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Abstract 
 

 Wage-hedonic techniques are regularly used to determine  
willingness-to-pay to avoid environmental disamenities, like those 
associated with particulate matter and other forms of air pollution.  A key 
assumption underlying these techniques is that individuals face an 
unconstrained choice over alternative locations.  Evidence suggests that 
this is not the case and that, moreover, certain groups face 
disproportionate constraints on mobility.  This has the potential to skew 
hedonic measurements toward finding smaller costs of pollution, 
especially for the immobile (typically disadvantaged) groups.  We propose 
a model of residential sorting that recovers estimates of mobility costs and 
uses them to correct this source of bias.  The model is applied to data from 
the micro samples of the 1990 and 2000 US Censuses, and the results are 
used to measure the welfare cost of a marginal increase in PM10.  Results 
show a significant downward bias in WTP calculated with the wage-
hedonic technique, particularly for those with less education. 
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1.  Introduction 
 
 Particulate matter (PM) refers to air pollution comprised of small particles, fine 
solids, and aerosols that form as a result of activities as diverse as the combustion of 
fossil fuels, mining, agriculture, construction and demolition, and driving on unpaved 
roads.  While most of the particles resulting from these processes are relatively large in 
size (i.e., approximately 1/7th the diameter of a human hair), smaller particles result from 
chemical processes that occur when sulfur dioxide, nitrogen oxides, and volatile organics 
react with other compounds in the atmosphere.  The result is an array of pollutants that 
carry with them serious health consequences.  Beginning with the Harvard Six City Study 
[Dockery et al (1993)], thousands of analyses have come to the conclusion that 
atmospheric particulate matter can have serious health consequences.  These are most 
severe for the young and the elderly – especially those suffering from asthma. [Lin et al 
(2002), Norris et al (1999), Slaughter et al (2003), and Tolbert et al (2000)]  Fine 
particles have been shown to enter the bloodstream, increasing the risk of heart attacks 
and strokes. [Hong et al (2002), Tsai et al (2003), and D’Ippoliti et al (2003)]  Numerous 
studies have found evidence of lung tissue inflammation [Ghio et al (2000)], reduced 
lung function in children [Gauderman et al (2002)], increased risk of lung cancer [Pope et 
al (2002)], and even the possibility of heritable diseases. [Samet et al (2004)] 
 
 The adverse health impacts of air pollution (primarily PM10 and ozone) have 
prompted a wide array of legislative responses at both the state and federal levels over the 
last thirty years.  Evaluated according to simple criteria (i.e., emissions reductions and 
cost-effectiveness), these policies are generally considered to have been successful.  Even 
so, studies find that over 81 million Americans face unhealthy short-term exposure to 
PM, while 66 million live with chronically high exposure. [American Lung Association 
(2004)]  This is cause for concern, particularly in light of current legislative efforts that 
would reduce the capacity of the EPA to regulate certain pollution sources (i.e., old 
power plants).  While most of these legislative efforts arise out of concern for the cost of 
compliance with EPA regulations, little is known about the size of the benefits.  This 
complicates careful evaluation based on efficiency criteria.  Even less is known about the 
how those benefits are distributed, precluding any discussion of equity.  This paper uses a 
new technique to provide evidence on households’ willingnesses-to-pay (WTP) for 
reductions in PM pollution, and demonstrates how traditional wage-hedonic techniques 
are biased against finding benefits amongst the poor and uneducated members of society. 
 
 
Techniques for Valuing Clean Air 
 
 As long as researchers have studied non-market valuation techniques, they have 
studied individuals’ WTP to avoid air pollution.1  Most recently, the property value 
hedonic technique has been applied by Chay and Greenstone (2004) to measure the 
benefits of PM reductions associated with the Clean Air Act regulations of the 1970’s.  A 
related literature has focused on the distribution of costs and benefits of air pollution 

                                                 
1 See, for example, Harrison and Rubinfeld (1978), Palmquist (1984), and Ridker and Henning (1967).  
Smith and Huang (1995) summarize the results of these and other papers. 
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abatement. [Gianessi, Peskin, and Wolff (1979), Robison (1985)]  The emphasis in these 
papers, however, is on how abatement costs are passed on to different types of 
households depending upon their consumption patterns, while the benefits of pollution 
reduction are assumed to be allocated in proportion to population density.  More recently, 
the literature on environmental justice has examined the location decisions of pollution-
generating firms relative to the geographic distribution of certain types of people (i.e., the 
poor and minorities), focusing either on their distribution at the time of siting [Wolverton 
(2002)], or after households have had time to react to those siting decisions. [US GAO 
(1983), UCC (1987)]  While providing careful discussions of the determinants of facility 
location (i.e., exposure heterogeneity), these papers do not address the question of how 
WTP’s to avoid pollution differ amongst different types of people (i.e., benefit 
heterogeneity). 
 
 Hedonic techniques (property value, wage-hedonic) take as a starting point the 
idea that individuals optimally sort over locations (e.g., houses in the context of property 
value hedonics, or cities in wage-hedonics).  In equilibrium, the hedonic gradient – i.e, 
the derivative of the housing price (and wage) with respect to the amenity in question – 
reveals the decision-maker’s marginal WTP for that amenity.  PM concentrations vary 
significantly across cities, making wage-hedonics the appropriate technique for 
measuring value by looking at compensating differentials in both the labor and housing 
markets.  Considering households’ choices of cities, however, an important assumption 
underlying the wage-hedonic model becomes implausible.  In particular, households face 
mobility costs.  A cursory inspection of the data reveals that a significant fraction of 
individuals do not leave the state in which they were born, and even more do not leave 
the region.2  Tables 1 (a) and (b) report regional long-run migration patterns based on 
2000 US Census data.  They show a significant fraction of household heads residing in 
the region of their birth (i.e., large entries on the diagonal of each panel). Moreover, this 
tendency is even stronger for those with less education, as is evidenced by comparing 
panel (a) (i.e., high school dropouts and graduates) with panel (b) (i.e., those with some 
college or college graduates).  Table 2 re-emphasizes this point, reporting the results of a 
Probit estimation of a dummy variable for having stayed in one’s birth state on individual 
attributes.  Those with less education, Blacks, and female household heads are more 
likely to have done so.3 
 

