Energy flow in $\mathcal{N} = 4$ SYM

Gregory Korchemsky
IPhT, Saclay

Work in collaboration with
Andrei Belitsky, Stefan Hohenegger, Emeri Sokatchev, Alexander Zhiboedov

arXiv:13xx.xxxx
\(e^+e^- \) annihilation in \(\mathcal{N} = 4 \) SYM

- Define IR finite observables in \(\mathcal{N} = 4 \) SYM and evaluate them both at weak/strong coupling
- Are closely related to the QCD weighted cross-sections for the final states in \(e^+e^- \) – annihilation

From QCD to \(\mathcal{N} = 4 \) SYM: introduce an analog of the electromagnetic current:

(protected) half-BPS operator built from the six real scalars

\[
O_{20}^{IJ}(x) = \text{tr} \left[\Phi^I \Phi^J - \frac{1}{6} \delta^{IJ} \Phi^K \Phi^K \right], \quad (I, J = 1, \ldots, 6)
\]

\[
O(x, Y) = Y^I Y^J O_{20}^{IJ}(x) = Y^I Y^J \text{tr}[\Phi^I(x)\Phi^J(x)]
\]

The null vector \(Y^I \) defines the orientation of the projected operator in the isotopic \(SO(6) \) space

What are the properties of the final states created from the vacuum by the operator \(O(x, Y) \)?
Final states in $\mathcal{N} = 4$ SYM

✔ To lowest order in the coupling, $O(x, Y)$ produces a pair of scalars out of the vacuum

✔ For arbitrary coupling, the state $O(x, Y)|0\rangle$ can be decomposed into an infinite sum over on-shell states with an arbitrary number of scalars (s), gauginos (λ) and gauge fields (g)

$$
\int d^4x \ e^{iqx} O(x, Y)|0\rangle = |ss\rangle + |ssg\rangle + |s\lambda\lambda\rangle + \ldots
$$

✔ The amplitude of creation of a particular final state $|X\rangle$ out of the vacuum

$$
\langle X| \int d^4x \ e^{iqx} O(x, Y)|0\rangle = (2\pi)^4 \delta^{(4)}(q - p_X) M_{O \rightarrow X}
$$

p_X is the total momentum of the state $|X\rangle$

✔ The amplitude $M_{O \rightarrow X}$ has the meaning of a (IR divergent) form-factor

$$
M_{O \rightarrow X} = \langle X|O(0, Y)|0\rangle
$$
Total cross-section of $O_{20} \rightarrow \text{everything}$

- Analog of the QCD process $e^+ e^- \rightarrow \text{everything}$

\[
\sigma_{\text{tot}}(q) = \sum_X (2\pi)^4 \delta^{(4)}(q - p_X) |M_{O_{20} \rightarrow X}|^2
\]

- To lowest order in the coupling, the production of a pair of scalars

\[
\sigma_{\text{tot}}(q; Y) = \frac{1}{2} (N^2 - 1) (Y \bar{Y})^2 \int \frac{d^4 k}{(2\pi)^4} (2\pi)^2 \delta_+(k^2) \delta_+((q - k)^2) + \ldots
\]

- To higher order in the coupling, each term in the sum \sum_X has IR / collinear divergences

- How to avoid divergences? Use the completeness condition $\sum_X |X\rangle\langle X| = 1$

\[
\sigma_{\text{tot}}(q) = \int d^4 x \ e^{iqx} \sum_X \langle 0|O(0, \bar{Y})|X\rangle \ e^{-ixp_X} \langle X|O(0, Y)|0\rangle
\]

\[
= \int d^4 x \ e^{iqx} \langle 0|O(x, \bar{Y})O(0, Y)|0\rangle \quad \text{The operators are not time ordered!}
\]

Wightman correlation function (protected for half-BPS operators)

- All-loop result in $\mathcal{N} = 4$ SYM [van Neerven]

\[
\sigma_{\text{tot}}(q) = \frac{1}{16\pi} (N^2 - 1) (Y \bar{Y})^2 \theta(q^0) \theta(q^2)
\]

Perturbative corrections cancel order by order IR finite to any order in the coupling
Weighted cross-section

✔ More refined information about the final states in $O_{20'} \rightarrow \text{everything}$

✔ Assign a weight factor $w(X)$ to the contribution of each state $|X\rangle$

$$\sigma_W(q) = \sigma_{\text{tot}}^{-1} \sum_X (2\pi)^4 \delta^4(q - p_X) w(X) |M_{O_{20'} \rightarrow X}|^2$$

$$= \sigma_{\text{tot}}^{-1} \int d^4x \ e^{i q x} \sum_X \langle 0 | O(x, \bar{Y}) | X \rangle w(X) \langle X | O(0, Y) | 0 \rangle$$

✔ Less inclusive quantity as compared with the total cross section, no optical theorem

