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[1] We propose a method of analyzing spatiotemporal data by decomposition into
deterministic nonparametric functions of time and space, linear functions of other
covariates, and a random component that is spatially, though not temporally, correlated.
The resulting model is used for spatial interpolation and especially for estimation of a
spatially dependent temporal average. The results are applied to part of the PM2.5 network
established by the U.S. Environmental Protection Agency, covering three southeastern
U.S. states. A novel feature of the analysis is a variant of the expectation-maximization
algorithm to account for missing data. The results show, among other things, that a
substantial part of the region is in violation of the proposed long-term average standard for
PM2.5. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345,
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1. Introduction

[2] The classical theory of spatial statistics (or geostatis-
tics), represented by numerous books such as those of
Cressie [1993], Chilès and Delfiner [1999], and Stein
[1999], is concerned primarily with the case of a single
realization from a spatially correlated stochastic process.
The more recent theory of spatiotemporal processes, repre-
sented by the present special section, extends this to
processes correlated in both time and space. In between
these extremes lie space-time processes whose random
component is spatially, but not temporally, correlated so
that there are independent replications of a spatial process.
We believe that processes of this type are appropriate for
many forms of geophysical data, but they also pose meth-
odological problems in their own right. One of these, which
is one of the principal foci of the present paper, is the
treatment of missing data.
[3] The application that has motivated this paper is the

analysis of PM2.5 data (particulate matter of aerodynamic
diameter 2.5 mm or less) from a network set up by the U.S.
Environmental Protection Agency (EPA). Under the Clean
Air Act and amendments, the EPA is responsible for
maintaining standards on air pollutants that are ‘‘requisite
to protect human health’’ with ‘‘an adequate margin of
safety.’’ Among the currently regulated pollutants is PM10

(particulate matter of aerodynamic diameter 10 mm or less).

Under a new standard, proposed in 1997 but not yet
implemented, this is extended to include PM2.5. Specifi-
cally, the proposed standard requires that (1) the 3-year
average of the 98th percentile of PM2.5 should not exceed
65 mg m�3 and that (2) the arithmetic mean (over all
monitors within a given region) of the 3-year average of
daily PM2.5 levels should not exceed 15 mg m�3. Further
information about the background of these standards and the
epidemiological basis behind them is given by Cox [2000].
[4] In 1999, the EPA established a network of some

800 PM2.5 monitors to supplement the much longer estab-
lished PM10 monitoring network. This new network has
been used to gather information about the spatial distribu-
tion of PM2.5, which is needed to help design a long-term
PM2.5 network and which can also be used to answer other
research questions, such as whether spatial interpolation
could help in determining individual exposure to air pollu-
tion [National Research Council, 1998, p. 96]. Satisfactory
answers to this and related questions, however, require
methodological research on spatiotemporal analysis of
PM2.5 data.
[5] As a first step to answering these questions, this paper

presents a spatiotemporal analysis of part of the 1999 data,
from the three states of North Carolina, South Carolina, and
Georgia, within which there were 74 monitors from which
we calculated weekly PM2.5 means. Preliminary statistical
analyses suggested that the PM2.5 field could be represented
as the sum of nonparametric spatial and temporal trends,
together with a random component that is spatially, but not
temporally, correlated (in other words, the 1-week time
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aggregation interval is long enough for successive observa-
tions to be uncorrelated). By using geostatistical methods to
interpolate the random component, we are able to estimate
the weekly average PM2.5 at any point in the region and
hence to estimate derived quantities, such as the long-term
average, at any site. As with any statistical interpolation
procedure, a major question of interest is the uncertainty of
the estimation procedure.
[6] A particular methodological issue raised by our anal-

ysis is how to deal with the rather high proportion of missing
data (�28%) in the context of a maximum-likelihood fitting
of a spatial or spatiotemporal model. Two methods are
outlined to deal with this. For a pure spatial model without
any temporal dependence it is possible to calculate an exact
likelihood function by computing and inverting the spatial
covariance matrix for each week’s data; typically, the spatial
covariance matrix is different for each week because the
available monitoring network is different for each week.
This is feasible but computationally inefficient and, even
conceptually, may not work for a truly spatiotemporal model
that includes temporal as well as spatial correlations. The
alternative method, which is, in principle, applicable to any
spatiotemporal model for the data, uses the expectation-
maximization (EM) algorithm to account for the conditional
distributions of missing observations. We give particular
attention to this second method and variants known as the
generalized EM (GEM) and the expectation-conditional
maximization (ECM) algorithms, and we show how it may
be used to calculate approximate maximum likelihood
estimators for the spatial model under consideration.
[7] The structure of the paper is as follows. Section 2

describes the data and poses the research questions. Section
3 presents the semiparametric model that accounts for trends
in space and time as well as for the residual spatial covari-
ance. Section 4 describes the principle of the EM algorithm
and shows how it can be applied in our setting. Section 5
presents the estimation results, and Section 6 concludes.