These data suggest that equally including all possible locations in a household’s 
choice set is inappropriate, yet this assumption is an important part of the equilibrium 
underlying wage-hedonic valuation.  How might this matter in the marginal valuation of 
particulate matter reductions?  Suppose a disproportionate share of household heads were 
born in a region of the US where PM concentrations are high (e.g., the Northeast US), 
and that migration costs prevent many of them from leaving that region.  The naï ve wage-
hedonic model, ignoring constraints on mobility, would interpret this as evidence that PM 

                                                 
2 An alternative interpretation of this finding is that individuals simply have an idiosyncratic preference for 
the state and/or region in which they were born.  This interpretation and that based on mobility costs (i.e., 
disutility of moving far from one’s birth place) are both consistent with the model presented below. 
3 College graduate, Asian, male household heads are the excluded group in this regression.  All parameter 
estimates can be evaluated relative to that group. 
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is less disagreeable than it is in reality.  This source of bias, moreover, will be more 
severe for the household heads who face greater mobility costs.  In practice, wage-
hedonic estimates of marginal WTP would understate the benefits of pollution reductions, 
especially for these groups. 

 
The wage-hedonic technique uses only the information in the observed 

equilibrium of the residential sorting process of households over locations.  In order to 
overcome this source of bias, the modeling strategy needs to be extended back to the 
location decisions themselves.  Only then can mobility costs be recovered and accounted 
for in measuring WTP.  The model outlined in this paper does just that, recovering 
estimates of a long-run measure of migration costs based on the disutility of settling far 
from one’s birthplace. 
 
 This paper proceeds as follows.  The next section derives a simple model of 
household sorting across US metropolitan statistical areas.  Section 3 derives the 
traditional wage-hedonic model from the same underlying utility maximization problem 
(but ignoring mobility costs).  Section 4 describes the data sources we use to identify both 
models, and reports parameter estimates for each.  That section goes on to use those 
estimates to derive the value of a marginal change in particulate matter according to each 
model, and demonstrates the bias inherent in ignoring mobility constraints.  Section 5 
concludes and discusses some extensions to this preliminary research. 
 
 
2.  Model:  Household Residential Sorting 
 
 We outline here a model of residential sorting of households across locations 
(e.g., US Metropolitan Statistical Areas).  The model begins with the specification of the 
utility a household i of type k receives from living in location j: 
  

(1) U C H ei j k i k i k

f M XC k H k i j k M k X k j j k

, , , ,

( ; ), , , , , , ,= + +β β β β ξ
 

 
where 
 
 Ci,k   = household i’s consumption of numeraire composite commodity 
 Hi,k   = household i’s consumption of housing services 
 Mi,j,k = household i’s long-run migration distance associated with location j 
 Xj    = observable attributes of location j (including PM pollution) 
 ξj,k   = unobserved attributes of location j (varies with household type k) 

  
Type may refer to household attributes like race, sex, and education of the household 
head, number of children, and the presence of an elderly adult.  In the current application, 
we define type according to two levels of education – (i) high school dropouts and 
graduates, and (ii) those with some college training and college graduates.  Extending this 
model to a richer specification of types is the first extension to be considered.  
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 Utility maximization in sorting models of this sort proceeds in two stages: (i) 
optimal location choice, and (ii) optimal disposition of income over Hi,k and Ci,k 
conditional upon that choice.  Working backwards, we begin with the optimal allocation 
of income subject to a budget constraint. 
 

(2) max . .
{ , }

, , , ,

( ; )

, , , ,
, ,

, , , , , , ,

C H
i j k i k i k

f M X

i k j i k i j k
i k i k

C k H k i j k M k X k j j kU C H e s t C H I= + =+ +β β β β ξ ρ  

 
ρj represents the price of a unit of housing services in location j.  Housing services (and 
their prices) are not readily observed magnitudes, but can be imputed from data on 
observed rents or house values and housing attributes, given a suitable functional form 
assumption.  Given a vector of characteristics of the dwelling inhabited by household i 
(hi,k), a dummy variable Ωi,k

 = 1 if that home is owned ( = 0 if it is rented), and a house 
price variable Pi,j,k that represents either house value (if Ωi,k

 = 1) or monthly rent (if Ωi,k
 = 

0), we recover the price of housing services in each location, ρj, from the following 
regression: 
 

(3) ln ln, , , , , ,P hi j k j i k i k i j k
H= + + ′ +ρ λ ϕ εΩ  

 
where λ measures the premium on owned housing (i.e., making monthly rents 
comparable to housing values), H EXP hi k i k, ,[ ]= ′ ϕ  serves as our housing services index, 

and location specific intercepts provide us with estimates of lnρj. 
 

Incorporating the budget constraint into the utility function: 
 
(4)   ln ln( ) ln ( ; ), , , , , , , , , , , , ,U I H H f M Xi j k C k i j k j i k H k i k i j k M k X k j j k= − + + + +β ρ β β β ξ   

 
and differentiating with respect to Hi,k yields the following first-order condition: 
 

(5) −
−

+ =
β ρ

ρ
βC k j

i j k j i k

H k

i kI H H
,

, , ,

,

,

0  

 
After some manipulation, we recover an expression for household i’s optimal 
consumption of housing services conditional upon choosing to live in location j: 
 

(6) H
I

i j k
H k

H k C k

i j k

j
, ,
* ,

, ,

, ,=
+

β
β β ρ

  

 
Incorporating (6) back into (4) provides an indirect utility function that can be taken 
directly to household i’s location choice decision: 
 
(7) ln ln ( ; ), , , , , , , , ,V I f Mi j k I k i j k i j k M k j k= + +β β θ  
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where  
 
(8) θ β ρ β ξj k k H k j X k j j kB X, , , , ,ln= + + +0  

 
is a composite of the utility effects of all local attributes that are common to households 
of a particular type, and 
 
(9) B k k C k C k H k H k C k H k C k H k0 0, , , , , , , , , ,ln ln ln ( ) ln( )= + + − + +β β β β β β β β β  

 
(10) β β βI k C k H k, , ,= +  

 
 
