH

≤ 0.

We next illustrate these effects graphically for a specific set of parameters, chosen to roughly describe the
1816 cohort. Conceptually we compare two cohorts, that are identical in all parameters except for one,
which we change by 50%. Figure 5 shows how changing each parameter affects the log mortality curve. We
discuss these in detail next.

Changes in any parameter affect mortality rates at all ages. Lowering initial health results in higher
mortality throughout, except for the oldest (panel a) though this effect is only noticeable early on in logs
(more on this below). Lowering the average annual investment also results in higher mortality at all but
the oldest ages (panel b).17 Increasing the variance (panel c) of the random shocks results in a “cross over”.
The population with high variance has higher mortality at younger ages but lower mortality at older ages.
This occurs because when the variance is higher many more die initially. But in the population with greater
variance, many individuals are also the lucky recipients of large positive shocks, and these individuals
will live longer as a result. Finally increasing the depreciation rate δ results in higher level of mortality all
throughout life–but the effects are imperceptible for many years, and then rise rapidly with age.18

15These statements hold in a model where the accident rate is non-zero throughout the lifetime.
16Changing the threshold also affects mortality rates negatively throughout the lifetime.
17At oldest ages there are very few individuals alive and the rates become very noisy
18Changing α has similar effects so we do not show them here.
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Figure 5: Comparative statics for log mortality
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Note: Simulated data for two population of 500,000 individuals each. The baseline parameters are the same as in Figure 3

Appendix Figures 22 illustrate the effects of changing the parameters on the average health of the living.
A lower initial initial stock (panel a) lowers health at all ages but particularly in old age. Lower investments
(panel b) also lower the average health at all ages but the effect is not constant with age. Increasing the
variance of shocks (panel c) increases the health of the surviving population at all ages. Lastly increasing the
depreciation rate (panel d) lowers health at all ages. These results imply that cross-sectional estimates will
necessarily underestimate the full effect of any of these changes, which are best summarized by how they
affect (health adjusted) life expectancy.

To best match the empirical literature we present next the results as differences between affected and
unaffected populations by age. The purpose is to illustrate how the effects vary with age and the extent to
which conclusions match what has been found in the literature. We show results in levels and in logs (or
percentage terms) for two reasons: because some papers estimate linear models and thus compute gaps in
levels, while others use logs (or log odds) and report effects in percentage terms.

4.1 The effects of in-utero shocks

Negative in utero shocks such as wars, famines, disease and stress, are equivalent to lowering the mean
levels of initial health in a population. Figure 6 shows the effects of decreasing initial health on mortality
and health among the survivors by age. Lowering initial health results in markedly higher infant and adult
mortality (except for very old ages which are not shown). The effects monotonically decline with age in
percent (log) terms (panel b) but the effects are u-shaped in levels (panel a).

A lower initial stock lowers health (among the survivors) at all ages, but the pattern is u-shaped, with
a large decline initially, almost no impact for many years thereafter, and increasingly larger impacts as
individuals age in both levels and percentages (panels c and d). Thus the models predicts exactly what
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Figure 6: Effects of decreasing initial health, by age
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parameters are the same as in Figure 3

Almond et al. (2017) observe across studies: there is a “fade out” in middle age and effects re-appear later
in life, and increase with age after middle age. It is also consistent with the original Barker hypothesis which
predicted that events in utero would lead to chronic diseases that would only appear in later adulthood.

These predictions are in stark contrast with the predictions of the original Grossman model (in which
early shocks have a decreasing effect on health with age), but in line with what studies have reported
(Almond and Currie 2011). This occurs because in our model (in contrast to Grossman’s) the depreciation is
not a function of the level of the stock H . The model also implies that it is impossible to estimate the effects
of in-utero shocks in middle age (no effects will be found), or to identify individuals that have been affected
by shocks for intervention purposes during middle age. Finally note that the predictions for the age-profile
of health and mortality effects are very different.

4.2 Socio-economic status and mortality.

A large literature documents large and persistent differences in health and mortality by education, income
and other permanent markers of socio-economic status such as occupation and race (Cutler et al., 2012).
These differences are often referred to in the literature as gradients. If education and incomes are indicative
of higher average resources throughout the lifetime (I), then the model predicts that those more resources
will have higher health and lower mortality throughout life except for the very oldest.

Figure 7 plots gaps in mortality and health by age between an I-rich and I-poor population. Mortality is
higher for those with lower I . But the gaps are slightly u-shaped in levels: they are large at birth, decrease
to almost 0 in middle age, and increase after middle age. But in log (percentage terms) the effects are hump-
shaped, increasing until middle ages and declining thereafter. This results in log-mortality curves that start
converging after some point (as shown panel b of Figure 6). This is very similar to the findings from Chetty
et al. (2016), who show that in the US today those with high earnings at age 40 (a measure of permanent
income) have lower subsequent mortality relative to those with lower incomes, with log mortality curves
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Figure 7: Effects of decreasing annual investments throughout the lifetime by 50%, by age and initial health
status
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parameters are the same as in Figure 3

that are closer in old age. This prediction is also consistent with the literature that has documented that the
effects of education on mortality fall with age, in percentage terms (Hummer and Lariscy 2011), if we view
education as a strong correlate of lifetime resources. The increasing effect of I on mortality rates starting in
middle age is consistent with findings in Kaestner et al. (2018) who investigate the age-profile of the effects
of education on mortality (in levels).

Lower investments also lower the average health at all ages. But the effect first increases with age,
and then starts declining once mortality starts rising, in levels and percentage terms. These predictions
are consistent with evidence in Case et al. (2002) or Currie and Stabile (2003), who show that the gaps in
self-reported health status between those born in poor and rich families grow with age, and decline after
65. Kaestner et al. (2018) also show similar evidence that education gradients in self-reported health grow
between ages 30 and 65 and then appear to fall.

The figure also shows the effects of decreasing both I and initial levels of health. The combined effects
are larger than the individual effects suggesting that if one does not properly control for differences in
initial health, and these are correlated with levels of health resources then SES gradients or gaps will be
overestimated. Interestingly the size of the bias on mortality is largest early and very late in life but small
in between; but it is largest among the living at birth and after age 40.

Education and incomes could be also equated to decreases in δ, if they result in more exercise, lower
exposure to pollution or lower stress, which we can conceptualize as lowering the depreciation rate. Figure
8 shows the effects of increasing the depreciation rate on mortality and health. Increasing the depreciation
rate δ results in higher level of mortality all throughout life, but the effects are imperceptible for many
years, and then rise rapidly with age, petering out in old ages. For health, the effects are also small before
middle ages and then they rise and fall.19 Notice that if we compare the effects of a rise in depreciation and
the effects of a decrease in investment after age 40, the patterns are very similar. Thus the model predicts

19Changing α has similar effects so we do not show them here.
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Figure 8: Increasing the lifetime depreciation rate by 50% by age
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no survivors, so we do not include these data points. Simulated data for two population of 500,000 individuals each. The baseline
parameters are the same as in Figure 3

that with health and mortality data from adults only, it will be impossible to infer whether SES is affecting
annual resources I or the annual depreciation rate δ.

The main empirical implication from this section is that estimates of the effects of socio-economic status
differ depending on which parameter they affect, the age when they are measured, and the functional form
that is chosen to estimate them. Moreover the bias that results from not properly controlling for initial
conditions also varies with age. Last large changes in a cohort’s environment (affecting intial conditions,
resources, and aging) cannot always be detected until later in adulthood. Importantly, the exact age when
one can detect effects will vary across cohorts–we illustrate them here for a specific case. These findings
provide a possible way to reconcile the disparate findings in the literature.

5 Estimating the baseline model

We now estimate our model and then study the long term effects of shocks occurring early in life. We
start by providing some details on how we estimate the model and then we estimate the model for two
populations that are in close-to-stationary environments. We then study the effects of temporary shocks
and estimate the effects of WWII on women’s lifetime mortality.

5.1 Simulated methods of moments

To estimate the parameters for a given cohort we use the simulated method of moments.20 We choose a
starting value for the parameters,21 simulate mortality rates and compare the simulated rates to the ob-

20Because we observe only the mortality – and not the distribution of health – for each cohort every year, we cannot use simulated
maximum likelihood methods. There is no empirical counterpart to the distribution ofHt, only the fraction that is below the threshold.

21We choose the initial values as follows. An initial guess for the level of initial health is giving by infant mortality. If infant mortality
is 15%, then in the absence of shocks and investment, the mean initial health must be one standard deviation away from the threshold.
So a value of µ0 = 1 provides a reasonable starting point. Individuals typically double in size within the first year, so we can guess that
I could be half of µ0. We set the standard deviation σε to be equal to I . The depreciation rate for various stocks is usually estimated
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served rates. We then iterate until we find the parameters that can best predict the data, that is those that
result in the smallest prediction error. More precisely we chose the parameters by minimizing the sum of
sqaured errors between actual survival and predicted survival at each age:

min
θ

[SRt − SRt (θ)]
′
W [SRt − SRt (θ)]

where θ = {α, δ, I, µH , σε} andW is a weighting matrix–we set it to be the identity matrix in our baseline
estimates and check if the results are robust to alternative weighting schemes. We impose that σε, δ and
α be non-negative, but otherwise make no parameter restrictions. To guard against the possibility that the
initial guesses will determine the outcome or that the algorithm stops at a local minimum we implement
the procedure suggested by Powell (1964) in addition to using MATLAB’s fminsearch. Details are in the
Appendix.

We target the survival curve. This is a commonly used criteria in epidemiology and the results are easily
interpretable: we can summarize the fit of the model based on how far the predictions are from observed
life expectancy. Ideally the objective function that we choose to target for estimation would not affect the
estimated parameters. But this is only true if the model is correctly specified. So we also report the fit
in terms of the log of squared errors of the log of mortality, which we have checked graphically (in the
appendix we also show how the model fits alternative criteria).22

Although standard errors can be bootstrapped, we do not report them here. Because each curve is
traced out from large populations the standard errors are effectively negligible, as as been noted elsewhere
(Honoré and Lleras-Muney, 2006). The most important source of error will be model specification error as
the estimations will show.23

Lastly there are some important measurement issues. Migration flows are likely to add noise in our
estimates. The HMD data is taken from vital statistics, which count the number of deaths occurring in
France, including migrants who died on French soil and excluding deaths of French individuals migrating
out of France. The population counts are not corrected for in and out migration either. As a consequence,
the true data generating process is likely to be a mixing distribution of cohorts of the same age but born
in different countries. We cannot address this issue well–there is no cohort data that would allow us to
seriously correct our estimates for migration. We leave this to future work. Also population and deaths are
poorly counted during wars, and particularly when there are changes in territory. There are in fact many
changes in territory (see Appendix), but our fundamental conclusions did not change much under various
assumptions to deal with this. Finally we use data up to age 100, but the HMD has estimated the numbers
after age 90. We also check for the robustness of the results when we limit our data to age 90.

to be a few percentage points. but in our case the depreciation grows with t, so we assume that δ is 0.001 to start with. And we set
α=1, assuming the depreciation grows just linearly with time. The results presented here however use starting guesses that have been
updated many times.