2. Data Used in This Study

[8] The data used in this research are a part of the EPA
data set for PM2.5, collected for 49 weeks during 1999. The
observation frequencies generally vary from site to site:
Most sites have observations recorded once in 3 days, but
some have daily records, and others have much sparser
records. Information about the monitors includes geographic
position (latitude and longitude); urbanization classified as
rural, urban, or suburban; land use classified as agricultural,
industrial, commercial, residential, or forest; altitude of the
monitor; the measurement method; and some other technical
information.
[9] We only used a fraction of this rich data set related to

North Carolina, South Carolina, and Georgia. There were
74 monitors across those states (23 in Georgia, 35 in North
Carolina, 16 in South Carolina), mapped in Figure 1. No
data are available for Georgia in the fourth quarter of the
year. The data were further aggregated into weekly aver-
ages: For each week and for each monitoring station a
suitably weighted average is computed based on all readings
available during that week. There is a possibility of some
bias by this method because PM2.5 values are typically

lower on weekends than on weekdays, but we ignore that
aspect here.
[10] We ended up with 2613 observations. The proportion

of missing data is rather high: Comparing the above figure
with 74 � 49 = 3626 observations that should be in the
complete data set, almost 28% of the data are missing.

3. Building a Spatiotemporal Model

[11] This section presents an initial analysis of the data
described in section 2, leading up to the detailed specifica-
tion of the model shown in equation (5). Then, section 4
describes the detailed approach to fitting that model.

3.1. Transforming the Raw Data

[12] Initial inspection of the data shows that both the
mean and the variance of the PM2.5 data tend to be higher in
Georgia than in the other two states. It would be desirable to
find a variance-stabilizing transformation, i.e., one that
makes the variance approximately constant across all sta-
tions. Two possibilities are (1) a square root transformation
and (2) a logarithmic transformation. It would be possible to
consider more general families of transformations, such as
the Box-Cox transformation y ! (yl � 1)/l, but we shall
confine ourselves here to the square root and logarithmic
transforms.
[13] Figure 2 plots the variance for each station against

the mean for each station, using the original PM2.5 data
(Figure 2a), the square root of PM2.5 (Figure 2b), and the
natural logarithm of PM2.5 (Figure 2c). It is obvious that
Figure 2a shows an increase of variance with the mean. The
other two plots, Figures 2b and 2c, both show approximate
constancy of variances, with the exception of two stations
that have much larger variances than the remainder. These
two stations are more prominent outliers in Figure 2c than in
Figure 2b, and this gives some reason to prefer Figure 2b,
i.e., the square root transform.
[14] As noted originally by Box and Cox [1964], if differ-

ent data transformations are to be compared in terms of
standard statistical criteria such as residual sums of squares,
it is necessary first to rescale the data. In the case of the square
root and logarithmic transformations, this means replacing yi
with either C1

ffiffiffiffi
yi

p
or C2log yi, where C1 = 2

ffiffiffi
_y

p
or C2 = _y,

Figure 1. Map of 74 monitors.
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respectively. Here _y = (�i=1
n yi)

1/n is the geometric mean of the
observations y1, .., yn. These transformations will be used in
subsequent comparisons.

3.2. Time Trend

[15] Since we have only 1 year of observations, it is not
possible to do a detailed decomposition into seasonal and
long-term trends; all the variation must be assumed seasonal
in origin. It might be possible to ‘‘explain’’ some of the
seasonal variation by including meteorological information
at individual sites, as has been done, for example, in a
similar context by Holland et al. [2000]. In another paper
looking at PM10 in the Pittsburgh, Pennsylvania, area,
Daniels et al. [2001] argued that if meteorological effects
are properly accounted for, there is then no need to model
any spatial dependence, but it would be very surprising if
such a conclusion were to hold in general for air pollution
data sets. In the present analysis, no attempt has been made
to incorporate meteorological effects, but we consider two
simple nonparametric approaches: (1) model each weekly
mean as a separate ‘‘week effect,’’ as in the standard
analysis of variance; and (2) use a smooth function to
represent the weekly trend over the whole year.
[16] The latter approach is implemented using B splines

[Green and Silverman, 1994], in which an unknown smooth

function is approximated as the weighted sum of the basis
functions:

B xð Þ ¼

3 xj j3�6x2 þ 4

6
� 1 � x � 1

2� xj jð Þ3

6
; 1 < xj j � 2

0 2 < xj j

8>>>>>><
>>>>>>:

ð1Þ

f̂ tð Þ ¼ a0 þ
XK
k¼1

akdk tð Þ; t 2 0;T½ �; dk tð Þ ¼ B
K

T
t � Tk

K

� �	 

; ð2Þ

where t is the time index and T is the total observation time.
Coefficients a0,. . ., aK can be estimated by ordinary least
squares (OLS) or generalized least squares (GLS) regres-
sion, the latter being appropriate when the data points are
correlated. The number of basis functions K controls the
smoothness of the fitted function: The smaller is K, the
smoother the function but at the cost of less precise
agreement between the data and the fitted function.
[17] Figure 3 shows the time trend fitted by simple

weekly effects and by B splines with K = 20. Other values
of K were tried, with similar results. Figure 3a shows the