Modeling Household Location Choice 
 
 We now use equation (7) to model the household’s choice of location.  In making 
this decision, households trade-off income earning opportunities (Ii,j,k) versus the price of 
housing services (ρj) and other local attributes (θj,k) in each location.  Additionally, 
f(Mi,j,k;βM,k), the (dis)utility of migration distance, plays a critical role in their decisions 
and in our analysis.  Our goal is to demonstrate how hedonic valuation of marginal 
improvements in air quality may be biased if one assumes that households treat every 
MSA as an equally viable alternative in their location choice set.  Based on the tables 
shown above, this looks to be a particularly poor assumption – households tend to settle 
closer to where the household head was born.  We capture this feature of the data with 
two dummy variables, di,j,k 

M1 = 1 if location j is outside the state in which the household 
head was born, and di,j,k 

M2 = 1 if location j is outside the birth region.4,5 
 

(11) f M d di j k M k M k i j k
M

M k i j k
M( ; ), , , , , , , , ,β β β= − −1

1
2

2  

 
 It is not possible to observe the income that each individual would earn in every 
location, but rather only that which he earns in the location where he actually resides.  In 
the micro-data used for estimation, however, many other observationally similar 
household heads are found living in other locations, and we are able to observe their 

                                                 
4 We use the same regional definitions employed in Table 1. 
5Aside from helping to describe a salient feature of the data, including migration costs plays an important 
role in econometrically identifying this class of sorting models.  In particular, they cause decision-makers 
to have different perceptions of alternatives in a choice set that are otherwise identical.  Identifying discrete 
choice models of the sort used here without relying exclusively on functional form assumptions depends 
upon seeing similar decision-makers being confronted with different choice sets.  Observing how similar 
individuals respond in different market situations tells us something about their substitution patterns – i.e., 
their willingness to trade-off different local attributes for one another.  It is from these substitution patterns 
that a discrete choice model infers preference parameters.  In many applications (e.g., individuals sorting 
across all the counties in a country) it is difficult to achieve explicit cross-market variation – one would 
need to use data from many different countries in the same regression.  Local attributes that differ with the 
individual (like proximity to one’s birth location), however, provide the same effective source of variation 
in the choice set (for the purposes of identification) and can do so in a single cross-section of data. 
 



 7

incomes.  From these data, we can impute the income each individual would earn in 
every location with a series of location-specific regressions of incomes on a set of 
individual attributes s that contain k as a subset: 
 

(12) 

ln , , , , , , ,

, , , , , ,

, , , , , ,

I WHITE MALE

AGE HSDROP HSGRAD

SOMECOLL COLLGRAD

i j k j WHITE j i k MALE j i k

AGE j i k HSDROP j i k HSGRAD j i k

SOMECOLL j i k COLLGRAD j i k i j k
I

= + + +

> + +

+ + +
>

α α α

α α α

α α ε

0

60 60  

 
 
We can then split Ii,j,k into a type-specific component fitted with the output of these 

regressions ( $
,I j s ) and an idiosyncratic error (εi,j,k

I).  The resulting indirect utility function 

for individual i (type k ⊂ s) in location j can be written as: 
 

(13) ln ln $
, , , , , , , , , , , , , ,V I d di j k I k j s M k i j k

M
M k i j k

M
j k I k i j k

I= − − + +β β β θ β ε1
1

2
2  

 
Owing to its computational tractability, the conditional logit model conveniently 

describes the household’s indirect utility maximizing choice of location.  εi j k
I
, ,  is 

therefore assumed to be distributed i.i.d. Type-I Extreme Value.  The familiar 
Independence of Irrelevant Alternatives property associated with this distributional 
assumption holds within types, but not in the aggregate, further motivating a richer type 
specification in model extensions.  The parameters of the conditional logit model are only 

identified relative to the variance of εi j k
I
, , .  We therefore divide through the log indirect 

utility function by βI k,  (i.e., a monotonic transformation that does not affect marginal 

rates of substitution), yielding: 
 

(14) ln
~

ln $ ~ ~ ~
, , , , , , , , , , , ,V I d di j k j s M k i j k

M
M k i j k

M
j k i j k

I= − − + +β β θ ε1
1

2
2  

 

where, for example, 
~

,
,

,
β β

βM k
M k

I k1
1= .  This implies the following probability that a type-k 

individual will choose to reside in location j: 
 

(15) P(lnV V l j
e

e
i j k i l k

I d d

I d d

q

J

j s M k i j k
M

M k i j k
M

j k

q s M k i q k
M

M k i q k
M

q k

~
ln

~
), , , ,

ln $ ~ ~ ~

ln $ ~ ~ ~

, , , , , , , ,

, , , , , , , ,

≥ ∀ ≠ =
− − +

− − +

=
∑

β β θ

β β θ

1
1

2
2

1
1

2
2

1

 

 
With the number of type-k individuals (Nk) sufficiently large to rule-out integer problems, 
their equilibrium population in location j will be given by: 
 

(16) pop N P(lnV V l jj k k i j k i l k, , , , ,

~
ln

~
)= ≥ ∀ ≠  

 
and the share of the type-k population in location j is: 
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(17) s
pop

pop
j k

j k

q k
q

J,

,

,

=

=
∑

1

 

 

 The parameter vector {
~

,
~

,
~

}, ,β βM k M k k1 2 Θ  can then be recovered by maximizing the 

type-specific likelihood function: 
 

(18) L P(lnV V l jk M k M k k i j k
i k

i l k
i j k(

~
,
~

,
~

) [
~

ln
~

)], , , , , ,
, ,β β χ

1 2 Θ = ≥ ∀ ≠
∈

∏  

 
where χi,j,k = 1 if household i chooses location j ( = 0 otherwise).  In practice, when the 

choice-set is large (as in the application we consider here), estimating the full vector 
~Θk  

by maximum likelihood can be computationally prohibitive.  Berry (1994) provides a 
computational algorithm whereby these values are imputed indirectly.6 
 

 Having estimated the vector of parameters {
~

,
~

,
~

}, ,β βM k M k k1 2 Θ , the remaining 

preference parameters can be recovered by decomposing the local fixed effects 
~Θk  into 

their component parts. 
 

