Community and Collaboration: STEM Reform at Brown

Kathryn Trenshaw¹, Kathy Takayama¹, David Targan²,³, and James Valles²

¹ Sheridan Center for Teaching and Learning, ² Department of Physics, ³ Dean of the College Office

Community Building

- **Engage**
 - New faculty early in reform
 - Senior faculty become department chairs

- **Progress**
 - New faculty become senior faculty

- **Lead**
 - Community of chairs engaged in reform

- **Build**
 - Collaborative problem solving sessions added to one introductory course per department
 - Course instructors collaborated weekly

Departmental Collaboration

- Three departments involved in Spring 2014:
 1. Chemistry
 2. Physics
 3. Applied Math
- Department Chairs and course instructors attended Bi-weekly AAU Meetings to share experiences and ideas
 - Avoided “reinventing the wheel”
 - Spread what worked quickly

In-Course Collaboration

- Collaborative problem solving sessions added to one introductory course per department
 - Problem sets followed lecture and homework
 - Students worked in teams of three
 - Sessions observed by grant staff
 - Student voice captured in feedback
- Student feedback overwhelmingly positive
 - “[The session facilitators] were enthusiastic and helpful. They made me look forward to doing physics at 8:30 [AM] every Friday”
 - “Working through problems with other students helped me reinforce my understanding of concepts presented in the class. I would strongly encourage that these [sessions] continued to be offered, because they really helped me to learn and retain the course material.”

Weekly Course Instructor Meetings

- Evaluation of Reform Efforts
 - Lecture content
 - Homework
 - Exams
 - Problem sets
 - Team formation
 - Session facilitation

- Fully Integrated Problem Solving Sessions

- Student Buy-In and Feedback

- Communication of Reform Effort to Students

Physics Outcomes

- Compared problem solving session attendance and exam scores

<table>
<thead>
<tr>
<th># Sessions Attended</th>
<th>Midterm 1 Score</th>
<th>Midterm 2 Score</th>
<th>Final Exam Score</th>
<th>Total Exam Average*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84%</td>
<td>54%</td>
<td>67%</td>
<td>68%</td>
</tr>
<tr>
<td>1 - 3</td>
<td>81%</td>
<td>74%</td>
<td>67%</td>
<td>78%</td>
</tr>
<tr>
<td>4 - 7</td>
<td>84%</td>
<td>72%</td>
<td>70%</td>
<td>74%</td>
</tr>
<tr>
<td>8</td>
<td>85%</td>
<td>78%</td>
<td>76%</td>
<td>79%</td>
</tr>
</tbody>
</table>

* Scores were significantly higher (p < 0.05) than those of students who did not attend any sessions.

Chemistry Outcomes

- Compared problem solving session attendance and exam scores

<table>
<thead>
<tr>
<th>Attended Sessions</th>
<th>Mid 1 Score</th>
<th>Mid 2 Score</th>
<th>Mid 3 Score</th>
<th>Final Exam Score</th>
<th>Total Exam Average†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>71%</td>
<td>82%*</td>
<td>73%</td>
<td>71%*</td>
<td>74%</td>
</tr>
<tr>
<td>No</td>
<td>71%</td>
<td>78%</td>
<td>68%</td>
<td>64%</td>
<td>69%</td>
</tr>
</tbody>
</table>

* Scores were significantly higher (p < 0.05) than those of students who did not attend any sessions.

Future Collaboration: Engineering

- Change the spirit of “Introduction to Engineering” to “Introduction to Engineering Design”
 - Emphasis on collaborative problem solving in Brown Design Workshop
 - Recruit peer mentors to build student community
 - Provide more feedback to students earlier
 - Create excitement around engineering design
- Expand into sophomore, junior, and senior capstone design courses
 - A curriculum that emphasizes collaboration and community

Acknowledgements

This work receives support from the Sheridan Center for Teaching and Learning, the Science Center, and the Dean of the College Office at Brown University and is funded by an AAU Undergraduate Education Initiative Grant.