Figure 2. Variance versus mean plot for PM2.5 values at each of the 74 stations: (a) original data,
untransformed; (b) square root transform; and (c) logarithmic transform.
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result of a single time trend fitted to all the data points, with
the actual data points (all stations) overlaid on the plots.
Figures 3b–3i show the same estimated trends but with
different subsets of the data, corresponding to individual
states (Figures 3b–3d) or different land uses (Figures 3e–3i).
The results tend to confirm that there is a similar shape of
trend across all subsets of the data but with upward or
downward shifts, e.g., the values for Georgia seem clearly
above the underlying trend while those for forest areas are
clearly below. Incidentally, Figure 3d for Georgia confirms
that the overall higher means in Georgia are not merely the
result of Georgia data being unavailable during the later part
of the year, but rather that the Georgia values are generally
higher than those elsewhere.
[18] Based on these plots, we provisionally conclude that

a common time trend (represented by week effects or by B
splines) may be applied to all the stations but is shifted up or
down at each station by a constant that depends on the
location and land use of the station.

3.3. Space Trend

[19] The trend in space was also estimated nonparametri-
cally via the bivariate version of splines, known as thin plate

splines [Green and Silverman, 1994]. The basis function for
this spline evaluated at the point (x, y) is given by

� x; yð Þ ¼ r2 log r; ð3Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from the origin (i.e., the

knot of the spline). The overall spatial trend is represented
as

yx;y ¼ b0 þ b1xþ b2yþ
XJ
j¼1

bjþ2� x� x jð Þ; y� y jð Þ
� 


; ð4Þ

(x( j),y( j)) denoting the coordinates of the jth knot. Green
and Silverman [1994] take J equal to the total number of
sites (i.e., one knot per monitor) but with an additional
‘‘bending energy’’ penalty term to force some smoothness
into the fitted function. A simpler alternative, used here, is
to use J directly as a smoothing parameter; that is, we force
yx,y to be smoother by restricting the number of knots. For a
given value of J we select the knots by K means clustering
[Hartigan and Wong, 1979]: We group the 74 monitoring

Figure 3. Comparison of the fitted trend and the raw data for subpopulations: (a) all data combined;
(b) North Carolina; (c) South Carolina; (d) Georgia; (e) agricultural sites; (f ) commercial sites; (g) forest
sites; (h) industrial sites; and (i) residential sites. Plotted curves are the overall fits of the weekly effect
and the result of a 20 degrees of freedom smoothing spline.
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locations into J clusters and then take the cluster centers as
the knots of the spline. In our comparisons we have taken
J = 10, 20, 30, 40, and 50.
[20] Another part of the model that can be thought of as a

component of the spatial trend is the additive terms that
account for differences in the landscape surrounding the
observation site. These are coded as the set of four dummy
variables for the five possible land uses. The analysis of
section 3.2 suggests that we could also include a dummy
variable to denote the state in which the site lies, but this
was not used in the final analysis because it would imply,
counterintuitively, that there should be a jump shift in the
PM2.5 level at a state boundary. Instead, we rely on the thin
plate spline representation to include any spatial variation
on a statewide scale.

3.4. Comparing Regression Models

[21] Sections 3.1–3.3 suggest a variety of different
regression analyses, in which we may take any of PM2.5,ffiffiffiffiffiffiffiffiffiffiffiffi
PM2:5

p
, or log PM2.5 as the independent variable, time

trends modeled by week effects or by B splines with various
numbers of knots K, the spatial trends similarly modeled by
thin plate splines with knots, and other effects such as land
use. The simplest way to compare these different models is to
fit an OLS regression, ignoring the possible effects of spatial
and/or temporal correlation. To compare different models,
we have used the AIC and BIC criteria, defined by AIC =
n log s2 + 2p and by BIC = n log s2 + p log n, where n is
the number of data points, p is the number of regressors,
and s2 is the mean square of the residuals. Although these are
only two out of many possible variable selection criteria, they
are particularly useful in the present context given their
simplicity of computation when comparing large numbers
of models.
[22] We do not give detailed tables of regression analyses

but instead summarize our broad conclusions as follows:
(1) Of the three transformations of PM2.5 (none, square root,
or logarithmic), the square root transformations were best in
all cases where they were directly compared; (2) the weekly
trend is best modeled by a simple week effect, which gives a
better fit to the data than do any of the B spline regression
models; (3) comparing spatial trends modeled by thin
plate splines with J = 10, 20, 30, 40, and 50 knots, AIC
chooses J = 40, while BIC (which always favors a model
with a smaller number of parameters) selects J = 10; for our

subsequent analyses we have compromised between these
two conclusions and chosen J = 20; (4) modeling land use
(A, C, F, I, R) as a dummy variable always gave a
significant result; and (5) there was no evidence of any
interaction between land use and week.
[23] On the basis of these conclusions, the subsequent

analysis uses the model

yst ¼ wt þ ys þ qs þ hst; ð5Þ

where yst is the square root of the mean PM2.5 at location s
in week t; wt denotes the week effect; ys is the spatial trend
at location s (writing s = (x, y), this is given by equation (4),
a thin plate spline with 20 knots); qs is the effect due to land
use at location s; and hst is a random error. The next step is
to look for time and spatial correlations among the hst
variables, represented by the residuals when the model of
equation (5) is fitted by OLS.