(19) 

~ ~ ~
ln

~ ~

~ ~ ~
ln

~ ~

~ ~ ~
ln

~ ~

, , , , ,

, , , , ,

, , , , ,

θ β ρ β ξ

θ β ρ β ξ

θ β ρ β ξ

j H j X j j

j H j X j j

j K K H K j X K j j K

B X

B X

B X

1 0 1 1 1 1

2 0 2 2 2 2

0

= − + +

= − + +

= − + +

M
 

 
In practice, (19) represents a K-dimensional system of regression equations, where the 

unobserved local attributes 
~

,ξj k  serve as regression errors.  A pervasive problem in 

hedonic analyses is that these unobservable local attributes are likely correlated with the 
observable attributes Xj, leading to omitted variables bias in the estimation of this system.  
This is a difficult problem to correct, and we resort to panel data for the solution.  In 

particular, we can recover different sets of 
~Θk  using micro-data from the 1990 and 2000 

                                                 
6 A contraction mapping based on equations (16) and (17) can be used to generate values of ~

Θk
 that match 

observed to predicted population shares given a vector of values for the remaining parameters 

{
~

,
~

}, ,β βM k M k1 2
.  The algorithm (i) guesses at a value of these two parameters, (ii) calculates the 

corresponding vector ~
Θk

, (iii) calculates the likelihood for the full vector of parameters, and (iv) selects 

new values of {
~

,
~

}, ,β βM k M k1 2
 that increase the likelihood function.  The procedure repeats until the 

likelihood function is maximized. 
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US population censuses.  We can then estimate the effect of PM on utility from a system 
of differenced regressions.7 
 

(20)  

∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆

~ ~ ~
ln

~

~ ~ ~
ln

~

~ ~ ~
ln

~

, , , , ,

, , , , ,

, , , , ,

θ β β ρ β

θ β β ρ β

θ β β ρ β

θ

θ

θ

j H j PM j j

j H j PM j j

j K K H K j PM K j j K

PM u

PM u

PM u

1 1 1 1 1

2 2 2 2 2

= − + +

= − + +

= − + +

M
 

 

where 
~

,βθ k  is included to account for differences in the arbitrary normalizations 
undertaken in recovering the vector of fixed effects in each year (as well as the average of 
any other factors that change over the course of the 1990’s), and uj,k is the time varying 

component of the unobservables 
~

,ξj k .  Because one might still be concerned about the 

potential for correlation between uj,k and ∆PMj,
8 we are currently working on approaches 

to instrument for the latter with the average change in particulate matter in nearby 
locations over the same time period (∆PM-j).  Scientific evidence suggests that a great 
deal of the air pollution (both PM and ozone) in a city is the result of polluting activities 
hundreds of miles away, meaning that pollution concentrations in other cities –j should be 
good predictors of pollution in city j, while not being caused by uj,k.

9  Similar concerns, 
also requiring instrumental variables solutions, might be raised regarding ∆lnρj. 
 
 With these estimates, we are now in a position to calculate the individual’s 
marginal willingness to pay for a marginal reduction in PM pollution.  Typically, this 
takes the form of a marginal rate of substitution – i.e., the amount of numeraire 
commodity the household would be willing to forego in exchange for a one-unit increase 
in PM while remaining at the same level of utility: 
 

(21) 

∂
∂

∂
∂

β

V
PM

V
I

I

i j k

j

i j k

i j k

PM k i j k

, ,

, ,

, ,

, , ,

~
=  

  

Because we expect 
~

,βPM k  < 0, this expression should take on a negative value (i.e., a 
marginal willingness to pay to avoid a marginal increase in PM).  We now derive the 

                                                 
7 Note that, while we assume that other local attributes Xj are held constant, we have accounted for changes 
over the decade of the 1990’s in the spatial distribution of both incomes and prices of housing.  This should 
control for many of the most important non-pollution changes in each location over the time period. 
8 Suppose, for example, that uj,k includes the effects of an economic recession that hits location j.  While 
these are generally undesirable, they may also be correlated with reductions in PM pollution from reduced 
economic activity, biasing down the estimate of ~

,βP M k
. 

9 In work currently underway, we are exploring alternative instrumenting strategies for PM concentrations.  
These are further described in the conclusion. 
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comparable expression associated with the traditional wage-hedonic technique, which is 
based on the underlying assumption of perfect mobility. 
 
 
3.  Model: Wage-Hedonics 
 
 The typical wage-hedonic approach to valuing amenities like clean air can be 
summarized in the context of the same behavioral equations described in the previous 
section.  We begin by writing down a more general form of the household’s constrained 
utility maximization problem: 
 
(22) max ( , , ) . . ( ) ( )

{ , , }
, , , , , ,

, ,C H X
i k i k j i k j j i k i j k j

i k i k j

U C H X s t C X H I X+ =ρ  

 
We denote ρj and Ii,j,k as functions of local attributes Xj, because prices and incomes vary 
spatially, and because the household’s spatial location decision is equivalent to choosing 
a value of Xj.  In contrast to the discrete choice model used above to describe residential 
sorting, the hedonic model assumes that the choice set is dense in Xj.  Constrained 
maximization then yields the following first-order conditions: 
 

(23) 

∂

∂
δ

∂

∂

∂ρ

∂

∂

∂
δ

∂
∂

δ ρ

U

X

I

X
H

X

U

C

U

H
X

i j k

j
i k

i j k

j
i k

j

j

i j k

i k
i k

i j k

i k
i k j j

, ,

,

, ,

,

, ,

,
,

, ,

,
, ( )

+ −








 =

− =

− =

0

0

0

 

 
where δi,k represents household i’s Lagrange multiplier on its income constraint.  The first 
and second first-order conditions together imply a function for the MRS between a local 
attribute (Xj) and numeraire consumption: 
 

(24) 

∂
∂

∂
∂

∂ρ
∂

∂
∂

U
X

U
C

H
X

I

X

i j k

j

i j k

i k

i k

j

j

i j k

j

, ,

, ,

,

,

, ,= −  

 
This is the traditional wage-hedonic measure of the marginal WTP for Xj. 
 