22We could look at other objective functions. Life expectancy weights early ages very heavily because early deaths result in large
losses in terms of years lived. Conversely it weights mortality in old ages less. If we minimize the error in the level of mortality, we
give equal weight to errors at all ages and penalize large deviations in levels (at very young and very old ages). If we minimize the
errors in logs, then we minimize deviations in percentage terms–this effectively gives more weight to errors that are large relative to
baseline, so in effect it weights reproductive ages more heavily. Ultimately the choice matters if the model is mis-specified.

23We have nevertheless bootstrapped the standard errors and verified that they are very small compared to the changes in the
parameters that are observed when we modify the model. Results available upon request.
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Figure 9: Survival curve for apes
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Note: The figure shows the estimates for the basic 5-parameter model without lifetime accidents. It also does not model
the adolescent hump. The estimated parameters are in 1.

5.2 Estimates for primates.

The model is not unique to humans and so far simply describes biological disease and aging processes
in a stationary environment. Several prior studies suggest that primates and human share common bio-
logical aging patterns and they have similar mortality profiles, particularly in old age (Kohler et al. 2006,
Bronikowski et al. 2011). In addition to their biological similarity to humans, primates are also of interest
because they likely face a stationary environment and they cannot reallocate resources over the lifetime:
they have no access to saving, borrowing or medical technologies. Thus they provide a good test case for
the basic model which assumes constant parameters, including resources, at every age.

We concentrate on chimps, who are the closest primates to humans. Data on chimps living in the wild is
taken from Bronikowski et al. (2011). These are collected from surveillance sites that track the composition
of groups over time. These data have some advantages: the populations are relatively large (we have about
80 observations) compared to what is available from animals in captivity, they include mortality at all ages
and are available by gender and species. However because animals migrate in and out of a given group
and geographic location, there is larger measurement error.

The results from the estimation are in Table 1 and Figure 5.2. Both show that our model fits these survival
rates remarkably well. The actual life expectancy for females is 15.38, while our predicted value is 15.35.
Thus our model provides a good description of the evolution of mortality for chimpanzees. The model
also fits mortality rates well, but the mortality rates are very noisy, so there remains substantial uncertainty
about the parameters. So we now consider whether the model fits large human populations.

5.3 Baseline cohort in a close-to-stationary environment

We now estimate the parameters of the model for the 1816 cohort. Period and cohort life expectancy are
very similar for this cohort suggesting an environment that is also close to stationary for this population (life
expectancy for this cohort was 41 based on period tables, and about 40 using cohort tables, see Figure 8).
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Figure 10: Lifetime mortality for French women born 1816
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Note: The 5-parameter model assumes no accidents occur throughout the lifetime. The 6-parameter model allows for a
positive accident rate to start in adolescence. See 2 for parameter values.

Figure 10 shows the results of estimating the baseline 5 parameter model, and table 2 shows the estimated
parameters and the fit (see column 1). We provide three measures of the fit: how well we match the survival
curve (the object we target), the log mortality rates, and the distribution of the age at death.

The basic 5-parameter model predicts life expectancy at birth of 38.43 which is very close to the actual
life expectancy we compute of 38.25. But the figure shows that the fit, particularly in terms of mortality
rates, is among the oldest and particularly around adolescence and young adults. So next we use the model
to investigate how to model the adolescent hump.

5.4 Understanding the adolescent hump: the effects of permanent changes occurring
after birth

To understand how to best model the adolescent hump, we simulate the impact of a permanent shock
occurring at age 12. The changes in hormonal levels occuring in adolescence have large biological and
behavioral effects. Puberty also marks the begining of adulthood and in many societies marriage, work and
living arrangements change substantially as a result.24 We consider five different models of what occurs in
adolescence: a decrease in the annual investment level, an increase in the accident rate, an increase in the
variance, an increase in the depreciation rate and, finally, an increase in the death threshold.

Figure 11 shows that these changes all increase mortality. But they affect the age-profile of mortality
in different ways. Investment declines and depreciation increases both permanently raise mortality for all
subsequent ages, although the effect of depreciation is barely noticeable at first it cannot explain the ado-
lescent hump.25 Accident increases generate a floor between ages 12 and 40, and then the profile converges

24Adolescence is a period of great change in many dimensions. For a review see Dahl, Ronald E. et al. (2018).
25Case and Deaton (2017) observe that for cohort born in the US after 1950 mortality rates in adulthood are becoming progressively

higher. These simulations suggest that cohorts born after 1950 experienced deteriorating health and mortality profiles because they
have lower health resources or higher depreciation. Because more recently born cohorts are born in better health (and experience
lower infant and child mortality up to age 20 (Currie XXX) the the model further suggests that a worsening of conditions starting at
age 20, such as deteriorating labor market opportunities, is responsible for these deterioration. See Lleras-Muney (2017) comment for
further details.
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Figure 11: Effect of permanent changes at age 12 on (the log of) mortality
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are the same as in Figure 3

to counterfactual. Variance increases also generate something close to a floor but the affected cohort’s mor-
tality exhibits a cross-over: it has lower mortality than the original cohort after some age. Finally threshold
increases result in a peak and then the profile slowly converges to counterfactual. This peak is similar to
what is observed in wars, which we consider below, but not that similar to the adolescent hump.

These simulations suggest that this bump can be best conceptualized in our model as either a variance
or an accident increase starting in adolescence. But decreases in I or in the threshold could potentially also
rationalize this hump. Therefore we test four models for the adolescent hump in the data next.

5.5 Estimating the baseline model accounting for the adolescent hump.

We fit the baseline model again allowing for a permanent shock to occur starting in adolescence. Adoles-
cence (puberty) is assumed to occur when girls have their first menstruation.26de La Rochebrochard (2000)
reports that the onset of menarche occured around 15.8 in 1816, so we assume it starts at 16.27 We esti-
mate 4 models: increasing the accident rate, increasing the variance, increasing the threshold or decreasing
investment.

The results in Appendix Table 2 show that while all types of shocks improve the fit relative to the baseline
model, accidents improve the fit the most (the fit of the survival curve goes from 155 to 12). The parameter
estimates illustrate that not modeling reproductive-age mortality not only lowers the fit, it biases the pa-
rameter estimates, and changes life expectancy predictions. Figure 10 illustrates the results for the best and
final model. It shows that by modeling the adolescent hump we also correctly predict mortality among the
eldest. We predict a life expectancy of 38.28 whereas the actual life expectancy is 38.25. Visual inspection of
the fit in terms of log mortality rates (or the distribution of the age at death) also suggests an excellent fit.

26The onset of puberty could be conceptualized as occuring earlier, when the the adolescence growth spurt starts, heights increase,
and breast and other secondary sexual traits start to appear. But historical data for these alternative measures are not available.

27The age at menarche (first menstruation) in France fell from around 16 in the second half of the 18th century to about 13 in the
second half of the 20th century. The best estimate for the age at menarche over time is given by: Age at menarche = (- 0.0175 x calendar
year) + 47.4. Using these estimates we predict that the onset of menarche was 14.85 in 1860. See de La Rochebrochard (2000).
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But these results are based on a single cohort. To verify these findings we re-estimate the model for
the 1860 cohort. For this cohort the assumption of stationarity is less sensible: cohort life expectancy sub-
stantially exceeds period life expectancy at birth suggesting large changes in the environment. Thus the
assumption that the parameters are constant throughout the lifetime is more likely to be violated. However
Table 3 shows that the conclusions about how to best model the adolescent hump for females are the same:
the model that allows for a positive accident rate that increases at puberty provides the best fit.

Using these models we compute what lifetime mortality would have been in the absence of the adoles-
cent hump–which has mostly disappeared in recent cohorts.28 Excess mortality starting in adolescence is
estimated to have lowered female life expectancy by around 7.5 years for the 1816 cohort and by 7.8 years
for the 1860 cohort.

It may seem surprising that reproductive age mortality is best captured as an increase in the accident
rate, and therefore not related to health status. However this finding is consistent with the findings in the
literature. Two causes of death have been documented to account for a large fraction of deaths among
women ages 15-45 in non-war times: maternal mortality, and “external” causes, which include traffic acci-
dents, poisoning and violent deaths (including suicide and murder). Loudon (2000) argues that historically
poor hygiene and obstetric practices were mostly responsible for infections (sepsis) and hemorrhage–the
main reasons why women died during childbirth. These poor obstetric practices were widespread, so ma-
ternal mortality was large and it killed both rich/healthy and poor/unhealthy women.29 Other external
causes of death appear to also be unrelated to health status. Finally we note that while there is no data on
causes of death by age and gender for 19th century France, contemporary data shows that mortality rate
from external causes of death are well approximated by a step function. This is shown for the case of the
US in Figure 12.

We focus on our preferred 6-parameter baseline model (in column 4 of tables 2 and 3) to discuss the
estimated parameters. In 1816 the initial health is about 0.86 standard deviations away from the threshold.
This suggests that absent any shocks or any investment in the first period, infant mortality would have
been roughly 15% (instead it is 17%). The annual investment is about 0.4 of a standard deviation, so in the
absence of shocks, the health stock is increasing by roughly half in the first year of life, and doubling by
the second year. The variance of resources is about 1 standard deviation, roughly equal to the variance of
the initial stock of health. The annual depreciation rate δ is very small and equal to 0.0006 of a standard
deviation. But the rate is increasing over time exponentially: α is around 1.8. Finally we estimate that the
adolescent accident rate is about 9 per thousand.