3.5. Temporal Autocorrelations

[24] For each of the 74 stations the residuals hst were
viewed as a time series in t, and the first five autocorrela-
tions were computed. A standard time series technique for
the statistical significance of sample autocorrelations is to
compare them with 2/

ffiffiffiffi
T

p
, where T is the length of the time

series. This corresponds approximately to a 5% test of
significance. In the present case the value of T is different
for the different stations, but we have taken the average
value in order to make a direct comparison across all the
stations. Figure 4 shows all 74 autocorrelation plots super-
imposed, with the critical ±2/

ffiffiffiffi
T

p
values shown as horizon-

tal lines. Very few of the individual autocorrelations exceed
the critical values. From this we conclude that there is no
temporal autocorrelation among the residuals, and it is safe
to proceed with a purely spatial analysis.

3.6. Variograms

[25] For spatial data sets a common method of looking
for spatial correlation is through the variogram. Under
assumptions of stationarity and isotropy the variogram is
defined by

2g hð Þ ¼ E hs1t � hs2t
� �2n o

;

where h is the distance between two spatial locations s1
and s2. It is typically calculated by grouping the possible

Figure 4. Time-autocorrelation plots for the 74 stations with approximate 95% confidence bands.
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values of h into bins and computing one value by taking
the sample average of all (hs1t � hs2t)

2 values for which
js1 � s2j lies within a given bin. Although there are many
variants on this basic algorithm [Cressie, 1993], we stick to
this procedure here.
[26] In measuring the distance between two monitoring

stations with latitudes q1 and q2 and with longitudes f1

and f2 (converted to radians) we use the formula

Distance ¼ 12732:40 arcsin Bð Þ kmð Þ;

where

4B2 ¼ cos q1 cosf1� cos q2 cosf2ð Þ2þ cos q1 sinf1� cos q2 sinf2ð Þ2

þ sin q1 � sin q2ð Þ2:

This is the geodesic distance between two locations, treating
the Earth’s surface as that of a sphere. For plotting vario-
grams, distances were grouped into bins of width 25 km.
[27] Figure 5a shows eight variograms computed from

regression residuals hst: an overall variogram in which all
the data are combined and separate variograms for each of
the three states and each of four ‘‘seasons’’ defined by

weeks 0–11, 12–23, 24–35, and 36–49. Some features
apparent from visual inspection of these plots include:
(1) there appear to be significant differences between states
and between seasons, with the variogram for Georgia in
particular standing out as sitting above the other variograms
(i.e., intersite variances are larger in Georgia than the other
two states); (2) the variograms do not appear to be of the
traditional ‘‘nugget-range-sill’’ form [Cressie, 1993]; there
is indeed evidence of a nugget effect (i.e., a nonzero limit in
the variogram as the distance between two stations tends to
0), but there is no evidence that the variogram levels off to a
finite ‘‘sill’’ at any particular range; (3) another option is to
standardize the data prior to calculating the variogram by
normalizing the residuals at each site so that the sample
standard deviation is 1. This is done for the variograms in
Figure 5b. Although there is some indication that this helps
(e.g., the variogram for Georgia no longer stands out as
different from all the others), the general characteristics
remain the same; that is, there still appear to be significant
differences among the eight variograms plotted, and they do
not show a clear-cut sill and range.
[28] For the present analysis, although there is evidence

that the data exhibit nonconstant variances and possibly

Figure 5. Variogram plots for residuals after fitting the time trend, spatial trend, and type effects. All
data are combined, and there are separate plots by state and by season: (a) without standardizing
variances and (b) after standardizing the sample variance of residuals at each station to be 1.
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other forms of nonstationarity, we have chosen to ignore
these features, largely for reasons of computational simplic-
ity. However, for future work, and especially when trying to
extend the present three-states analysis to cover the whole
U.S., we believe that it will be important to take account of
these features.
[29] A separate issue is the functional form of variogram

that we should fit. Although many parametric variogram
functions are known [see, e.g., Cressie, 1993; Chilès and
Delfiner, 1999], most of them have a finite sill and corre-
spond to second-order stationary spatial processes. A
weaker form of stationarity is intrinsic stationarity, which
allows the possibility of infinite sill. For example, one form
of intrinsically stationary spatial process that does not
reduce to a second-order stationary process is the model

g hð Þ ¼
0 if h ¼ 0;

a q1 þ hq2
� �

if h > 0;

(
ð6Þ

where a is an overall scaling constant, q1 > 0 implies a
nugget effect, and 0 < q2 < 2. Although other parametric
forms of variogram were tried for comparison, equation (6)
is used as our preferred model for the remainder of the
present paper.