 Equation (3), which was used in the previous section to impute the price of 
housing services (ρj) and the housing services index (Hi), can be employed along with the 
set of income equations described in (12) to calculate (24).  First, we regress changes in 
estimates of lnρj on changes in lnPM over the course of the 1990’s (i.e., controlling for 
all other determinants that do not vary over time, but which might be correlated with PM 
in the cross-section): 
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(25) ∆ ∆ln lnρ γ ερ
ρ

j j jPM= +  

 
We use the estimated housing index parameters to impute values of Hi,k for each 
household according to H EXP hi k i k, ,[ ]= ′ ϕ .  We similarly carry out a differenced 

regression on the natural log of the intercept parameter from the MSA-specific income 
regressions described in (12) using both 1990 and 2000 data: 
 

(26) ∆ ∆ln ln, , , , ,
,α γ γ εα α

α
0 0

0
j PM j i j kPM= + +  

 
The fit of this estimation was greatly improved by including a constant (γα,0) to control 
for the average shift in log incomes (over and above that caused by changing PM) over 
the course of the 1990’s. 
 

With the parameter estimates from equations (25) and (26), we are in a position to 
calculate all of the derivatives in equation (24) and to report the WTP to avoid a marginal 
increase in PM pollution for each individual in the sample.  We do so in the following 
section after briefly describing the data. 
 
 
4.  Data and Results 
 
Data 
 
 The data used for this analysis come from two sources: (i) the 1% and 5% micro 
data samples of the 1990 and 2000 US Population Censuses, respectively, and (ii) EPA 
pollution monitoring data.  The census data are publicly available at 
http://www.ipums.org, and describe attributes of the household head along with the 
household’s composition.  We treat the household head as the decision-maker, and focus 
on his/her attributes, along with those of the dwelling in which the household resides.  
Table 3 describes the key census variables used in the analysis.  Households are included 
if residing in one of 276 MSA’s that we use as our choice set.  We calculate migration 
variables from data describing the household’s current state of residence (STATE) and its 
state of birth (BPL).  Regional definitions are the same as those used in Table 1. 
 
 The EPA’s pollution monitoring data were taken from the 1999 National Air 
Quality and Emissions Trends Report. [US EPA (2001)]  These data describe 
concentrations of PM10, SO2,  O3, NO2, CO, and Pb for each MSA for the years 1990 – 
1999.  Many pollutants are missing for many cities, but PM10 has by far the broadest 
coverage – i.e., 169 of the census MSA’s for the full time-period.  Moreover PM10 
concentrations are reported both in average annual concentrations and 90th percentiles of 
the distribution of highest second maximum 24-hour concentration.  We use the latter.  
This set of 169 cities acts as our sample for all of the second-stage regressions in which 
differences in lnPM concentrations are used as the explanatory variable.  Figure 1 



 12

describes the minimum, maximum, 25th and 75th percentiles, and median concentration 
each year for this sample of cities between 1990 and 1999. 
 
 
Estimation Results 
 
 We first carry-out the income and housing price regressions described in 
equations (3) and (12) for each year of census data (using the full 1% and 5% samples, 
respectively).  Table 4 summarizes the results of 276 separate income regressions.  Table 
5 reports the results of the housing index regressions (i.e., ownership premium and 
housing index parameters), and Table 6 lists the top and bottom five MSA’s in each year 
in terms of their prices of housing services.  Results are as expected, with an income 
premium evident for Whites, males, those under the age of 60 (i.e., not retired), and for 
those with more education.  Bigger, newer houses yield more housing services, as do 
houses on larger plots and with complete kitchen and plumbing facilities.  An inspection 
of the five most and least expensive cities in the US, in terms of the price of housing 
services, corresponds to conventional wisdom. 
 
 We now come the estimation of the mobility cost parameters underlying the 
residential sorting model described in Section 2.  If preferences are stable over time, we 

should estimate a single set of behavioral parameters {
~

,
~

}, ,β βM k M k1 2  for both years 1990 

and 2000.  Ideally, this would be done by pooling the data and imposing parameter 
restrictions across years.  In the current application, we use only data from the 2000 
census to estimate these parameters, and then impose their values on the 1990 data in 

recovering estimates of 
~Θk  for that year.  Table 7 reports the results of the first stage 

maximum likelihood estimation of the utility function parameters based on the 2000 data. 
Estimates are statistically significant and have the expected sign – i.e., increasing 
migration distance is increasingly undesirable (although at a decreasing rate). 
 

For the current application, we are primarily interested in the remaining first-stage 

parameter estimates – the vector of local fixed effects 
~Θk , separately recovered for each 

year.  For the sake of brevity, we do not report all of these estimates, but instead go 

straight to the regression of the change in 
~Θk  on the change in PM concentration and 

lnρj.  Results are reported in the first six rows of Table 8, and show evidence of disutility 
from increasing PM concentrations for both the group of high school dropouts and 

graduates (
~

,βPM HS ) and those with some college training and college graduates 

(
~

,βPM COLL ).   The remaining three rows of Table 8 report the results of regressions 

describing the effect of changing PM concentrations on the price of housing services 
(lnρj) and on the intercept of the location-specific income equations (α0,j).  
Corresponding to the predictions of wage-hedonic theory, the price of housing services 
falls with increasing PM concentrations, while the effect of PM on income is positive.  
Several of the estimation results are, however, not overwhelmingly statistically 

significant.  The two least significant parameters, 
~

,βPM COLL  and γα,PM, have p-values of 
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0.238 and 0.216 respectively.  The most direct solution to this problem would be to 
expand the coverage of the PM data beyond the relatively small set of 169 cities that we 
are currently using, to incorporate pollution data for more years (i.e., 1980-2000), or to 
switch to a completely different pollutant with broader coverage.  These estimates may 
also improve, however, with instruments for ∆PM and ∆lnρ, as the likely direction of the 
bias from failing to instrument for these variables is towards zero. 
 