Comparing 1860 to 1816 we find that the initial stock increased from 0.86 to 0.93. The mean level of
resources fell, but so did the variance of resources. Both aging parameters fell, but most significantly the
depreciation rate fell from 0.0006 to 0.0004. Finally the accident rate also fell substantially from 9 to 7 per
thousand. These comparisons suggest that the environment is improving substantially, consistent with the
observation that life expectancy rose by about 5 years between these two cohorts. But the tables also suggest
caution. The parameter estimates are sensitive to the specific model we estimate. For example adolescence
could also reasonably be modeled as an increase in variance (this model has the best fit in terms of the
distribution of the age at death). Comparing columns 3 and 4 in either table we see that the estimates for
all parameters differ substantially across models, with the exception of the estimates for µ. For instance for

28In this counterfactual we set the accident rate to the the same all throughout life.
29The disappearance of the hump described in Figure 1 is also consistent with the elimination of maternal mortality as a cause of

death after the 1930s. In France maternal mortality between 1850 and 1890 is estimated to be around 5 per 1,000 births (Bardet et al.
(1981)) and to have remained at that level until the 1920s, it fell rapidly after the mid 1930s (Loudon 1992). By 1970 maternal mortality
was around 28 per 100,000 (Bouvier-Colle et al. 2008)
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Figure 12: US Age-specific Mortality rates per 1,000 in 1990, by age and cause of death
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Note: this figure is reproduced from Schwandt and von Wachter (2018)’s paper “Mortality Profiles of Unlucky Cohorts:
Effects of Entering the Labor Market in a Recession on Longevity” who generously agreed to let us use it. The data
come from period (not cohort tables) so they are not directly comparable to ours but we use it to demonstrate that the
mortality rate from non-disease related causes of death is well approximated by a step function turns on in adolescence.

the 1860 cohort I is estimated to be 0.4879 in column 3 but it is 0.3318 in column 4, so it is 30 percent lower,
which is a very significant change.

5.6 Robustness and sensitivity checks.

In Table 4 we perform additional checks on this basic 6-parameter model using the 1816 cohort. The fit
is still poor around the time of the onset of maturity. This is in part the results of two assumptions: that
adolescence’s onset occurs exactly at 16 for the entire population, and that there are no accidents before age
16. In column 2, we show the estimates if we assume that the accident rate is positive before adolescence
and increases at age 16. The fit of this 7-parameter model is not better than the fit of the 6-parameter model,
despite the added parameter.

Next we allow for the onset of maturity to be normally distributed. Unfortunately there is no data on
the distribution of the age of menarche for 1816, only its mean. So we make use of the 1970 distribution
(again provided in de La Rochebrochard, 2000) to obtain the standard deviation. This augmented model
results in further improvements in the fit (relative to column 1) but we do not use it as our baseline model
because there is no good data on the standard deviation for the early cohorts we study. Alternatively we
can assume that the onset of menarche occurs at a normally distributed time and estimate the parameters
of this distribution. Not surprisingly this improves the fit but notice that the estimated mean and variance
are far from the observed ones, so we do not use this model in the remainder of the paper.

In column 5 we investigate what happens if we use the (normalized) number of deaths as weights in
the estimation. In column 6 we use weights and target the distribution of the ages at death instead of the
survival curve. This considerably worsens the survival fit and does not improve the fit of the distribution
of the age at death by much. In the last column we use only data up to age 90 to see what the effect of
censoring is and because the data after 90 are estimated. The estimates are somewhat sensitive to these
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Figure 13: Effect of exogenous temporary shocks at age 20 on log mortality
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Note: Simulations for two populations of 500,000 individuals each. The shaded area corresponds to the years of the temporary shock.
The baseline parameters are the same as in Figure 3.

choices. The predicted life expectancy is very close in all cases (the error in the predicted life expectancy is
less then 0.1 years of life), except when we target the age at death distribution (the prediction is off by about
a year). But the counterfactual predictions are sensitive: eliminating the hump results in a loss of life of 7.58
years on the baseline model and 9.81 in the worse model. These results suggest several conclusions. First
the model could be improved with additional data on the distribution of the onset of maturity and with
data on the distribution of health at various ages. Second model specification and estimation procedures
matter for the estimates. Lastly some features of the data remained unmodeled. For example for 1860 there
is a visible spike before the adolescent hump (corresponding the the 1870 war) that we have not modeled.
This unmodeled shock will generate bias in the estimates. We investigate these next.

6 The effects of temporary shocks on health and mortality

We now use our baseline 6-parameter model to understand how temporary shocks, like wars, recessions or
infectious disease epidemics, affect the profile of health and mortality. We start by simulating the effect of
temporary changes in parameters starting at age 20 and lasting 10 years (for this simulation we are ignoring
the adolescent hump for clarity).

Figure 13 illustrates the effects of each type of shock. Each type of shock leaves a unique imprint on
the mortality profile of the affected cohort. Temporary decreases in investment levels generate spikes in
mortality, similar to those observed for wars. When investment falls, mortality rates start to rise, they peak
the last year of the shock and they fall back thereafter. But mortality rates remain elevated throughout
the lifetime (relative to the counterfactual of no shock) thus generating “scaring.” By contrast, temporary
increases in the accident rate immediately increase mortality but have no permanent effects: mortality goes
back to its initial path immediately after the shock ends.

Increases in the variance result in a sustained increase in mortality during the shock period. But after
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the shock ends, mortality falls below counterfactual levels — this is the result of having individuals with
large positive shocks. But both variance and accident increases have similar effects.

Finally, an increase in the threshold appears to generate “harvesting”— earlier deaths for the frail. It
results in very high mortality in the first year of the shock. But mortality starts dropping before the shock
ends. Once the shock ends, it dips below counterfactual mortality and then rises back up and converges
to its counterfactual level. This is because all frail individuals are killed when the threshold first increases.
And when the threshold is restored to its original (lower) level mortality falls substantially because there
are very few individuals close to the threshold. This pattern fit the effects of extreme weather or pollution
events, which appear to displace deaths in short term.30

6.1 The effects of WWII

Wars correspond to the largest temporary change in mortality rates over time for individuals of reproduc-
tive ages, leaving visible spikes in the mortality profile. WWII is the longest conflict in our sample lasting
six years–this should make it easier to distinguish among different type of shocks.31

The simulations above suggest that only investment shocks can generate patterns that match those we
observe in the data, with mortality rising every year of the war, and peaking in the last year. But other
types of shocks also generate spikes. So we estimate the structural parameters explicitly allowing for a
shock lasting six years, and varying the type of shock. We first concentrate on the 1921 cohort, who turned
18 when WWII started in 1939. We start with this cohort because it has complete mortality up to age 90,
whereas younger cohorts are censored. A disadvantage of looking at this cohort is that the assumption of
stationarity is likely to be violated, since cohort life expectancy was increasing substantially throughout the
20th century.

Appendix Table 5 shows the results. We evaluate the models in terms of how they fit the overall profile
of survival and whether they fit the shock itself. Surprisingly, given our simulations, all models provide
almost equally good fits of the survival rate (or the log of q) and the predicted life expectancy. However the
fit during the war is clearly better matched by the model that assumes WWII was equivalent to a decline
in I . Although all models underestimate the mortality rate and the number of deaths during the war, the
I-shock makes the smallest mistakes. It underestimates the number of deaths by 21%. By comparison a
pure accident model underestimates the number of deaths by 36%, a variance model by 45 percent and a
change in the threshold by 32%.

Figure 14 shows the fit for this model. We estimate that the war lowered life expectancy by approxi-
mately 5 years for the 1921 cohort. This of course includes a large number of deaths that occured during
the war. But we can also assess the amount of scaring. Conditional on surviving to 1945, life expectancy
is 5 years lower than it would have been in the absence of the war–this is very large. As the table shows
the predictions for other shocks are starkly different: an increase in the threshold during the war generates
pure selection, and since the weakest have been killed off, mortality rates are predicted to be lower after the
war and life expectancy higher conditional on survival.

We conclude the war is best characterized as a decline in health resources I for women.The parameter
estimates show a I moving from a lifetime value of 0.29 to a value of -0.11 during the war years.32 This is

30For both pollution and weather there is evidence of both short term displacement and longer term effects on mortality. For instance
see Schwartz (2000) or Zeger et al (1999) for the effects of pollution. For the effects of very hot or very cold weather see recent articles
by Deschenes and Moretti (2009) and Deschesnes and Greenstone (2011).

31It was also very intense. WWII is estimated to have killed around 600,000 individuals in France, about 1.4% of the 1939 population.
32We conduct an additional exercise to verify these findings: we compare the the death profile of French women with that of Swedish
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Figure 14: WW2 as an investment shock. French Women born in 1921.
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Note: see 5 for parameters value. This model assumes a decrease in the investment level every year of the WWII.

consistent with evidence showing that GDP, food supplies and sanitary conditions declined substantially
during the war.33 Infant mortality rates, which are very sensitive to these inputs, rose substantially during
this period.34 Interestingly recent work also finds results consistent with our findings that WWII generates
scaring. Kesternich et al. (2014) study the effects of the WWII across 13 European countries. They find that
individuals more exposed to the war experienced worse economic and health outcomes later in life than
other survivors who were less exposed. Havari and Peracchi (2017) and Schiman et al (2017) report similar
findings for WWII. This result however does not imply that all wars are necessarily equivalent to declines
in I .35

There are a few limitations to these results. First the population and death counts during the war are
particularly poorly measured. There were large changes in territory during the war years and substantial
migration. So the population and death numbers are subject to substantial measurement error.36 Second the
1921 cohort is only followed until age 94–if the war changes mortality rates thereafter, we are not properly
computing the effects on life expectancy because of censoring. Third, we assume that the shock started in
1939 and ended in 1945, and that it can be modeled as an equal decline in I every year the war. However

women. Sweden was the only country in the sample that did not participate in the war. Appendix Figure 24 shows that compared to
Sweden, mortality rates in France are substantially more elevated during the war years, and they remain elevated for many years after
the war, similar to the simulated effect of an investment decline. However these comparisons are imperfect because Swedish mortality
rates before the war (up to age 19) are different than the French’s. According to our model this would result in different mortality rates
after age 20 even in the absence of the war, so the swedish case provides only suggestive evidence on this question.

33GDP declined substantially during the war. Moreover Occhino et al. (2006) estimate that between 20 to 55% of GDP was appro-
priated by Germans every year of the occupation. There was a substantial decrease in the availability of food–food rationing began in
1940. There was also a deterioration in sanitary conditions in France. For example diphteria cases among school-aged children rose
per 100,000 increased from 32.3 (in 1940) to 110 in 1943 (Stuart 1945).

34In the HMD mortality in the first year of life was 0.063 in 1938 an declining. It rose to a high of 0.085 in 1940, the worse year of the
war.

35But other wars also appear to have caused scaring. For instance Costa (2012) documents that surviving soldiers in WWII have
higher morbidity and mortality later in life. This evidence pertains only to male soldiers however. Other studies have documented
scaring effects of war in utero–for a comprehensive review of the literature on in utero shocks see Almond and Currie (2011). More re-
cently Lee (2017) presents evidence of substantial health effects in adulthood of the Korean War for cohorts exposed in utero. Estimates
in this section pertain to adult females.