4. Maximum Likelihood Estimation and the
Expectation-Maximization (EM) Algorithm

4.1. Principles of the EM and Related Algorithms

[30] If we make the additional assumption that the data
are multivariate normal, then the most natural method to fit
the spatial model is the method of maximum likelihood.
Because of missing data, the number of observations
available in each 1-week time period is different. We may
write down the likelihood function for each week as

l b; q ytjð Þ ¼ 2pð Þ�nt=2 �t qð Þj j�1=2

� exp � 1

2
yt � xtbð ÞT�t qð Þ�1� yt � xtbð Þ

	 

; ð7Þ

where the subindex t denotes time (week), nt is the number
of observations available in week t, yt is the vector of
measured PM2.5 concentrations in week t, xt is the matrix of
explanatory variables in week t, and bt is the vector of trend
coefficients in week t. In principle, the method is to
calculate l(b, qjyt) for each week t, multiply over all t to
obtain an overall likelihood function, and maximize with
respect to b and q. There are, however, two difficulties with
this plan.
[31] The first is that for the model of equation (6), there

does not exist a stationary covariance matrix �t. The
solution is to use generalized covariances (see, e.g., Cressie
[1993, section 5.4] or Stein [1999, section 2.9], who both
cite Matheron [1973] as the originator of the concept). The
semivariogram of equation (6) defines an intrinsic random
function of order 0 (IRF0), and for this we can write

Cov
X
s

nshs;t ;
X
s0

ks0hs0 ;t

( )
¼
X
s

X
s0

nsks0G k s� s0 kð Þ; ð8Þ

provided that �sns = �s0 ks0 = 0. Here G is known as the
generalized covariance function: However, in the case of an
IRF0, it suffices to take G = �g. There is a more general
concept of an intrinsic random function of order K (IRFk for
k � 0), but the case k = 0 suffices for our present
application.
[32] To apply this in the context of equation (7), let �y�t

denote the sample mean of yst over all observed sites s in
week t and let y*t denote the space-centered vector in which
each yst is replaced by y*st = yst � �y�t . Similarly, let x*t
denote the space-centered matrix of covariates and h*st =
hst � �h�t the space-centered vector of errors. Elementary
calculations based on equation (8) (with G = �g) show that

Cov h*t;s; h*t;s0
� �

¼ 1

nt

X
s1

g k s� s1 kð Þ þ 1

nt

X
s1

g k s0 � s1 kð Þ

� g k s� s0 kð Þ � 1

n2t

X
s1

X
s2

g k s1 � s2 kð Þ; ð9Þ

the sums with respect to s1 and s2 being taken with respect
to all stations available at time t.
[33] In equation (7) we may therefore replace yt by y*t , xt

by x*t , and �t by the covariance matrix �*t with the entries
of equation (9), and the maximum likelihood method works.
This is essentially the algorithm of Kitanidis [1983].
[34] The second issue about equation (7) is that as things

stand, the method is time consuming because of the need to
compute the inverse and determinant of a different �*t
matrix for each week of the data. The problem would be
much easier if there were no missing data because then �*t
would be the same for every week t, and the determinant
and inverse would only have to be calculated once on each
evaluation of the likelihood function. The EM algorithm
[Dempster et al., 1977; Little and Rubin, 1987; McLachlan
and Krishnan, 1997] provides a way out of this difficulty.
[35] The EM algorithm is an iterative algorithm to obtain

maximum likelihood estimates for a parametric model with
missing data for the case when the data are missing at
random; that is, the probability that a given variable is not
observed in a given instance is independent of the true value
of that variable. This assumption would not be appropriate
if, for example, the machinery was liable to break down at
very high or very low levels of PM2.5, but there is no reason
to think this is the reason for missing values in the current
data set.
[36] The algorithm alternates expectation (E) and maxi-

mization (M) steps. At iteration k of the expectation step the
conditional expected value of the log likelihood given the
observed data yobs and the current value of the parameter
vector q(k) by using the underlying parametric model is
(notation follows Little and Rubin [1987]):

Q q q kð Þ
��� ; yobs

� 

¼
Z

l q kð Þ yj
� 


f ymiss yobsj ; q kð Þ
� 


dymiss: ð10Þ

One way to compute this is to impute the expected values of
the missing data, and any functions of the missing data
ymiss, conditional on yobs and q(k). If there is a sufficient
statistic for the model, then it is enough to compute the
expected value of this statistic conditional on the observed
values of the variables involved and on the current
parameter values.
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[37] At the maximization step the full likelihood is
maximized with respect to the parameters by using the
imputed missing values or the expected values of the
sufficient statistic:

q kþ1ð Þ ¼ argmaxQ q q kð Þ; yobs

���� 

: ð11Þ

The procedure is iterated to convergence or, in practice,
until successive values of the parameter vector q(K) differ by
no more than some specified small tolerance. As shown in
the cited references, under mild regularity conditions the
EM algorithm converges to the maximum likelihood
estimator.
[38] Two variants of the EM algorithm may speed up

convergence. The first is that in the M step the conditional
likelihood is not maximized but only made to be larger than
the previous iteration:

Q q kþ1ð Þ q kð Þ
��� ; yobs

� 

> Q q kð Þ q kð Þ; yobs

���� 

: ð12Þ

This is known as the generalized EM, or GEM, algorithm.
[39] The second variant is known as the expectation-

conditional maximization, or ECM, algorithm [McLachlan
and Krishnan, 1997]. In this the parameter vector is split
into components, and the conditional likelihood is maxi-
mized with respect to each component at each iteration,
conditional on the current values of the other components.
In the case of equation (7), the natural components are b and
q. Thus in the ECM algorithm, at each iteration, b is
estimated by GLS, conditional on the current value of q,
and then the likelihood is maximized with respect to q,
conditional on the current estimate of b. In contrast, the EM
algorithm maximizes with respect to b and q simultaneously
at each iteration. ECM requires less computation but typi-
cally no more iterations to convergence than EM. The
results reported in this paper are based on the EM algorithm,
but preliminary studies suggest that either GEM or ECM, or
a combination of both, leads to similar estimates and
significantly faster convergence. One point that needs to
be made about all the EM algorithms is that they do not
produce standard errors in the way Newton-Raphson full
likelihood procedures do.

4.2. Implementation

[40] Only the response variable (measurement of PM2.5

concentrations in mg m�3) is affected by missing data. All
the design variables are observed perfectly. The methods
have been programmed in both Fortran and in Stata soft-
ware [StataCorp, 2001].
[41] The expectation step calculates the fitted values for

the GLS regression, using these as predicted values for the
missing data:

ŷst ¼
yst; yst is nonmissing;

xTst b̂
kð Þ; yst is missing

8<
: ð13Þ

where xst is the vector of covariates associated with
observation yst. Note that this is not a strict E step because
that would require a full kriging prediction of the missing

yst , which is as computationally demanding as a direct
evaluation of the exact likelihood. We have found that, in
practice, equation (13) produces results very similar to the
maximum likelihood estimator, though its theoretical
properties are a question for future research.
[42] The M step treats ŷst as if they were all observed data

and maximizes the likelihood with respect to parameter
vectors b and q. We return to the E step to update the values
of ŷst and so on. The starting values of the parameters for the
algorithm are the OLS regression results for the regression
part of the parameter vector and some reasonable guesses
for the covariance part.

4.3. Kriging

[43] The form of spatial interpolation we use in this paper
is known as universal kriging because it combines the
regression function xtb with prediction of the spatial random
field ht . The basic mathematics of universal kriging have
been given by numerous authors, for example, by Cressie
[1993, section 3.4] or Stein [1999, section 1.5], but we give
an independent derivation here to make clear how the
method is applied to construct a time-averaged PM2.5 field.
[44] Suppose in week t we have observation vector yt, and

we want to predict the value ys0,t at some unmonitored site
s0. The nonstandard feature of this problem is that we want
to make such predictions simultaneously for several values
of t, together with averages or possibly other functions over
time but still based on a single common estimator of b. The
usual derivation of universal kriging is based on only a
single replication of the random field.
[45] Suppose the vector of covariates at time t at site s0 is

denoted xs0,t (assumed known), and we write

ys0 ;t ¼ xTs0;tbþ hs0;t : ð14Þ

Write
P

t tt
tTt s

2
t

� �
for the joint covariance matrix of

ht
hs0;t

� �
.

[46] On the basis of ht alone, the natural predictor of hs0,t
would be ĥs0,t = tt

T�t
�1ht, with prediction error variance

st
2 � tt

T�t
�1tt; this follows from a standard theory of

conditional means and variances in the multivariate normal
distribution. For the case where b is unknown but the
covariances �t , tt , and st

2 are known (the standard setup
of universal kriging) the appropriate procedure is to estimate
b by the GLS estimator b̂, and the point predictor of ys0,t is
then given by

ŷs0 ;t ¼ xTs0;t b̂þ tTt �
�1
t yt � xt b̂
� 


: ð15Þ

[47] Combining equations (14) and (15), we see that

ŷs0;t � ys0;t ¼ xTs0 ;t � tTt �
�1
t xt

� 

b̂� b
� 


þ tTt �
�1
t ht � hs0 ;t

� �
:

ð16Þ

The key point in the calculation of prediction error variance
is that the two terms in equation (16) are independent: This
follows because tt

T�t
�1ht � hs0,t is independent of ht and

hence of b̂ � b = (xt
T�t

�1xt)
�1xt

T�t
�1ht.

[48] In the case where all the observations are taken
at a single time point t the covariance matrix of b̂ is
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(xt
T�t

�1xt)
�1, the variance of tt

T�t
�1ht � hs0,t is s2t �

ttT�t
�1tt, and equation (16) quickly leads to

E ŷs0;t�ys0;t
� �2¼ xTs0 ;t�tTt �

�1
t xt

� 

xTt �

�1
t xt

� ��1
xs0;t � xTt �

�1
t tt

� �
þs2t � tTt �

�1
t tt;

which is equivalent to the usual characterization of the mean
squared prediction error in universal kriging [e.g., Stein,
1999, equation (11), p. 8].
[49] For predictions over multiple time points a typical

calculation is the following. Suppose we are interested in
�t=t1

t2 ŷs0,t as a predictor of �t=t1
t2 ys0,t. (In practice, we usually

divide by t2 � t1 + 1 to make it an average over the weeks
from t1 to t2.) By equation (16),