 For the sake of comparison, we also include in Table 8 the second-stage 
parameter estimates based on 2000 cross-sectional data (i.e., not controlling for time 
invariant unobservable local attributes that may be correlated with PM).  Because PM 
generally accompanies economic activity, which people find valuable but for which we 
do not have good descriptive data, the usual bias in this sort of regression is to understate 
the costs of pollution.  Indeed, using cross-sectional data, the sorting model yields 
positive values for PM and the costs implied by the wage-hedonic model are much 
smaller.  Using data from 1990 and 2000 to control for time invariant unobservables 
therefore appears to handle for much of this source of bias, but continued efforts towards 
instruments for ∆lnPM are merited. 
 
 
Marginal Willingness to Pay 

 
We now consider the aggregation of wage and housing price effects in Table 9, 

where we report average WTP for a marginal increase in PM for a sample of 7580 
households drawn randomly from the 2000 Census.  WTP’s are calculated both according 
to the wage-hedonic model as well as according to the residential sorting model.  We 
have tried to minimize the differences in the underlying structures of the two models, so 
that differences in valuations can be attributed primarily to the fact that the wage-hedonic 
model fails to account for the disutility of migration.  Note, however, that the wage 
hedonic estimates might also be biased if the choice set is sparse – i.e., households are 
not able to zero the derivative of their utility with respect to local attributes Xj.  The 
sorting model, using discrete-choice apparatus, relaxes this assumption and assumes only 
that households choose the best location from the set of available options 
 
 Results suggest that the wage-hedonic technique consistently understates 
households’ WTP to avoid a marginal increase in PM (treating the household sorting 
model as correct).  Across all household types, the wage-hedonic model predicts that 
households would be willing to pay 0.25% of their income to avoid a 1-unit increase in 
PM (elasticity = 0.10), while the sorting model predicts a WTP of 0.38% (elasticity = 
0.16).  Table 10 reports the results of three regressions that describe how the tendency for 
the wage-hedonic technique to understate WTP varies according to type.  If the 
hypothesized role of mobility costs is correct, we should expect to see this difference be 
greater for more mobility-constrained groups.  The regressions in Table 10 use 
ln(WTPwage-hedonic) – ln(WTPresidential-sorting) as the dependent variable.  Results imply that 
WTPwage-hedonic is, on average, 94% of WTPresidential-sorting for those with college degrees or 
some college training, while it is only 45% for high school graduates and dropouts.  This 
difference is, moreover, highly statistically significant.  Similarly, for races other than 
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Blacks, WTPwage-hedonics is, on average, 70% of WTPhousehold-sorting, while for Blacks, it is 
65%.  Differences for female household heads are much smaller, but still statistically 
significant.  These results cast doubt on the ability of traditional wage-hedonic estimates 
to provide adequate measurements of benefits for use in determining the efficiency of 
environmental policies, and raise even greater concerns about their ability to adequately 
describe the distributional consequences of pollution abatement. 
 
 
5.  Conclusions and Extensions  
 
 Uninhibited mobility is a crucial assumption underlying hedonic non-market 
valuation techniques.  These techniques may therefore be subject to biases when 
decision-makers face constraints in their choice of location, housing unit, etc....  
Moreover, when those constraints differ with socio-economic status, the biases they 
induce will vary along those lines as well.  This paper demonstrates that there is a strong 
tendency for certain groups (especially the less educated and minorities) to exhibit less 
geographic mobility over the course of their lives.  With a simple model of residential 
sorting that incorporates mobility costs, the paper then shows that traditional wage-
hedonic models have a tendency to understate willingness-to-pay, particularly for those 
immobile groups, and that this problem can be corrected by modeling the full sorting 
process, including mobility constraints.  This has important implications for the way in 
which we evaluate the efficiency and distributional consequences of pollution abatement 
policies. 
 
 The most obvious ways to extend the analysis in this paper are to allow for a 
greater degree of heterogeneity in the utility function specification, and to efficiently use 
data from both the 1990 and 2000 censuses in recovering first-stage utility function 
parameters in the sorting model.  Particularly important for the former would be 
differentiating households based on factors that put them more or less at risk from PM 
pollution (e.g., the presence of young children or elderly adults).  US Census data readily 
allow for the inclusion of young children in the specification of household type.  We also 
plan to explore a number of alternative strategies for instrumenting for changes in 
particulate matter concentration and in the price of housing services.10  The choice of 
instrument can have important implications for estimated parameter values, and 
subsequently, imputed WTP, so it should be made with care. 
 

                                                 
10 In addition to the approach proposed in the paper, another strategy currently being explored is to use data 
on power plants’ inputs in conjunction with atmospheric circulation models to derive an exogenous 
determinant of each MSA’s PM concentration.  This work is joint with Nat Keohane of the Yale School of 
Management. 
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Table 1 – Regional Mobility Patterns1112 
% Birth Region by Residence Region, 2000 US Census Data 

 
(a) High-School Graduates and Dropouts 

 
 New 

England 
Mid-

Atlantic 
East N. 
Central 

West N. 
Central 

South 
Atlantic 

East S. 
Central 

West S. 
Central 

Mountain  Pacific 

New 
England 

69.19 4.65 1.47 1.22 14.91 0.49 0.24 1.47 6.36 

Mid-
Atlantic 

1.39 76.19 2.51 0.32 13.27 0.32 0.96 1.66 3.37 

East N. 
Central 

0.13 1.24 78.07 1.37 8.26 0.72 2.28 3.12 4.81 

West N. 
Central 

0.55 0.74 6.84 56.01 5.18 0.55 5.36 8.87 15.90 

South 
Atlantic 

1.22 7.55 4.46 0.72 80.01 1.87 1.87 0.58 1.73 

East S. 
Central 

0.48 2.57 21.19 1.77 11.88 52.97 4.33 1.61 3.21 

West S. 
Central 

0.11 0.89 4.58 2.46 3.13 1.68 72.74 3.58 10.84 

Mountain  
 

0.38 0.76 3.05 1.91 1.91 0.76 4.20 66.79 20.23 

Pacific 
 

0.13 0.42 1.39 0.97 3.32 0.83 3.32 7.34 82.27 

 
 