36See appendix notes for how we treat the data during these years.
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Figure 15: The effect of the 1918 flu pandemic on mortality for the 1900 cohort
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Note: Both the 1918 flu and WWII are modelled as a temporary decrease in I .

rationing continued until 1949 so the decline in resources might have lasted for longer. And not all years
were equally difficult. The invasion which took place in 1940 was by most accounts much worse than the
year before or after (based for instance on what occurred to overall mortality rates). Fourth, we choose the
most parsimonious model to fit the data using a single parameter–it is possible for instance that the war also
affects the depreciation rate. Finally these results assume there were no compensatory responses to WWII.
But there were efforts like the Marshall plan to help rebuild infrastructure and promote economic growth
which started in 1948. We investigate these in the last section of the paper.

6.2 The Effects of the the 1918 Flu pandemic

We next estimate the effect of the 1918 flu pandemic, by far the largest infectious disease epidemic in the last
200 years in France occurring at the end of WWI. We focus on the 1900 cohort which turned 18 in 1918. We
model WWII as a change in I based on our previous results and test which temporary change in parameters
fits the 1918 shock best. Because the cohort data do not clearly show increases in the 1914-1917 period, we
simply model the effect of a one year shock (see Figure 15).

The results are in Table 6. Again we find that changes in I provide the best fit for survival, and it has
the best predictions for the number of deaths and the mortality rate in 1918. The results for this model are
displayed in Figure 15 for the flu pandemic. The combination of the 1918 flu and WWII results in a loss of
life of 2.12 years, roughly 2 from the flu and only 0.2 as a result of WWII, which this cohort experienced
at age 39.37Like in the case for WWII, we find that conditional on survival to 1919, scaring causes a large
amount of scaring among the survivors, who live 2 years less as a result of exposure to the flu.

The results also suggest caution–once we account for the flu, the fit for WWII is poor and the model
under-estimates the deaths from WWII. All models over-estimate deaths and death rates during the flu
years. This illustrates the difficulty in estimating these effects without having information on the shocks
themselves or additional data on health. This is particularly true in the case of the flu because, unlike the

37The effects are not additive–there are interactions.
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Figure 16: Effects of a temporary decrease in investments in childhood on health and mortality, by age at
the time of the shock

0
.0

05
.0

1
.0

15
.0

2

40 50 60 70 80
Age

a.Change in mortality

.1
.2

.3
.4

.5

40 50 60 70 80
Age

b.% Change in mortality

-1
.4-

1.
2

-1
-.8

-.6
-.4

40 50 60 70 80
Age

c.Change in mean health

-.1
3-

.1
2-

.1
1

-.1
-.0

9-
.0

8

40 50 60 70 80
Age

d.% Change in mean health

Age 1 Age 5 Age 10 Age 20

Note: Simulations for two populations of 500,000 individuals each. The shaded area corresponds to the years of the temporary shock,
which is a 50% decline in I for 10 years. The baseline parameters are the same as in Figure 3 but we add an adolescent hump at age 14
with κ = 0.001.

war case, it is a one period shock which makes it harder to identify which model is the best–as table 6 shows,
all models provide reasonable fits except for the variance shock.

Nevertheless the results are consistent with findings from previous literature (Almond, 2006, and Beach
et al. 2018), although this literature has concentrated on in-utero effects, whereas we are documenting
effects of insults during prime age years. In the next section we investigate how I-shocks affect cohorts
based on the age of onset of the shock.

6.3 Effects of a temporary I-shock at different ages in childhood on health and mor-
tality in adulthood

We found that WWII and the 1918 flu pandemic are best characterized as temporary decreases in I . We now
investigate the effects of an identical I-shock occurring at different ages on adult mortality and health to
match what is typically done in the literature. We simulate a 50% decline in I for 10 years starting at ages 1,
5, 10 and 20, using our 6-parameter baseline model, with a hump at age 14.

The results of the simulations are in Figure 16. It shows the change in mortality and health that is
experienced by different cohorts, relative to a baseline without the 10 year shock.

The results show several interesting patterns. First mortality rates for affected cohorts are elevated for
all ages in adulthood, but the effects on mortality are very small at first. In levels these effects increase with
age in adulthood, but in percentage terms the effects fall with age (because mortality rates are rising after
age 40). Second health effects decline with age (in levels and percentages). Third the largest effects on health
and mortality are experienced by those who were 10 at the onset of the 10-year shock, not among those who
were 1 or 5. This is occuring because the mortality of the 1, 5 and 20 year olds is larger than the mortality
rate of 10 year olds, so some of these individuals would have died even in the absence of the shock. Of
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course these simulations only indicate patterns for a given set of parameters–we have provided no proof
that these patterns are always true. But the results do sugest that those affected earlier need not have the
largest longtime impacts, when these are measured at a point in time later in life.

These simulations assume that the shocks are equal at all ages. But this is not clear: for example WWII
might have affected 20-year olds more then 10-year olds if the women were involved in the fighting. There
are other limitations to these results. For example they assume that the shock did not affect the onset of
adolescence. But the literature on height for instance suggests otherwise: poorer populations grow slowlier
and for longer. Despite these limitations, these simulations demonstrate the usefulness of the model in
providing a clear account of how early shocks affect the entire profile of health and mortality.

7 Implications for optimal investments

7.1 Optimization in a stationary environment

For now we have assumed a constant investment profile over the lifetime. But would that be an optimal
allocation of resources over the lifetime? In this section we show that a social planner concerned with
maximizing the life-expectancy of a population would choose an investment profile that ultimately results
in patterns of mortality with striking similar shapes of the ones studied in the previous sections. In other
words, the optimal investment sequence does not fundamentally change the shape of mortality.

First we develop notation to describe the problem that would face benevolent social planner. We solve
this problem under 2 key assumptions. The first key assumption is that the planner has a fixed budget
but has the ability to borrow and save costlessly–on other words the planner knows exactly what the total
lifetime resources are for a give cohort and these resources can be redistributed across the lifetime at no
cost. The second assumption we make is that the planner wishes to maximize life expectancy.

The survival function tracks the probability of surviving over time. It is naturally expressed as a function
of the cdf of health in the population. The probability of surviving until the end of period t is St = 1−Ft (0).
Life expectancy at birth is conveniently related to the survival function

LE =

∞∑
t=1

St

Several observations are in order. First, in practice, this is a finite sum. Second, contrast this concept
with the “period” life expectancy usually computed. If the distribution where stationary over time, then
the two concepts would coincide. But as the data shows and our estimates corroborate, the mortality rates
are not stationary.

Now suppose that instead of keeping I constant that the social planner can choose an investment path
I = {It} that is age-dependent. Also assume that the budget (B) over the lifetime is fixed but that the
planner can move resources over time periods costlessly, as if a perfect annuity were available.38 Then the
optimization problem takes the form

38This is a standard assumption in this type of models, for example see Murphy and Topel (2006).
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max
I
LE (I) = max

{It}

∞∑
t=1

St (I)

s.t.

∞∑
t=1

It·St (I) ≤ B

The first order conditions for this maximization are given by:

∞∑
s=t

∂Ss (I)

∂It
− λ

[
St (I) + It

∂St (I)

∂It
+

∞∑
s>t

Is
∂Ss (I)

∂It

]
= 0

where is the Lagrange multiplier and it represents the shadow cost for the social planner of an additional
year of life expectancy. All the terms in the bracket are positive.

The FOCs imply that on the optimal investment path, the marginal effect of increasing investment at a
given age must be equalized across all ages. Increases in life expectancy (the first term on the left-hand),
must be balanced by the losses incurred by having to tighten the budget at subsequent periods to keep the
budget balanced (the term in brackets).

7.2 Timing of optimal investments, polynomials

A full nonparametric approach for the optimal investment profile over the lifetime would require optimiz-
ing over a hundred or so parameters (one for each age) for each cohort. In the absence of a closed-form
solution, this is impractical. It is also not feasible since we have 100 data points: if we allow for a unique
investment level at every age we are under-identified (we would have 100 data points and 106 parameters
to estimate). Instead, we follow a lower-dimensional sieves estimation method.

We start with by approximating the investment profile over age with a second order polynomial which
adds only 3 more parameters to the estimation. We impose the constraint that the total spending per cohort
is the same as in the constant investment case. Given a budget B we run a grid search to find the quadratic
investment profile that maximizes the life expectancy of the cohort.

The results of this exercise are in Figure 17. We find that a U-shape investment profile is optimal to
maximize the average life-expectancy in the population (panel a). Notice that although our original model
sets I to be constant in levels, in percentage terms, relative to the baseline level of health at a given age, I was
already U-shaped. What we find is that the optimal investment is even more U-shaped – that is, it transfers
additional resources to the young and the old, away from the middle-aged individuals. Interestingly health
care expenditures by age in most countries actually follow this age-profile (Alemayehu and Warner, 2004).
In the specific case we show in Figure 17, based roughly on parameters for French women born in 1870,
optimizing investment results in a gain of about 3 years of life expectancy. Panel b shows the mortality
curve before and after optimization–it has the same basic shape we have observed. These results show that
optimal health investments are largest when health is at its lowest, that is at very young and very old ages.
This is consistent with empirical findings which show that health and the demand for medical services are
negatively correlated (Wagstaff, 1986).

7.3 Other Properties of investments

Each investment profile, I = {It} , generates a sequence of distributions of health, FHt (I), and its associated
mortality rates,MRt (I) . How are investment decisions at different ages related? We show in the following
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Figure 17: Optimal Investment Levels by Age

proposition that investments in health are dynamic complements.

Proposition 4: Investments exhibit dynamic complementarities Optimal investments in health are dy-
namic complements throughout lifetime. ∀t1, t2 t1 < t2,

∂2MRt2 (I)
∂It1∂It2

≤ 0. See proof in the appendix.
The complementarity arises through the health accumulation process. A higher investment at time t

pushes the distribution of health up moving more individuals away from the threshold. Additional invest-
ments make it more unlikely that negative shocks will push individuals below the threshold. Although the
mechanism is different this result is similar to the results in Cunha and Heckman (2007),who study optimal
investments in human capital in a model without attrition (mortality).

This result has implications for optimal compensation: if a cohort suffers from an unlucky shock and the
planner wishes to compensate them so that survivors can enjoy the same mortality rates they would have
in the absence of the shock, how can the planner achieve this, and how does this vary with the level and
timing of the shock? Our results imply that negative shocks need to be more than compensated for, because
of complementarity. In other words a decrease in investments needs to be followed by an increase resources
that is greater than the loss, to give the survivors the mortality profile they would have experienced in the
absence of a shock.