Xt2
t¼t1

ŷs0 ;t �
Xt2
t¼t1

ys0 ;t ¼
Xt2
t¼t1

xTs0;t � tTt �
�1
t xt

� 

b̂� b
� 


þ
Xt2
t¼t1

tTt �
�1
t ht � hs0;t

� �
; ð17Þ

and the two terms in equation (17) are independent: There-
fore

E
Xt2
t¼t1

ŷs0;t �
Xt2
t¼t1

ys0;t

 !2
8<
:

9=
; ¼

Xt2
t¼t1

xTs0 ;t � tTt �
�1
t xt

� 
( )
Cov b̂

n o

�
Xt2
t¼t1

xs0 ;t � xTt �
�1
t tt

� �( )

þ
Xt2
t¼t1

s2t � tTt �
�1
t tt

� �
;

ð18Þ

where Cov{b̂} denotes the covariance matrix of b̂, which is
calculated at the same time as b̂ itself is calculated.
[50] Note that even in the case t1 = t2, equation (18) does

not reduce to equation (17) because the b̂ is still based on
the entire data set. The two formulae are equivalent only if
the entire analysis is based on a single time point.
[51] For the case of an intrinsically stationary process, as

defined by equation (6), these calculations cannot be
directly applied because the covariance matrices (�t, etc.)
are not defined. However, the preceding calculations are
applied with yt, xt, and �t replaced by y*t , x*t , and �*t ,
respectively, as already explained in connection with like-
lihood maximization.
[52] One further point should be mentioned about the

implementation of these formulae. The variograms we have
fitted include a nugget effect. This is most usually inter-
preted as a measurement error: The observed data are
viewed as a smooth random field plus measurement error.
The kriging formulae predict the smooth random field,
ignoring the measurement error. For this reason, even if s0
is very close to a monitor, the predicted value will not be the
same as the monitor. (In different language, this version of
kriging is a smoothing procedure, not an interpolation
procedure.) For that reason, the predicted random fields
look smoother than the raw data. Another aspect of this is
the interpretation of st

2 in equation (18). This can be

calculated two ways: with or without the nugget. In the
following calculation it has been calculated without the
nugget so that the quoted prediction error variance reflects
the estimated variance compared with the smooth random
field without measurement error. If the predicted random
field were to be compared with future monitor values, it
would be necessary to increase st

2 to take account of
measurement error.
[53] As with most kriging calculations, the mean squared

prediction errors given by equation (18) allow for the
estimation of b but do not allow for the estimation of q1
and q2; it is possible to do this approximately via Taylor
expansions [e.g., Zimmerman and Cressie, 1992] or by
Bayesian methods [Handcock and Stein, 1993], but both
methods involve additional computation, and we do not
consider them further here.

5. Results

[54] Several runs of the algorithm were tried with different
covariates for the regression part and different variogram
models, but for the present discussion we focus on just one
model and one variogram. The variogram is equation (6),
and the regression model includes the following covariates:
four independent dummy variables corresponding to land
use effects, linear terms in latitude and longitude, and
40 terms corresponding to the spatial thin plate spline basis
functions of equation (3). The eventual decision to include
40 spline basis functions was taken after repeating the model
fit with 10, 20, 30, 40, and 50 basis functions, using
likelihood ratio tests to compare the fits of different models.
Since the model is based on space-centered variables y*st =
yst � �y�t , there is no need for a separate ‘‘week effect’’;
however, the kriging step gives us predictions for ys0t � �y�t at
each unmonitored site s0, and we must add �yt to this to obtain
a prediction for ys0t. Thus the week effects are still reflected
in the final predictions, but they are not estimated as part of
the regression model.
[55] Since the E step in equation (13) is only an approx-

imate E step, ignoring the correlations among ys, questions
remain open about how close the resulting EM-based
estimates are to the true maximum likelihood estimator
(MLE) and whether the standard errors obtained from
standard likelihood asymptotics can be trusted in this setting.
We have not attempted to resolve these questions theoreti-
cally, but we have made numerical comparisons between
the EM approach and exact maximum likelihood. In
these comparisons the parameters q1 and q2 in equation (6)
are estimated as those values that maximize the (EM or
exact) likelihood function, and the standard errors are
estimated in the usual way from the observed information
matrix. The parameter a is estimated as â = G2/(n � p),
with standard error â

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= n� pð Þ

p
, where G2 = �t ( y*t �

x*t b̂)�*t (q)
�1( y*t � x�Tt b̂) is the generalized residual sum

Table 1. Comparison of Expectation-Maximization Algorithm

Estimates With Exact Maximum Likelihooda

Method q1 q2 a

MLE 2.06 (0.35) 0.92 (0.097) 0.061 (0.0017)
EM 2.13 (0.29) 0.92 (0.083) 0.049 (0.0012)
aStandard errors are in parentheses. MLE, maximum likelihood

estimator; EM, expectation-maximization.
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of squares calculated using the GLS estimator b̂; here n is the
total number of nonmissing observations and p is the
number of parameters estimated in the regression model.
The parameter estimates and standard errors are reported in
Table 1. The estimates of q1 and q2 are very comparable in
the two approaches; that of a is somewhat smaller in the EM
approach, as are all three standard errors.
[56] The most likely explanation for â and the standard