(b) Some College and College Graduates 
 

 New 
England 

Mid-
Atlantic 

East N. 
Central 

West N. 
Central 

South 
Atlantic 

East S. 
Central 

West S. 
Central 

Mountain  Pacific 

New 
England 

51.19 6.32 3.36 0.99 18.77 0.59 1.78 3.16 13.83 

Mid-
Atlantic 

3.09 59.14 4.87 0.89 18.81 0.63 1.83 3.20 7.54 

East N. 
Central 

1.59 2.52 60.45 3.06 11.21 1.86 3.61 5.25 10.45 

West N. 
Central 

0.55 1.37 8.79 44.64 9.07 1.10 6.18 10.71 17.58 

South 
Atlantic 

1.25 6.36 4.48 0.81 73.14 2.51 3.49 2.24 5.73 

East S. 
Central 

0.21 2.53 14.32 1.89 15.58 52.21 5.47 2.11 5.68 

West S. 
Central 

0.46 0.93 2.78 2.20 7.77 1.51 68.10 4.29 11.95 

Mountain  
 

1.10 2.19 3.29 2.19 2.47 2.19 6.85 58.08 21.64 

Pacific 
 

0.71 1.69 2.31 0.80 5.33 0.71 3.11 6.93 78.42 

                                                 
11 Rows indicate birth regions while columns denote regions of current residence.  The first element of 
panel (a) indicates that 69.19% of high school dropout and graduate household heads born in New England 
are found living in New England in 2000. 
12 Regional Definitions: (1) New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode 
Island, Vermont), (2) Middle Atlantic (New Jersey, New York, Pennsylvania), (3) East North Central 
(Illinois, Indiana, Michigan, Ohio, Wisconsin), (4) West North Central (Iowa, Kansas, Minnesota, 
Missouri, Nebraska, South Dakota, North Dakota), (5) South Atlantic (Delaware, DC, Florida, Georgia, 
Maryland, North Carolina, South Carolina, Virginia, West Virginia), (6) East South Central (Alabama, 
Kentucky, Mississippi, Tennessee), (7) West South Central (Arkansas, Louisiana, Oklahoma, Texas), (8) 
Mountain (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah), and (9) Pacific (Alaska, 
California, Hawaii, Oregon, Washington). 
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Table 2 – Determinants of Mobility, Probit Estimation13 
N = 10000, R2 = 0.109 

 
Variable Estimate t-statistic 
Constant -1.332 -15.36 
Northeast 0.654 16.75 
South 0.183 5.19 
Mid-West 0.720 18.06 
High School Dropout 0.206 5.01 
High School Graduate 0.453 12.55 
Some College 0.309 8.96 
White 0.964 12.33 
Black 0.983 11.48 
Other 0.308 3.26 
Female 0.076 2.75 
Age -0.005 -5.89 

                                                 
13 Dependent variable = 1 if household is found in state of household head’s birth 
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Table 3 – Data Summary 
 
Variable Mean Description 
HSDROP 0.175 High school dropout 
HS 0.249 High school graduate 
SOMECOLL 0.291 Completed some college (not four year degree) 
COLL 0.286 College graduate 
WHITE 0.770 Race = White 
BLACK 0.125 Race = Black 
ASIAN 0.038 Race = Asian (Chinese, Japanese, other Asian or Pacific Islander) 
OTHER 0.063 American Indian and other racial categories 
AGE 49.36 Age of the household head 
MALE 0.651 Sex of the household head (1 = MALE, 0 = FEMALE) 
INCTOT 42305 Total income from employment 
ROOM2 0.047 2 rooms in dwelling 
ROOM3 0.096 3 rooms in dwelling 
ROOM4 0.148 4 rooms in dwelling 
ROOM5 0.192 5 rooms in dwelling 
ROOM6 0.194 6 rooms in dwelling 
ROOM7 0.128 7 rooms in dwelling 
ROOM8 0.088 8 rooms in dwelling 
ROOM9 0.086 9+ rooms in dwelling 
BED2 0.130 1 bedroom dwelling 
BED3 0.268 2 bedroom dwelling 
BED4 0.385 3 bedroom dwelling 
BED5 0.151 4 bedroom dwelling 
BED6 0.035 5+ bedroom dwelling 
YR1 0.018 0-1 year-old dwelling 
YR2 0.070 2-5 year-old dwelling 
YR3 0.070 6-10 year-old dwelling 
YR4 0.157 11-20 year-old dwelling 
YR5 0.176 21-30 year-old dwelling 
YR6 0.147 31-40 year-old dwelling 
YR7 0.138 41-50 year-old dwelling 
UNITS2 0.001 Boat, tent, van, other 
UNITS3 0.590 1 family house, detached 
UNITS4 0.066 1 family house, attached 
UNITS5 0.046 2 family building 
UNITS6 0.048 3-4 family building 
UNITS7 0.045 5-9 family building 
UNITS8 0.043 10-19 family building 
UNITS9 0.035 20-49 family building 
UNITS10 0.058 50+ family building 
ACRE1_9 0.104 Acreage of property 1-9 acres 
ACRE10 0.024 Acreage of property 10+ acres 
NOKITCH 0.007 Dwelling does not contain complete kitchen facilities 
NOPLUMB 0.005 Dwelling does not contain complete plumbing facilities 
OWNER 0.661 Dwelling owned 
RENTER 0.339 Dwelling Rented 
MSA_ID  Metropolitan Statistical Area identification number 
BLP  Birth state 
STATE  Current state of residence 
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Table 4 – Summary of Income Regressions 

 
1990 2000  

 
Variable 

Average 
Parameter 
Estimate 

Standard  
Deviation of 

Estimates 

Average 
t-statistic 

Average 
Parameter 
Estimate 

Standard  
Deviation of 

Estimates 

Average 
t-statistic 

Constant 8.688 0.300 107.09 9.081 0.172 275.68 
MALE 0.594 0.095 13.24 0.521 0.060 25.91 

AGE>60 -0.135 0.117 -3.17 -0.099 0.112 -5.72 
WHITE 0.328 0.221 4.82 0.297 0.090 11.43 

HS 0.377 0.108 6.51 0.361 0.069 12.20 
SOMECOLL 0.517 0.160 8.91 0.533 0.126 18.83 
COLLGRAD 0.935 0.167 14.80 0.986 0.126 32.76 
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Table 5 – Housing Services Index Parameters 
 