7.4 Optimization when budgets depend on health.

We have solved the optimization problem under the (strong) assumption that resources are not a function
of population health. But if food and other resources are produced rather than taken from the environment,
health is likely to impact resources by affecting the work capacity of the population. Indeed nutrition levels
and disease rates have been shown to affect productivity and wages (Thomas et al., 2004). They also affect
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inputs into wages such as cognition and education (Field et al., 2009). Many empirical studies report a
correlation between income and health (Cutler et al., 2012, Chetty et al., 2016). While our baseline model
embeds the effect of resources on health, a causal link going in the other direction is also at play: people
who get sick or are hospitalized suffer a subsequent drop in income (Smith, 1999, Dobkin et al. 2018).

The simplest way to incorporate this channel in our setting is to assume that people whose health lower
than some disability or disease level, hD , are unable to participate in production and thus generate zero
income while people whose health is high enough generate income w .

max
I
LE (I) = max

{It}

∞∑
t=1

St (I)

s.t.

∞∑
t=1

It·St (I) ≤ B =

∞∑
t=1

w [1− FHt(hd; I)] ·St (I)

Again here we assume either an annuity market, or some pooling across cohorts in a stationary envi-
ronment such that it is the cohort budget that matters, not the the within-cohort, per-period one. The first
order condition is:

∞∑
s=t

s· ∂Ss (I)

∂It
+ λ

[ ∞∑
s=t

{w [1− FHt(hd; I)]− It} .
∂Ss (I)

∂It
−
∞∑
s=t

{
w
∂FHs(hd; I)

∂It
+ 1

}
·Ss (I)

]
= 0, ∀t > 1

or

∞∑
s=t

s· ∂Ss (I)

∂It
= λ

[ ∞∑
s=t

{
w
∂FHs(hd; I)

∂It
+ 1

}
·Ss (I) +

∞∑
s=t

{It − w [1− FHt(hd; I)]} .∂Ss (I)

∂It
−

]
∀t > 1

First notice that ∂FHs (hd;I)
∂It

< 0 for all t. (cf Proposition 1) and ∂Ss(I)
∂It

> 0 . To estimate this model
we need to make more assumptions than in previous settings. We need to estimate the threshold at which
working capacity is positive (wages are positive). Ideally one would have data on wages over the lifetime
for a given cohort and other institutional knowledge like whether there are laws regulating the employment
of minors, in addition to data on mortality. For this reason we do not estimate this model. We leave this for
future work.

8 Conclusion

This paper proposes a simple model of the evolution of health and mortality over the life course. This
model is inspired by the basic observation that the age-profile of mortality is remarkably constant over time
and cohorts. If health leads to mortality then we can learn about the underlying evolution of health by
observing mortality rates. The basic model has six parameters and can be easily simulated and estimated.
It can approximate quite well the mortality profile of cohorts born 1860 to 1940 and can be used to study
the effect of temporary and permanent shocks occurring at different points in the lifetime. We demonstrate
that in this model estimates of the effects of shocks depend on the age at which they occur. Moreover these
effects have an age profile (they change mortality differently at different ages). This profile has different
qualitative features depending on whether one measures them in levels, logs or some other transformation
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of mortality rates, and they are different for health. Thus conclusions about long term effects of various
shocks are sensitive to what metric (health or mortality) is used to measure them, when these consequences
are measured, and the functional form used to estimate them. Thus disparate findings in the literature can
possibly be reconciled by considering the differences across studies in these dimensions.

We use the model to estimate the effects of WWII and the 1918 flu pandemic on the mortality of sur-
vivors. We find that these events are best described as temporary changes in annual health resources. As
a result we find scaring effects: those that survive are less healthy and their subsequent mortality is higher
as a result of these shocks, despite the fact that on average these shocks killed the least healthy. Our find-
ings are in line with previous empirical results but can be further used to estimate for instance optimal
compensation profiles.

Our model places parametric restrictions on the evolution of health and mortality by age. A parametric
model of health and mortality by age has many advantages. A long literature in demography and eco-
nomics has struggled to separately identify age, period and cohort effects, which are not non-parametrically
identified. Because age effects are parametric in our model, cohort and period effects can be separately iden-
tified. This is in fact illustrated here: we provide separate estimates by cohort, and we also estimate period
effects like wars, separately for each cohort, and at different ages. However we do make some strong as-
sumptions, for instance about the distribution of annual shocks, which should be further investigated.

This paper has some important limitations. First and foremost health is treated as an unobserved latent
variable–we only demonstrate that our model of health delivers a mortality age-profile that is consistent
with observed cohort mortality. Ideally one could use data on both health and mortality to better estimate
the model. Secondly there is a scale and location normalization that cannot be avoided–there are 2 param-
eters of the model that cannot be identified. This makes it is difficult to interpret parameters across cohorts
and countries: increases in initial health really could come from lower threshold or changes in standard
deviation. Lastly our model does not provide closed form solutions and must be estimated using numerical
methods. These methods are very sensitive to initial conditions and model assumptions.

But our model can be used to investigate many interesting questions that we have not considered here.
We provide estimates across cohorts for women, but have not investigated gender differences or their evo-
lution. We illustrate our methods for France, but these methods are also readily applicable to all other
countries with high quality life tables, and could be used to investigate cross-country differences. The
model can be extended to study correlations in health across generations in an over-lapping generations
setting where the health (initial condition) of a new generation is made a function of the average health of
mothers during reproductive ages. It can also be used to think about the age profile of mortality among
the oldest old. We have assumed that it is possible to directly manipulate or choose the level of resources
I which measured in this model in health units. But individuals cannot in fact directly choose levels of I .
Instead, like in the Grossman model, they choose inputs into health: they decide how much food, exercise,
medicine, alcohol to consume, based on how much utility they derive from these items directly and on how
these affect their health. With data on inputs this would be worth modeling. Lastly the model’s implica-
tions for wages, consumption and health care expenditures can be improved and taken to data for more
recent cohorts. Particularly the model has implications for the evolution of health (and productivity) at the
individual level, which can be investigated with panel data. We leave these applications to future work.
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Appendix A1: Notes on the empirical method

1. Data

Territory changes. The table below describes the details of the changes in territory that took place in France
since 1816.

Year Territorial Changes

1861 Annexion of departements of Savoie and Haute-Savoie, and of Comte de Nice
1869 Franco-Prussian war: loss of Alsace-Lorraine
1914- WWI: East of France, from Nord Pas-de-Calais to Vosges, is occupied by German military.
1919 At the end of WWI, Alsace-Lorraine is re-integrated to French territory
1939 WW2: Loss of Alsace-Lorraine
1943 WW2: Loss of Corsica
1945 Current territory: Alsace-Lorraine and Corsica are re-integrated to French territory

These changes in territory results in large changes in the population and death counts. This is illustrated
below for population. It is unclear how to compute mortality in the year of the change. We compute it by
using a weighted average of the population at the beginning and end of the year..

Migration. In the HMD cohort population counts are available. However, because of migrations, these
counts cannot be used to derive a survival curve for a cohort. Because of net positive immigration occurring
in France, the number of individuals in a given cohort can even increase from one year to the next. This is
especially true at the end of the Algerian War. (e.g. the size of the female cohort born in 1910 increases from
300,369 to 303,273 between 1962 and 1963, despite a reported mortality rate of 0.5162. . The unit of analysis
in our model of mortality is a country cohort, hence abstracts from migration. In our model the mortality
rates coincide exactly with the slope of the survival curve. This is not true in the HMD. The population of
the cohort melts natives and immigrants of the same age.

2. Computing the death rates, survival rates and life expectancy

Death rates. When taking our model to the data we target the most direct counterpart of our modeled cohort
“mortality rate”, which is computed as the number of individuals who died during a year, divided by the
number of individuals alive at the beginning of the day. In typical life tables this number corresponds
to what demographer call qt, the probability of dying in a given year, and is conceptually distinct to the
mortality rate, denoted by mt. The main difference lies in adjusting the denominator — the size of the
population. As more individuals die during the year the population needs to be adjusted to estimate the
size of the remaining population exposed to the risk of death. Because our baseline model does not take this
adjustment into account, we compute a direct counterpart of our theoretical object. Therefore, we compute
the raw death rate in year t for a given cohort , qt , as follows:

qt =
Dt

Nt

where Dt is the death count for year t from the HMD cohort table and Nt is the population on January
1st of year t. The HMD makes adjustments to compute a probability that is corrected for the fact that the
data do not tract the same individuals over time, so the probability of dying is not correctly computed for a
given cohort. The q we estimate with the raw counts is very similar to what is reported by the HMD except
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for the first year of life and the last years of life as shown in Figure 26. This results in our under-estimating
life expectancy somewhat.

Survival curves. We compute the survival curve recursively as follows. After initializing S0 = 100 , we
iteratively compute:

St = St−1 × (1− qt−1)

Life expectancy. Life Expectancy (LE) is an important statistics for the health profile of a given cohort.
We compute LE as a way of comparing our model to the data in a parsimonious way. While we try to
provide informative estimates of cohort life expectancy, we do not claim that their accuracy is comparable
to demographic studies. Nevertheless, as we treat the series generated by our model in exactly the same
manner as the data series, we obtain pairs of LE that are readily comparable.

4. Estimation routine

We compute our estimates using Matlab’s canned fminsearch routine, a downhill simplex method, and
Powell (1964)’s conjugate direction method. We first estimate the model using fminsearch until the objective
function changes by less than XXX. We then use these as starting values for Powell’s routine. Once Powell’s
routine converges, we use the estimated values from this procedure and implement fminsearch again until
it converges.

5. Bootstrapping standard errors

Estimates from sample data come with standard errors. However, the mortality rates in the HMD are
computed from birth certificates of the total population, not a sample of it. A typical cohort in our study
counts 400,000 individuals. As a results, the s.e. are extremely small . As in we do not report them for the
French cohorts.

In contrast, we do compute the standard errors for the monkey estimates as the data in that case consist
of samples of one or two hundreds of individuals.

How would one bootstrap errors? Given a series of mortality rates for a cohort, a sample of size N can
be viewed as a sequence of Bernoulli trials with varying success rates.

Alternatively, one can view the survival curve of a population of size N as an N × 1 vector of age at
death. One can produce bootstrap estimates by drawing with replacement M subsamples of size S and
compute the empirical survival curve.
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Appendix A3: Proofs omitted in the text

This is the model that we study for which we will prove propositions 1, 2 and 3 in the text:

D0 = 0, H0 ∼ N
(
µH , σ

2
H

)
Ht = Ht−1 − δ · tα + I + εt if Dt−1 = 0, εt ∼ N

(
0, σ2

ε

)
Dt = I(Ht ≤ H,Dt−1 = 0)

with δ ∈ (0,∞), α ∈ (0,∞), and I ∈ R. H and σ2
H are normalized to be 0 and 1, respectively. We now

describe the behavior of this model and then go on to analyze the effect of changes in each of its underlying
parameters.

