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� Recently, there has been a renewed interest in both the
Pomeron and the Odderon. These are the leading Regge
trajectories with the quantum numbers of the vacuum.

� We can study these objects at both weak (using pQCD)
and strong coupling (using gauge/string duality).

� The recent focus has been mostly on the question of what
the intercept of these objects is. By calculating the
intercepts to higher order from both the weak and the
strong coupling side we can try to interpolate to the
non-perturbative region from both sides. This can be a
very important test of the gauge/string duality.

� Using both methods, the Odderon has two solutions, one
fixed at 1 and one slightly below 1. An additional question
for the Odderon is whether the first solution is exactly
equal to one to all order.

� We will give an introduction to what the Pomeron and
Odderon are, and show how they arise in string theory on
AdS, focusing on the Odderon, and discuss possible
applications and extensions.
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� Consider 2→ 2 scattering.
� Work in the Regge limit

s� t

� We can expand the amplitude into partial waves

A(s, t) = 16π
∞
∑

j=0

(2j+ 1)Aj(t)Pj(cosθt),

� In the Regge limit,

Pj(1 +
2s

t
)→

Γ(2j+ 1)

Γ2(j+ 1)
(
s

2t
)j s f (t)sj.

� If exchanged particle has spin j

A(s, t) s sj
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� Optical theorem:

σtot =
1

s
ℑA(s,0)

� Experimentally
σtot s s0.08

� The amplitude will depend on an infinite number of
exchanged particles.

� We can continue the amplitude into the complex plane

A±(j, t) =

(

A+
j (t) j even

A−j (t) j odd

� A(j, t) will have as singularities poles at integer j for fixed t.
As we change t, the position of the pole will change,
leading to a trajectory

j = α(t)
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� We can write A(s, t) as a contour integral in the complex
plane

A±(s, t) = 8π
∞
∑

j=0

(2j+ 1)A±
j

(t)(Pj(zt)± Pj(−zt))

= 8πi

∫

C

dj(2j+ 1)A±(j, t)
P(j,−zt)± P(j, zt)

sin(πj)

� We next deform the contour C to a contour C′ parallel to
imaginary axis and real part −1/2

A±(s, t) = −16π2
∑

i

(2α±i (t) + 1)β±i (t)

sin(πα±i (t))
(P(α±

i
(t),−zt)±P(α±

i
(t), zt))

� α±i (t) is the position of the pole in the j plane.
� Take advantage of the asymptotic form of the Legendre

polynomials

p
πP(j, z) s

Γ(j+ 1/2)

Γ(j+ 1)
(2z)j ℜj ≥ −1/2
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� This will give us a sum in powers of s. At high energy, we
can keep just the leading term

A±(s, t) s (1± e−iπα
±(t))β(t)(

s

s0
)α
±(t).

� α(t) is the term with the largest value of ℜαi(t)
� Amplitude corresponds to an exchange of a whole

trajectory of particles α±(t) .
� Equivalently, we are exchanging a ‘Reggeon’ - object with

spin α±(t).
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can keep just the leading term
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Figure: Regge trajectories.



Pomeron
� Look again at the factor

1± e−iπα
±(t)

� When α+(t) is odd, 1 + e−iπα
+(t) = 0, and similarly when

α−(t) is even, 1− e−iπα−(t) = 0.
� Two sets of trajectories, one with only particles with even

non-negative spin, and one with particles with odd
positive spin.

� For trajectories with that don’t have the quantum
numbers of the vacuum, α(0) < 1, leading to vanishing
σtot

� The leading Reggeon which has the quantum numbers of
the vacuum, C = +1 and I = 0, is known as the Pomeron.

� The intercept α(0) > 1 leading to non-vanishing

σtot s sα(0)−1
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Odderon

� Similarly, the Odderon is the leading negative signature
trajectory

� Its quantum numbers are

I = 0 , C = −1

� Its intercept is either

α(0) = 1 or α(0) < 1

� It is more elusive experimentally.
� We will revisit the Pomeron and Odderon from string

theory.
� The Pomeron is very important - the leading exchange in

total cross sections.
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We will now turn to using the AdS/CFT correspondence to
study strong coupling. The correspondence relates operators
in N = 4SYM to states in string theory on AdS5 × S5. It is valid
for large ’t Hooft coupling λ.

� We will work with the metric

ds2 =
R2

z2
(dz2 + ημνdx

μdxν) +R2dΩ5

� In the hardwall model, we have a cut-off

0 < z < z0

� The cutoff position will roughly correspond to

z0 '
1

ΛQCD
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� Let us write the scattering amplitude

AWLWR =

∫

d2w〈WRw
L0−2w̄L̃0−2WL〉

� We can insert a vertex operator

AWLWR = 〈WRV(T)〉〈V(T)WL〉

� where
V(T) = (TMN∂X

M∂̄XN/α′)1+α′t/4e∓ik·X

� The leading term on-shell at t = 0 defines 3 vertex
operators
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Odderon in AdS
� For vertex operators in AdS we replace them by the flat

space vertex operators multiplied by ϕ(r). For the
Odderon

�

VO(j,±) = (∂X±∂X⊥ − ∂X⊥∂X±)(∂X±∂X±)
j−1
2 e∓ik·Xϕ±j⊥(r).