1990 (N=638159) 2000 (N=3674433)  
Estimate t-statistic Estimate t-statistic 

CONSTANT 4.035 477.04 4.982 1504.54 
OWNER 5.506 2201.95 5.328 4547.26 
ROOM2 0.033 2.50 0.096 19.17 
ROOM3 0.058 4.04 0.115 22.18 
ROOM4 0.123 8.32 0.126 23.28 
ROOM5 0.217 14.51 0.208 37.57 
ROOM6 0.362 23.85 0.347 61.66 
ROOM7 0.524 34.16 0.495 86.81 
ROOM8 0.665 42.73 0.634 109.32 
ROOM9 0.857 54.55 0.855 145.26 
BED2 0.056 4.54 0.029 6.56 
BED3 0.124 9.41 0.107 22.67 
BED4 0.135 10.01 0.155 31.90 
BED5 0.162 11.68 0.221 43.95 
BED6 0.168 11.42 0.281 51.12 
YR1 0.534 79.52 0.479 161.47 
YR2 0.514 139.19 0.428 238.24 
YR3 0.384 104.74 0.363 206.21 
YR4 0.287 97.37 0.250 179.26 
YR5 0.209 69.61 0.129 97.76 
YR6 0.138 45.88 0.092 67.54 
YR7 0.056 15.93 0.064 47.10 
UNITS2 1.018 103.35 -0.449 -34.18 
UNITS3 1.154 261.36 0.748 460.14 
UNITS4 1.027 186.73 0.628 281.46 
UNITS5 1.283 217.15 0.873 344.37 
UNITS6 1.310 220.37 0.891 356.72 
UNITS7 1.297 217.80 0.886 351.96 
UNITS8 1.347 224.03 0.917 348.26 
UNITS9 1.304 204.79 0.842 302.06 
UNITS10 1.267 203.63 0.873 351.96 
ACRE1_9 0.086 28.99 0.164 120.88 
ACRE10 0.124 24.75 0.252 88.90 
NOKITCH -0.091 -7.53 -0.041 -7.38 
NOPLUMB -0.448 -36.09 -0.258 -44.53 
R2 0.942 0.926 
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Table 6 – Prices of Housing Services 
 

(a) 1990 
Most Expensive Least Expensive 

MSA Name ρj MSA Name ρj 
Ventura, CA 2.14 Johnstown, PA 0.43 
Santa Barbara-Santa Maria, CA 2.23 McAllen-Mission, TX 0.45 
Stamford-Norwalk, CT 2.34 Anniston, AL 0.45 
San Jose, CA 2.46 Terre Haute, IN 0.46 
San Francisco, CA 2.64 Florence, AL 0.47 
 

(b) 2000 
Most Expensive Least Expensive 

MSA Name ρj MSA Name ρj 
Los Angeles-Long Beach, CA 1.86 McAllen-Mission, TX 0.44 
Santa Barbara-Santa Maria, CA 2.31 Johnstown, PA 0.46 
Stamford-Norwalk, CT 2.35 Dothan, AL 0.47 
San Francisco, CA 2.77 Brownsville-San Benito, TX 0.47 
San Jose, CA 2.80 Gadsden, AL 0.49 

 
 
 

Table 7 – First-Stage Maximum Likelihood Estimates 
 

 High School Dropouts 
 and Graduates 

Some College and 
College Graduates 

 Estimate Standard Error Estimate Standard Error 
~

,βM k1
 3.250 0.040 2.624 0.036 

~
,βM k2

 1.358 0.042 1.329 0.035 

 
 
 

Table 8 – Results of Difference Regressions for the Impact of 
∆PM and ∆lnρ on Change in Parameter Estimates  

 
 Difference Regressions 2000 Cross-Section 
Parameter Estimate Standard Error14 Estimate Standard Error 
βθ,HS 0.0247 0.041 -0.9573 0.268 

βH,HS 0.2227 0.197 1.2571 0.261 

βPM,HS -5.364 x 10-3 2.51 x 10-3 0.0245 6.39 x 10-3 

β  θ,COLL 0.3350 0.033 -0.4059 0.278 

βH,COLL 0.1483 0.184 1.6747 0.263 

βPM,COLL -2.621 x 10-3 2.22 x 10-3 0.0173 6.63 x 10-3 

γρ -0.1370 0.048 -0.0431 6.46 x 10-3 

γα,0 0.3871 0.024 8.9946 0.147 

γα,PM 0.1017 0.082 0.0268 0.040 

                                                 
14  All standard errors are White heteroskedastic-consistent. 
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Table 9 – Average Willingness-to-Pay for Marginal Increase in PM15 

 
 
 

Wage-Hedonic Model 
 
 

 
 

Residential Sorting Model 

 

WTP % Income Elasticity WTP % Income Elasticity 
Full Sample 109.02 0.25 0.10 145.51 0.38 0.16 
HSDROP 54.09 0.25 0.10 117.58 0.54 0.23 
HSGRAD 78.75 0.25 0.10 169.46 0.54 0.23 

SOMECOLL 100.04 0.25 0.10 106.22 0.26 0.11 
COLLGRAD 174.39 0.26 0.10 179.46 0.26 0.11 

WHITE 119.69 0.25 0.10 156.86 0.37 0.16 
BLACK 68.50 0.25 0.10 100.71 0.40 0.17 

FEMALE 73.23 0.26 0.10 99.82 0.39 0.16 
 
 
 
 
 
 

Table 10 – Differences in WTP by Type 
Dependent Variable = ln(WTPwage-hedonic) – ln(WTPresidential-sorting), N=7580 

 

                                                 
15 Based on a random sample of 7580 households taken from the 5% sample of the 2000 US Population 
Census. 

 
Specification 

 
Variable 

 
Estimate 

 
Standard Error 

Wage-Hedonic WTP as a % of 
Residential Sorting WTP 

Constant -0.061 3.74 x 10-3 94.1 1 
HSDROP, HS -0.730 5.78 x 10-3 45.3 
Constant -0.359 5.37 x 10-3 69.8 2 
BLACK -0.066 0.015 65.4 
Constant -0.362 6.21 x 10-3 69.6 3 
FEMALE -0.014 -0.011 68.7 