Let Ĥt ≡ E [Ht | Ht > 0] denote the average health in the living population with age t and σĤt ≡
V ar [Ht | Ht > 0] the variance of health among the living.

Proposition 1: Identification

Below we formally prove that the baseline model is identified.

Formal approach

Suppose we have two sets of parameters θ = (I, δ, σε, α, µH) and θ′ = (I ′, δ′, σ′ε, α
′, µ′H).

We say that θ and θ′ are observationally equivalent (OE) if they imply the same mortality rates at each
age, i.e. iff

MRt (θ) = MRt (θ′) ,∀t ∈ N

Equivalently, we could define observational equivalence in terms of survival rates {St (θ)}t>0 since each
sequence can be uniquely recovered from the other one.

We say that θ and θ′ are weakly observationally equivalent (WOE) if and only if 1) θ and θ′ are OE and
2) they do not generate the same sequences of health distributions, i.e.∃t ∈ N,∃x ∈ R+ FHt (x; θ) 6= FHt (x; θ′)

∀t ∈ N MRt (θ) = MRt (θ′)

We say that θ and θ′ are strongly observationally equivalent (SOE) iff 1) θ and θ′ are OE and 2) they
generate the same sequences of health distributions, i.e.∀t ∈ N, FHt (· ; θ) = FHt (· ; θ′)

∀t ∈ N MRt (θ) = MRt (θ′)

Although we cannot distinguish between OE and WOE using only mortality rate, we could potential
observe some other features of the distributions of health at all ages that could break the identification. A
step in that direction would be to observe for a cohort a good proxy for health.

Suppose that θ and θ′ are OE, then here are two cases to consider, either they are WOE or SOE. In the
following we show successively that neither WOE or SOE is possible.

Now suppose that (I, δ, σ, α, µH) 6= (I ′, δ′, σ, α′, µ′H)
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Case 1: SOE
To show that θ and θ′ cannot be SOE, let’s work towards a contradiction.
Suppose that (I, δ, α, µH) 6= (I ′, δ′, α′, µ′H) then it is clear that the first 4 modes cannot be equal (4 non-

linear polynomial equations).

mode(1) = µH + I − δ

mode(2) = µH + 2I − δ(1 + 2α)

mode(3) = µH + 3I − δ(1 + 2α + 3α)

mode(4) = µH + 4I − δ(1 + 2α + 3α + 4α)

(1)

Now suppose that (I, δ, α, µH) = (I ′, δ′, α′, µ′H) and σε 6= σ′ε then the first two mortality rates cannot be
equal

m1 (θ) = Φ

(
−µH − I + δ√

1 + σ2
ε

)
6= Φ

−µH − I + δ√
1 + (σ′ε)

2

 = m1 (θ′) (2)

Case 2: WOE
Consider the first case. Let τ ≡ min {t ∈ N | ∃x ∈ R+ FHt (x; θ) 6= FHt (x; θ′)}. It is well defined by

definition of WOE.
Notice that because FHt is continuous except at 0, we can assume wlog that the two cdf differ on some

non trivial interval (a, b) ⊃ {x}
If τ > 1 then because at the previous period the two distribution are the same, it must be the case that

σε 6= σ′ε, but then the
So it must be that τ = 1 i.e. the distribution start differing at the first period.

Some useful lemmas

The variance is separately identified.
If {St}t∈[0,T ] is observed for an arbitrary large T . Then the variance is identified. Intuitively, the variance

of the shock characterizes the thickness of the right-hand tail. If one population has a larger variance than
the other one then the ratio of survivors grows arbitrarily large at old age.

More formally, let θ = {σ, ψ} denote the set of parameters. For any ψ, ψ′ such that

σ > σ′ =⇒ lim
t→+∞

St (σ, ψ)

St (σ′, ψ′)
= +∞

Proof:
Let ψ = {α, δ, µ0, κ} and σ > σ′ .
We have that for any t limt→+∞

fHt (x;σ,ψ)

fHt (x;σ
′,ψ′) = +∞

The only way to “compensate” for a small variance, which creates in old ages a right tail of very healthy
people is to have a lower depreciation (δ and α). However because the tail decreases at exponential rate, we
have

lim
t→+∞

fHt (x+ zt;σ, ψ)

fHt (x;σ′, ψ′)
= +∞ ∀x > 0

where zt =
∑
s<t δt

α −
∑
s<t δ

′tα
′
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Remark: as is well-known with this kind of “identification at infinity” (see Chamberlain 1986, and Heck-
man 1990) in practice the

Single-peakedness of fHt
For any t, one of these cases occurs: either (1) fHt is hump-shaped (increasing then decreasing ) or (2)

fHt is strictly decreasing.
Proof:
We start with a single-peaked distribution.
Now single-peakedness is preserved when we take the convolution with an independently distributed

random variable .
At some point the truncation “eats” all the part to the left of the hump.

Corollary: Mode of fHt There exists tmode > 0 such thatmode (fHt) > 0 t < tmode

mode (fHt) = 0 t ≥ tmode

And the mode of the distribution is

max

{
µ0 + I · t− δ

t∑
s=0

sα, 0+

}

Proposition 2: Basic Properties of the model

Basic Properties of the model:

1. Everyone dies with probability 1: limt→∞ Pr(Ht = 0) = 1.

2. For sufficiently high I (relative to σ2
ε and σ2

H ) mortality rates declines (up to age t1) and then increases
with age: MRt −MRt−1 6 0 if t 6 t1 and MRt −MRt−1 ≥ 0 if t > t1 .

3. The average health of the living increases and then decreases with age: Ĥt − Ĥt−1 6 0 if t 6 t2 and
Ĥt − Ĥt−1 ≥ 0 if t > t2 .

4. The variance of health among the living increases and then falls: σĤt − σĤt−1
≤ 0 if t 6 t3 and

σĤt − σĤt−1
≥ 0 if t > t3 .

1. Everyone dies eventually.

Consider the process {H∗t }
∞
t=1, defined by H∗0 = H0 ∼ N

(
µH , σ

2
H

)
and the recurrence relation:

H∗t = H∗t−1 + I − δ · tα + εt , εt ∼ N
(
0, σ2

ε

)
(3)

It is easy to tell that 0 ≤ P (Ht > z) ≤ P (H∗t > z) for any z > 0.

Now for any t ≥ 0, H∗t is normally distributed with mean

µH∗t = µH + I · t− δ
t∑

k=1

kα (4)
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and standard deviation
σH∗t =

√
σ2
H + t · σ2

ε (5)

Hence, P (H∗t > z) = 1− Φ(
z−µH∗t
σH∗t

), where Φ is the CDF of the standard normal distribution.

As t→∞ , we have µH∗t ∼ I · t− δ ·
tα+1

α+1 and σH∗t ∼
√
t · σε.

Therefore if α > 0,
µH∗t
σH∗t
→ −∞ as t→∞.

2. The mortality rates are U-shaped under suitable parametric restrictions.

The mortality rate at time t is defined as

MRt =
FHt (0)− FHt−1 (0)

1− FHt−1
(0)

(6)

First, as long as σε small enough w.r.t 1 , then MR1 > MR2, then again we need δ, α to be small
enough relative to I and σε so that the aging is not too strong, otherwise MR increases immediately at
age 2.

The sufficient condition for
MRt −MRt−1 6 0 (7)

is
FHt(0) + FHt−2

(0)− 2FHt−1
+ F 2

Ht−1
(0)− FHt(0)FHt−2

(0) 6 0 (8)

3. Average health has inverted U-shape.

Proposition 3: Comparative statics

1. Increasing the investment I or the average health at birth µH unambiguously decreases mortality at
all ages: ∂MRt

∂I ≤ 0 , ∂MRt
∂µH

≤ 0.39

2. Increasing any of the aging parameters, δ or α, unambiguously increases mortality at all ages: ∂MRt
∂δ ≥

0,∂MRt
∂α ≥ 0.

3. An increase in σ2
H can increase or decrease the mortality rate at a given age. An increase in σ2

H in-
creases the mortality rate at young ages ∂MRt

∂σ2
H
≥ 0 if δtα ≤ I . Ultimately, an increase in σ2

H generates

selection and reduces mortality in the very old age, for some tσ , ∂MRt+s
∂σ2

H
< 0,∀s>tσ .

4. Investment and health at birth are complements: ∂
2MRt
∂I∂µH

≤ 0.
1. Increasing the investment I :
In period 1, we have ∀z > 0,

FH1
(z) = Pr(H0 + I − δ + ε1 6 z)

= Pr(H0 + ε1 6 z + δ − I)

= Φ

(
z + δ − I − µH√

1 + σ2
ε

) (9)

39Changing the threshold also affects mortality rates negatively throughout the lifetime.
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MR1 = Pr(H1 6 0)

= Pr(H0 + I − δ + ε1 6 0)

= Φ

(
δ − I − µH√

1 + σ2
ε

) (10)

It is easy to see that as I or µH increases, both FH1
(z) and MR1 decreases.

∀t > 2, ∀z > 0, We have

FHt(z) = Pr(Ht 6 z)

= Pr(Ht 6 z,Ht−1 > 0) + Pr(Ht 6 z,Ht−1 6 0)

= Pr(Ht−1 + I − δtα + εt 6 z,Ht−1 > 0) + Pr(Ht−1 6 0)

= Pr(0 < Ht−1 6 z + δtα − I − εt) + Pr(Ht−1 6 0)

=
1

σε

∫ ∞
x=0

φ

(
x− z − δtα + I

σε

)(
FHt−1

(x)− FHt−1
(0)
)
dx+ FHt−1

(0)

(11)

MRt =
FHt (0)− FHt−1

(0)

1− FHt−1
(0)

(12)

Then

∂FHt(z; I)

∂I

=
∂

∂I

(
1

σε

∫ ∞
x=0

φ

(
x− z − δtα + I

σε

)(
FHt−1

(x)− FHt−1
(0)
)
dx

)
+
∂FHt−1 (0; I)

∂I

=
1

σ2
ε

∫ ∞
x=0

φ′
(
x− z − δtα + I

σε

)(
FHt−1(x)− FHt−1(0)

)
dx

+
1

σε

∫ ∞
x=0

φ

(
x− z − δtα + I

σε

)(
∂FHt−1

(x; I)

∂I
−
∂FHt−1

(0; I)

∂I

)
dx

+
∂FHt−1

(0; I)

∂I

=
1

σ2
ε

∫ ∞
x=0

φ′
(
x− z − δtα + I

σε

)(
FHt−1

(x)− FHt−1
(0)
)
dx

+
1

σε

∫ ∞
x=0

φ

(
x− z − δtα + I

σε

)
∂FHt−1

(x; I)