� They must satisfy the on-shell condition.
�

[
j+ 1

2
−
α′

4
∆O,j]ϕ±j⊥(r) = ϕ±j⊥(r)

� where ∆O,j = (r/R)−(j−1)(∆O,1)(r/R)(j−1). To determine the
differential operator for Odderon, ∆O,1, we can match the
EOM at j = 1, appropriate in the infinite λ limit.

� In the case of the Odderon, in the supergravity limit we
have two equations

(�Maxwell − (k + 4)2)B
(1)

IJ = 0 , (�Maxwell − k2)B
(2)

IJ = 0
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� This will give us for the physical state condition

[j− 1−
α′t

2
e−2u −

1

2
p
λ

(∂2
u
−m2

AdS
)]ϕ±⊥(u) = 0

� This can be solved

VO(j, ν, k,±) ∼

(∂X±∂X⊥ − ∂X⊥∂X±)(∂X±∂X±)
j−1
2 e∓ik·Xe(j−1)uK±2iν(|t|1/2e−u)

� and for the amplitude we would have

T (−) ∼
∫

dj

2πi

∫

dνν sinh2πν

π

Π−(j) sj

j− j(−)

0 + Dν2

×



WR0 VO(j, ν, k,−)
�


VO(j, ν, k,+)WL0
�

� with j
(−)

0 given by

j
(−)

0 = 1−m2
AdS

/2
p

λ+O(1/λ) .

and D = 2/
p
λ.
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Summary

We can summarize both the strong and weak coupling results.

Weak Coupling Strong Coupling

C = +1 j
(+)

0 = 1 + (ln2) λ/π2 +O(λ2) j
(+)

0 = 2− 2/
p
λ+O(1/λ)

C = −1 j
(−)

0,(1) ' 1− 0.24717 λ/π +O(λ2) j
(−)

0,(1) = 1− 8/
p
λ+O(1/λ)

j
(−)

0,(2) = 1 +O(λ3) j
(−)

0,(2) = 1 +O(1/λ)
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� The most direct application is to calculate scattering
amplitudes. In the case of 2→ 2 scattering, the above
expressions can be simplified.

� We can write the scattering amplitude as

A(s, t) = 2s

∫

d2le−il⊥ ·q⊥
∫

dzdz̄ P13(z)P24(z̄)χ(s, l, z, z̄)

� P13 and P24 are the products of incoming and outgoing
scattering states, and χ is the exchange kernel.

� For the Pomeron:

χ(τ, L) = (cot(
πρ

2
) + i)g2

0e
(1−ρ)τ

L

sinhL

exp(−L
2

ρτ )

(ρτ)3/2

� Due to conformal invariance, χ is a function of only two
variables

L = log(1 + v+
p

v(2 + v) )

τ = log(
ρ

2
zz′s)
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� Obtained by placing a sharp cut-off on the radial AdS
coordinate at z = z0.

� First notice that at t = 0 χ for conformal pomeron
exchange can be integrated in impact parameter

χ(τ, t = 0, z, z̄) = iπ g2
0

�

cot
�πρ

2

�

+ i

�

(zz̄)e(1−ρ)τ
e
− (ln(z̄/z))2

ρτ

(ρτ)1/2

� Similarly, the t = 0 result for the hard-wall model can also
be written explicitly

χhw(τ, t = 0, z, z̄) = χ(τ,0, z, z̄) + F(τ, z, z̄)χ(τ,0, z, z2
0/ z̄) .

� The function

F(τ, z, z̄) = 1−4
p
πτ eη

2
erfc(η) , η =

− log(zz̄/z2
0) + 4τ

p
4τ

is set by the boundary conditions at the wall and
represents the relative importance of the two terms.
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� This has already been successfully applied to DIS [Brower,
MD, Sarcevic, Tan, 2010], DVCS [Costa, MD, 2012] and
VMP [Costa, MD, Evans, 2013; see talk by Evans next]. In
all of those cases, when comparing our results with
experimental data from HERA, we get very good results.

� We also reproduce the ’running’ of the effective pomeron
intercept.
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� Similiarly, we can calculate the amplitude for exclusive
processes where an Odderon is exchanged.

� The odderon also accounts for the difference in the
particle-particle and particle - anti-particle total cross
sections. Define

Fc̄b→ād = F+ + F−,

Fab→cd = F+ − F−.

� we can check that F± are the C = ±1 contributions to the
amplitude, and that, via the optical theorem

σT(āb)− σT(ab) s (2/s)ℑF−

� We have also calculated the glueball masses [Brower, MD,
Tan, 2008]
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We thus conclude today’s talk. We have seen interesting
methods to apply gauge/gravity duality to the Pomeron and
Odderon, which are very useful indeed. Let us now look at
some possible future directions of research.

� Already a lot of work has been done in studying diffractive
processes using the Pomeron exchange. There are still
more processes we can look at, for example pp total cross
sections.

� It is possible to extend this beyond 2→ 2 scattering, for
example for 2→ 3 scattering [Brower, MD, Tan, 2012]

� Recently the Pomeron intercept has been calculated to
higher order [Costa, Goncalves, Penedones, 2012]

� Similarly, work is under way in calculating the Odderon
intercept to higher order [Brower, Costa, MD, Raben, Tan,
in progress, see talk by Tan tomorrow].

� From weak coupling there has been recent interest in the
same question. Particularly interesting is the question if
the intercept stays at 1 to all order (which all the
calculations so far suggest).

� Work is also under way in using the soft wall model to go
beyond the hard wall model.
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Thank You!
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