errors being smaller in the EM approach is that the E step of
the EM algorithm treats all the ŷst values as known, not
allowing for the fact that some are estimated. A first-order
correction to this would be to divide â by 0.72 and the
standard errors by

ffiffiffiffiffiffiffiffiffi
0:72

p
, where 0.72 is the proportion of

nonmissing data. With this correction the EM estimate of a
becomes. 0675, and the three standard errors become 0.35,
0.098, and 0.0019, much closer to the maximum likelihood
values.
[57] Following the parameter estimation, we perform a

kriging operation to construct a predicted PM2.5 surface, for
the whole region, for each week of the study and also
averaged over all weeks, using the procedure described in
section 4.3. For this the maximum likelihood estimates
from Table 1 were used. At the end of this procedure, �y�t
is added to the prediction ŷ*s0,t to obtain a prediction ŷs0,t;
the actual predicted PM2.5 is ŷs0,t

2 . Approximate mean

squared prediction errors are calculated in this last step
using a Taylor approximation.
[58] Because we have identified five land use types, there

is a question to decide how to handle that variable in the

Figure 6. Plots of the predicted surface for PM2.5. (a) Predicted surface for week 33. (b) Estimated
prediction standard error for week 33. (c) Predicted surface for average of weeks 1–49. (d) Estimated
prediction standard error for average of weeks 1–49. See color version of this figure at back of this issue.

Figure 7. Plot of the estimated probability that any given
location is in violation of the proposed standard for long-
term mean PM2.5. The symbols A, C, and R mark the cities
of Atlanta, Charlotte, and Raleigh, respectively. See color
version of this figure at back of this issue.
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predictions since the current database available for the
present analysis does not include land uses at sites away
from the monitors. This problem has been handled by
treating all the prediction sites as residential sites. This is
because the main focus of interest, for human health
assessment, is the level of pollution at residential sites;
therefore we focus on these. Of course, it would be desirable
in a future analysis to take account of the different land use
types more thoroughly.
[59] The final results presented here are the predicted

PM2.5 surface for week 33, which, according to the esti-
mated week effects, was the week with highest PM2.5 values
in the entire series (this therefore reflects the PM2.5

field under the most adverse conditions observed in the
present data set) and the estimated average PM2.5 field
over the 49-week time period. The latter is particularly
interesting in assessing which parts of the field are in
violation of the proposed 15 mg m�3 standard for long-term
mean PM2.5. The results are shown in Figure 6a for week
33 and in Figure 6c for the overall average, while the
corresponding estimates of root mean squared prediction
error are shown in Figures 6b and 6d, respectively.
Figures 6b and 6d both show an apparent peak of mean
squared prediction error in a small region on the North
Carolina/South Carolina border, just south of Charlotte; we
have no explanation for this, but the same phenomenon
was observed in different plots using different versions of
the spatial model.
[60] Finally, in Figure 7 we show a spatial map of the

estimated probability that any given location is in violation
of the 15 mg m�3 standard. This was calculated using the
predicted value of the 49-week mean at each site, together
with the mean squared prediction error, using a normal
probability approximation to calculate the probability that
the true mean exceeds 15 mg m�3 at each site. As can be
seen, much of the region appears to be in violation of the
standard. For comparison, the cities of Atlanta (A), Char-
lotte (C), and Raleigh (R) are marked in Figure 7: The first
two seem to be clearly in violation of the standard, and the
third may well be as well.

6. Conclusions

[61] This paper proposes a model for spatial-temporal
PM2.5 data, in which the PM2.5 field is represented as a sum
of three fixed components and a random component. The
fixed components consist of a weekly time-trend effect,
common to all the stations, a smooth spatial effect repre-
sented by thin plate splines, and a land use component. The
random component is spatially, but not temporally, corre-
lated. The estimation procedure emphasizes simultaneous
estimation of the fixed and random components, and we
propose a kriging methodology that also takes account of
the fixed as well as random components of the model.
[62] A particular feature of the data is the presence of

missing values, which complicates evaluation of the likeli-
hood function. As an alternative to exact evaluation, we
propose an approximate method based on the EM algorithm.
The comparisons in the present paper suggest that the

approximate method produces results comparable to the true
MLE.
[63] The results are applied to predict the overall field of

PM2.5, together with estimated mean squared prediction
errors, both for 1 week when PM2.5 was especially high
and for the overall means. The results imply that substantial
portions of the three states, and Georgia in particular, appear
to violate the federal standard on PM2.5.
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Figure 6. Plots of the predicted surface for PM2.5. (a) Predicted surface for week 33. (b) Estimated
prediction standard error for week 33. (c) Predicted surface for average of weeks 1–49. (d) Estimated
prediction standard error for average of weeks 1–49.

Figure 7. Plot of the estimated probability that any given location is in violation of the proposed
standard for long-term mean PM2.5. The symbols A, C, and R mark the cities of Atlanta, Charlotte, and
Raleigh, respectively.
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