∂I
dx

+ Φ (−z − δtα + I)
∂FHt−1 (0; I)

∂I

(13)

All three items are negative, so we have

∂FHt(z; I)

∂I
6 0 (14)
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∂MRt
∂I

=
1

(1− Ft−1(0))2

(
∂FHt(0)

∂I
(1− FHt−1(0))−

∂FHt−1(0)

∂I
(1− FHt(0))

) (15)

2. Increasing any of the aging parameters, δ or α
Let at = I−δtα. The random variableHt has a mass point at z = 0 but is continuous on (0,+∞). FHt (0)

is the probability of not surviving until age t while for any z > 0, the cdf can be expressed

FHt (z) =

∫ ∞
x=0

Φ

(
z − x− at

σε

)
fHt−1 (x) dx+ FHt−1 (0)

Equivalently, after integration by parts, one obtains:

FHt (z) = − 1

σε

∫ ∞
x=0

φ

(
z − x− at

σε

)
FHt−1 (x) dx+ FHt−1 (0)

Hence the mortality rate at age t, which is the probability of dying at age t conditional on surviving until
age t, can be written:

MRt =
FHt (0)− FHt−1

(0)

1− FHt−1
(0)

Suppose that for every t we increase the constant investment level I to some level I ′ > I . Following
the expression above, the impact can be be decomposed in two: first, a direct effect on the probability of
dying at age t (the numerator) and, second, a compounded effect carried through the distribution of health
for those attaining age t.We show that, for any t, both effects go in the same direction: an increase in I

simultaneously increases the probability of surviving untill age t (hence increases the denominator) and
reduces the probability of dying at age t (the numerator goes down). We prove the following lemma.

For all t, we have:

1. ∀z > 0, ∂FHt (z; I)∂I ≤ 0

2. ∂MRt
∂I ≤ 0

Note: I don’t think we can prove Lemma 1. The proof here is wrong.
We prove these inequalities jointly and by induction.
Notice that ∂FHt (·; I)

∂I ≤ 0 signifies that the cdf’s are ranked by first order stochastic dominance. The
higher the I , the further the distribution is pushed to the right, which decreases the value of the cdf at any
point x as I increases. Because all the individuals would then be in better health, ceteris paribus, fewer of
them will die each period. Combined with a higher denominator, this delivers a lower mortality rate at
each point.

At t = 0: FH1
(z; I) = Φ

(
z−µ0

σ0

)
hence ∂FH1

(z; I)

∂I = 0. MRt = FHt (0) = Φ
(
z−µ0

σ0

)
which, again, is

non-increasing with I .
For any t ≥ 1, suppose that

∂FHt−1

∂I ≤ 0 and ∂MRt−1

∂I ≤ 0.
Let’s first focus on the first claim:

∂FHt (z; I)

∂I
=

∂

∂I

[
− 1

σε

∫ ∞
x=0

φ

(
z − x− at

σε

)
FHt−1

(x) dx

]
+
∂FHt−1 (0; I)

∂I
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The second term is negative, by assumption, while the first term is equal to

1

σ2
ε

∫ ∞
x=0

φ′
(
z − x− at

σε

)
FHt−1 (x) dx− 1

σε

∫ ∞
x=0

φ

(
z − x− at

σε

)
∂FHt−1

(z; I)

∂I
dx

Again, by assumption,
∂FHt−1

(z; I)

∂I ≤ 0, which takes care of the rightmost term.
Now, consider the change of variable u = z−x−at

σε
. We can rewrite the leftmost term:

− 1

σ3
ε

∫ z−at
σε

u=−∞
φ′ (u)FHt−1 (z − at − σεu) du

There are two cases. If z−atσε
≤ 0 then the integrand is always positive as φ′ > 0 for negative real numbers,

and we conclude that ∂FHt (z; I)∂I ≤ 0 . If z−atσε
> 0 then we can split the integral in three terms:

− 1
σ3
ε

∫ − z−atσε
u=−∞ φ′ (u)FHt−1

(z − at − σεu) du

− 1
σ3
ε

∫ 0

u=− z−atσε

φ′ (u)FHt−1 (z − at − σεu) du

− 1
σ3
ε

∫ z−at
σε

u=0 φ′ (u)FHt−1 (z − at − σεu) du

= − 1
σ3
ε

∫ − z−atσε

u=−∞
φ′ (u)FHt−1 (z − at − σεu) du

− 1
σ3
ε

∫ 0

u=− z−atσε

φ′ (u)
[
FHt−1 (z − at − σεu)− FHt−1 (z − at + σεu)

]
du

(as φ′ (−u) = −φ′ (u) and the cdf FHt−1 is non-decreasing ). This proves that ∂FHt (z; I)∂I ≤ 0 for any z ∈ R.
With that result in hand, it is easy to prove that ∂MRt

∂I ≤ 0 . Setting z = 0, it follows directly that the
denominator decreases with I . Regarding the numerator we have

∂
∂I

[
FHt (0; I)− FHt−1 (0; I)

]
=

∂FHt (0; I)

∂I − ∂FHt−1
(0; I)

∂I

= ∂
∂I

[
− 1
σε

∫ ∞
x=0

φ
(
x−at
σε

)
FHt−1

(x) dx

]
≤ 0

since this is the same integral analyzed at the previous step, with z = 0.
By induction, i) and ii) hold for any t ≥ 1.
For µH same proof, except effect on first period distribution. The successive cdf’s inherit the first order

stochastic dominance property.
3. An increase in σ2

H .
The exact same proof applies for δ and α as their impact on FHt through the aging function at is similar

to the effect of I .
It can be seen right away that this proof will not work for σε nor σ0. Increasing any of these variances, -

a mean-preserving spread - will not give rise to the first order stochastic ranking of the cdf’s that we have
used.

Increasing MR on impact. The numerator of the MRt is given by

FHt (0; I)− FHt−1
(0; I) =

∫ ∞
x=0

Φ

(
δtα − I − x

σε

)
fHt−1

(x) dx

Since Φ is nondecreasing, if one decreases σε at time t, and at this period only, then this expression is
necessarily decreasing in σε if δtα ≤ I .
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This follows from the fact that a higher σε,t will generate a fatter right-hand tail. For instance, limx→+∞
fHt (x;σε)

fHt (x;σ
′
ε)

=

0. Now if σε,t is changed only at period . From then on, the distributions are modified through a similar
process. It can be shown that the fatter right-hand tail property will be preserved. In the very old age, only
the popupulation in the right-tail have survived, hence the result.

To prove that the fatter right-hand tail property is preserved, proceed similarly by inference.

Remark 1 Lemma 1 is actually a subcase of the following result, which is slightly stronger:
Suppose that the level of investment is allowed to change at every period, and denote I = {I1, I2, ..., }

and I ′ = {I ′1, I ′2, ..., } two investment sequences. The following holds:

∀s ≥ 1, I ′s ≥ Is =⇒ ∀t ≥ 1,∀z > 0, FHt (z; I) ≤ FHt (z; I ′) and MRt (I) ≤MRt (I ′)

The mechanics of the proof is almost exactly similar. Increasing investment at any period generates a
persistent relation of first-order stochastically dominance in the CDF of health.

4. Investment and health at birth are complements
The proof here is wrong.
going back to the proof of Proposition 1

∂2FHt2
(z; I)

∂It1∂It2
= ∂

∂It1

∂
∂It2

[
− 1
σε

∫∞
x=0

φ
(
z−x−It2+δ(t2)

α

σε

)
FHt2−1

(x, I) dx
]

+ ∂
∂It1

∂FHt2−1
(0; I)

∂I2

= ∂
∂It1

[
1
σ2
ε

∫∞
x=0

φ′
(
z−x−at
σε

)
FHt2−1

(x, I) dx
]

+ 0

= 1
σ2
ε

∫∞
x=0

φ′
(
z−x−at
σε

)
∂

∂It1
FHt2−1

(x, I) dx

≤ 0

content... (16)

because ∂
∂It1

FHt2−1
(x, I) ≤ 0 ( increasing investment at time 1 creates a FOSD distribution)

And as a consequence the denominator 1− FHt2−1
(0) goes up as well.

The correct equation should be

∂2FHt2 (z)

∂It1∂It2

=
∂

∂It1∂It2

(
1

σε

∫ ∞
x=0

φ

(
x− z − δtα2 + It2

σε

)(
FHt2−1

(x)− FHt2−1
(0)
)
dx

)
+
∂2FHt2−1 (0)

∂It1∂It2

=
∂

∂It1

(
1

σ2
ε

∫ ∞
x=0

φ′
(
x− z − δtα2 + It2

σε

)(
FHt2−1(x)− FHt2−1(0)

)
dx

)
=

1

σ2
ε

∫ ∞
x=0

φ′
(
x− z − δtα2 + It2

σε

)(
∂FHt2−1

(x)

∂It1
−
∂FHt2−1

(0)

∂It1

)
dx

(17)

µ0 and I are complement
Exactly the same as in Proposition 2 as a change in µ0 is observationally equivalent to a change in I1.
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Appendix Tables and Figures

Table 1: Estimated parameters for female chimpanzees living in the wild
Gender Basic model κa

Initial mean health µH 0.9783 1.0043
Investment (annual) I 0.3295 0.3390
Standard Deviation of Shock σe 1.0871 1.1304
Depreciation δ 0.0560 0.0553
Aging α 0.7677 0.7820
Adolescent Hump* κa 0.00001
# of individuals at birth 80 80
# of moments reported 55 55
Fit (survival curve)b 112.50 111.29
Fit (log of qx) 2.11 2.11
Actual Life Expectancy 15.38(13.4)a

Predicted Life Expectancy 15.35 15.35
Data sources: Life tables for primates in the wild come from Bronikowski et al. (2011). In the wild population data come
from Brazil, Costa Rica, Kenya, Tanzania, Madagascar and Rwanda.
a. Life expectancy in parenthesis corresponds to the one reported in Bronikowski et al. (2011).
b. We target the survival curve and compute the sum of squared errors – the data provided are in the form of survival
rates.
*Adolescence starts at age 8.
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Table 2: Modeling prime-age mortality. French Women born in 1816

(0) (1) (2) (3) (4)

Model for hump: change in... Baseline I H σe κa

Initial mean health µH 0.9115 0.9115 0.8151 0.7723 0.8634
Investment I 0.1336 0.1336 0.1315 0.2159 0.4075
Standard Deviation of Shock σe 0.5556 0.5556 0.4830 0.6300 1.0241
Depreciation δ 0.0010 0.0010 0.0008 0.0009 0.0006
Aging α 1.4350 1.4350 1.4462 1.5605 1.7849
Adolescent Hump* 0.1336 0.5586 0.9024 0.0086

Fit (survival curve)^ 155.06 155.06 123.03 97.04 12.36
Fit (log of qx) 3.01 3.01 2.87 2.23 0.74
Fit (death distribution)** 6.21 6.21 4.95 2.95 3.35

Actual Life Expectancy 38.25
Predicted Life Expectancy 38.43 38.43 38.38 38.45 38.28
Counterfactual Life expectancy^^ 38.43 40.92 40.38 45.86

*The estimate in this row corresponds to the value of the parameters after the onset of adolescence. Ado-
lescence starts at age = (- 0.0175 x calendar year) + 47.4 for all women, based on the estimates provided in
de La Rochebrochard (2000).
**To make the fit of the age distribution comparable across columns we use the (normalized) number of
deaths as weights.
^Our main fit criteria is the sum of squared errors of the survival rate at each age We also report the fit
as the sum of squared errors of the log of qx (the probability of dying between ages x and x + 1) and the
distribution of deaths. We don’t target these moments directly–we target the survival curve.
^^Counterfactual Life Expectancy is computed by holding all estimated parameters fixed and setting the
adolescent hump to 0.
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Table 3: Modeling prime-age mortality French Women born in 1860

(0) (1) (2) (3) (4)

Model for hump: change in... Baseline I H σe κa

Initial mean health µH 1.0981 1.0740 1.0748 0.9589 0.9323
Investment I 0.1501 0.1563 0.1649 0.4879 0.3318
Standard Deviation of Shock σe 0.5916 0.5873 0.5907 1.0471 0.7932
Depreciation δ 0.0006 0.0005 0.0006 0.0001 0.0004
Aging α 1.5742 1.5774 1.5889 2.2001 1.7780
Adolescent Hump* κa 0.1380 0.4902 2.1746 0.0071

Fit (survival curve)^ 205.54 197.74 177.41 46.34 11.93
Fit (log of qx) 2.59 2.49 2.57 1.62 0.70
Fit (death distribution)** 7.49 19.78 23.43 9.07 16.48

Actual Life Expectancy 43.80
Predicted Life Expectancy 43.95 44.04 43.97 43.88 43.85
Counterfactual Life expectancy^^ 46.30 45.91 48.96 51.65

*The estimate in this row corresponds to the value of the parameter after the onset of adolescence. Ado-
lescence starts at age = (- 0.0175 x calendar year) + 47.4 for all women except for the 5th column where the
timing of adolescence is estimated as following a normal distribution with mean value (- 0.0175 x calendar
year) + 47.4, and standard deviation 1.3285 (calculated from the table of 1975 girls) based on the estimates
provided in de La Rochebrochard (2000).
**To make the fit of the age distribution comparable across columns we use the (normalized) number of
deaths as weights.
^Our main fit criteria is the sum of squared errors of the survival rate at each age We also report the fit
as the sum of squared errors of the log of qx (the probability of dying between ages x and x + 1) and the
distribution of deaths. We don’t target these moments directly–we target the survival curve.
^^Counterfactual Life Expectancy is computed by holding all estimated parameters fixed and setting the
adolescent hump to 0.
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Table 5: Estimated parameters for WWII for French Women born in 1921
(1) (2) (3) (4)

Model for WWII: change in... I κa σe H

Initial condition µH 0.9790 1.0837 1.0638 1.0522
Investment I 0.2985 0.2739 0.2650 0.2385
Standard Deviation of Shock σe 0.4255 0.4561 0.4358 0.3891
Depreciation δ 0.0007 0.0008 0.0009 0.0008
Aging α 1.5358 1.5272 1.4961 1.4785
Adolescence Hump* κa 0.0026 0.0030 0.0032 0.0031
WWII Shock** -0.1173 0.0036 0.3495 0.8919
Fit (survival curve)^ 40.62 37.02 38.49 38.53
Fit (log of qx) 4.87 2.69 3.11 3.29
Fit during WWII (log of qx) 0.21 0.53 0.68 0.73
% Difference in # deaths during WWII~~ -0.21 -0.36 -0.45 -0.32
Actual Life Expectancy 66.00
Predicted Life Expectancy 66.03 66.03 66.02 66.03
Counterfactual Life expectancy^^ 70.90 66.24 65.94 66.23
Actual Life expectancy in 1946 55.93
Life expectancy in 1946 55.27 55.25 55.12 55.28
Counterfactual LE in 1946 60.36 55.24 55.05 55.17

*Hump is modeled as a accident rate that starts in adolescence, set to happen at (- 0.0175 * calendar year) +
47.4 based on the estimates provided in de La Rochebrochard (2000).
**The estimates in this row corresponds to the value of the parameter during the war. For example the
first column shows that I was about 0.299 throughout life but decreased to -0.117 during the war. The
same applies to columns (3) and (4), the standard deviation decreases from 0.436 to 0.350 and the threshold
moves from 0 to 0.892. In column 2, we estimate the value of an additional random shock during the war,
an approximate 41% decrease relative to the adolescent hump (but since the shock is independent this is
only approximate).
^Our main fit criteria is the sum of squared errors of the survival rate at each age We also report the fit as
the sum of squared errors of the log of qx (the probability of dying between ages x and x + 1). We don’t
target these moments directly–we target the survival curve.
^^Counterfactual Life Expectancy is computed by holding all estimated parameters fixed and setting the
war parameters to 0.
~This is computed as sum of squared errors during the war years. A lower number is better.
~~This is computed as (predicted - actual)/actual
To make the fit of the age distribution comparable across columns we use the (normalized) number of deaths
as weights.
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Table 6: Estimated parameters for 1919 Flu pandemic for French Women born in 1900
(1) (2) (3) (4)

Model pandemic: change in... I κa σe H

Initial mean health µH 0.7718 0.7032 0.6946 0.7322
Investment I 0.3460 0.3464 0.3548 0.3569
Standard Deviation of Shock σe 0.5976 0.5485 0.5653 0.5863
Depreciation δ 0.0006 0.0007 0.0006 0.0006
Aging α 1.6462 1.6143 1.6581 1.6656
Adolescence Hump* κa 0.0049 0.0049 0.0053 0.0050
WW2 (I value during war) Iw 0.3245 0.0067 0.0048 0.0091
1918 Flu Shock** -1.1242 0.0225 0.0000 2.2129
Fit (survival curve) 8.49 11.95 15.91 8.65
Fit (log of qx) 1.27 2.74 2.57 2.06
Fit during WWII (log of qx) 0.08 0.04 0.04 0.05
% Difference in # deaths during WWII -0.13 -0.07 -0.01 -0.06
Fit during Epidemics (log of qx) 0.00 0.11 0.08 0.07
% Difference in # deaths during Epidemics 0.11 1.14 -0.48 0.82
Actual Life Expectancy 53.81
Predicted Life Expectancy 53.86 53.86 53.84 53.85
Counterfactual: no Flu 55.83 54.55 53.82 54.25
Counterfactual: no WW2 54.02 56.42 56.30 56.29
Counterfactual: no shocks^^ 55.98 57.16 56.28 56.75
Actual life expectancy in 1919 53.09
Life expectancy in 1919 53.04 53.40 52.90 53.34
Counterfactual life expectancy in 1919 55.36 53.40 52.87 53.14

*Hump is modeled as a accident rate that starts in adolescence, set to happen at (-0.0175 x calendar year) +
47.4, based on the estimates provided in de La Rochebrochard (2000).
**We model the war as a temporary change in I . The values reported in this row correspond to the level of
I during the war. For example in column (1) I during the war falls from about 0.38 to about 0.045.
***The estimates in this row corresponds to the value of the parameter during the epidemics. For example
column (1) shows that I was about 0.38 throughout life but decreased to about -0.92 during an epidemic.
The same applies to columns (3) to (4). In column 2, we estimate the value of an additional random shock
during an epidemic, in this case it corresponds to an approximate 100% increase relative to the adolescent
hump (but since the shock is independent this is only approximate).
^Our main fit criteria is the sum of squared errors of the survival rate at each age We also report the fit as
the sum of squared errors of the log of qx (the probability of dying between ages x and x + 1). We don’t
target these moments directly–we target the survival curve.
^^Counterfactual Life Expectancy is computed by holding all estimated parameters fixed and setting the
war and pandemic parameters to 0.
**To make the fit of the age distribution comparable across columns we use the (normalized) number of
deaths as weights.
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Figure 18: Life expectancy, French Women 1816-1970
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Figure 21: Health and mortality in the first two years of life
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In the first period the (infant) mortality rate MR1 is given by

MR1 = P (H1 ≤ H) = P (H0 + I − δ + ε1 ≤ H)

= P (ε1 ≤ ϕ1) = F (ϕ1)

where ϕ1 = H − I + δ − H0 captures the threshold for dying in period 1 in terms of the random shock. Investments
lower this threshold (lower mortality) and depreciation increases it (increases mortality).
Consider now the probability of dying at age t = 2. This is given by the probability that the stock falls below H at age
2, conditional on having survived to age 2, which can be expressed as:

MR2 = E(D2 = 1|D1 = 0) = P (H2 < H|H1 > H)

=
P (H2 < H,H1 > H)

P (H1 > H|g1, g2)
=
P (ε2 < ϕ2 − ε1, ε1 > ϕ1)

1− F (ϕ1)

=
K(ϕ2, ϕ1)

1− F (ϕ1)
(18)

where ϕ2 = H − I + δ2α − H0 captures the threshold for dying in period 2, and K(ϕ2, ϕ1) =∫∞
ε1=ϕ1

∫ ϕ2−ε1
ε2=−∞

f(ε1)f(ε2)dε1dε2 is the density right above the old threshold and below the new threshold, that is the
fraction of survivors who dies as a result of a new shock. The denominator is the fraction of survivors.
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Figure 22: Comparative statics for health
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Note: Simulated data for a population of 500,000 individuals. The figures show the effect of changes relative to the baseline model,
which is simulated using the same parameters we used for Figure 2.

Figure 23: Effects of variance increase
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Note: Simulated data for two population of 500,000 individuals each. The figures show the effect of changes relative to the baseline
model, which is simulated using the same parameters we used for Figure 3.
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Figure 24: Effect WWI and WWII on female mortality
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Figure 25: Female population in France since 1816
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Note: See the technical documentation of the Human Mortality Database for details about the population coverage for
the French mortality data.
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Figure 26: Comparison of q-rate in the paper and HMD (1816)
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Life expectancy: 38.25 (with the q we use) and 39.86 (with the q in HMD). The life expectancy in HMD is
39.83.
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