✔ Choose of the weight factors $w(X)$ gives an access to the flow of various quantum numbers of particles (energy, charge, etc) in the final state

✔ Popular choice – energy-energy correlations

[Basham,Brown,Ellis,Love]

$$w(X) = \sum_{i,j} E_i E_j \delta(\cos \theta_{ij} - \cos \chi)$$

Are known in QCD up to 2 loops numerically
Energy flow

✔ The total energy in the final state $|X\rangle = |k_1, \ldots, k_\ell\rangle$ that flows into the detector located at spatial infinity in the direction of the vector \vec{n}.

$$w_\mathcal{E}(k_1, \ldots, k_\ell) = \sum_{i=1}^{\ell} k_i^0 \delta^{(2)}(\Omega_{\vec{k}_i} - \Omega_{\vec{n}}),$$

✔ Energy flow operator

$$\mathcal{E}(\vec{n})|X\rangle = w_\mathcal{E}(X)|X\rangle.$$

✔ Is expressed in terms of the energy-momentum tensor in $\mathcal{N} = 4$ SYM

[Sveshnikov,Tkachov],[GK,Oderda,Sterman]

$$\mathcal{E}(\vec{n}) = \int_0^\infty dt \lim_{r\to\infty} r^2 \vec{n}^i T_{0i}(t, r\vec{n})$$

✔ Representation for $\mathcal{E}(\vec{n})$ in terms of creation and annihilation operators of on-shell states

$$\mathcal{E}(\vec{n}) = \int \frac{d^4 k}{(2\pi)^4} 2\pi \delta_+(k^2) k^0 \delta^{(2)}(\Omega_{\vec{n}} - \Omega_{\vec{k}}) \sum_{i=s,\lambda,\bar{\lambda},g} a^\dagger_i(k) a_i(k),$$
Energy correlations

✔ Single correlator

$$\sum_X \langle 0 | O(x, \bar{Y}) | X \rangle w_E(X) \langle X | O(0, Y) | 0 \rangle = \sum_X \langle 0 | O(x, \bar{Y}) E(\vec{n}) | X \rangle \langle X | O(0, Y) | 0 \rangle$$

$$= \langle 0 | O(x, \bar{Y}) E(\vec{n}) O(0, Y) | 0 \rangle$$

Wightman correlation function (no time ordering!) due to real time evolution

✔ Single energy flow

$$\langle E(\vec{n}_1) \rangle = \sigma_{\text{tot}}^{-1} \int d^4 x \, e^{i q x} \langle 0 | O(x, \bar{Y}) E(\vec{n}_1) O(0, Y) | 0 \rangle$$

✔ Multi-energy correlations [GK, Sterman], [Belitsky, GK, Sterman], [Hofman, Maldacena]

$$\langle E(\vec{n}_1) \ldots E(\vec{n}_\ell) \rangle = \sigma_{\text{tot}}^{-1} \int d^4 x \, e^{i q x} \langle 0 | O(x, \bar{Y}) E(\vec{n}_1) \ldots E(\vec{n}_\ell) O(0, Y) | 0 \rangle$$

Energy flow in the direction of $\vec{n}_1, \ldots, \vec{n}_\ell$

Depends on the relative angles $\cos \theta_{ij} = (\vec{n}_i \cdot \vec{n}_j)$

✔ The goal is to find $\langle E(\vec{n}_1) \ldots E(\vec{n}_\ell) \rangle$ for arbitrary coupling in $\mathcal{N} = 4$ SYM
Weighted cross-sections from amplitudes I

Transition amplitude

\[M_{O_{20}' \rightarrow X} = \begin{matrix} \text{1} & \text{s} \\ \text{s} & \text{s} \end{matrix} + \begin{matrix} \text{0} & \text{g} \\ \text{s} & \text{s} \end{matrix} + \begin{matrix} \text{0} & \text{\lambda} \\ \text{s} & \text{\lambda} \end{matrix} + \ldots \]

One-loop matrix elements (Mandelstam invariants \(s_{ij} = (p_i + p_j)^2 \) with \(p_i^2 = 0 \))

\[
|M_{O_{20}' \rightarrow ss}|^2 = |\langle s(p_1)s(p_2)|O(0,Y)|0\rangle|^2 = \frac{2}{s_{12}} \left[1 + aF_{\text{virt}}(q^2) \right]
\]

\[
|M_{O_{20}' \rightarrow ssg}|^2 = |\langle s(p_1)s(p_2)g(p_3)|O(0,Y)|0\rangle|^2 = a \frac{s_{12}}{s_{13}s_{23}}
\]

\[
|M_{O_{20}' \rightarrow s\lambda\lambda}|^2 = |\langle \lambda(p_1)\lambda(p_2)s(p_3)|O(0,Y)|0\rangle|^2 = a \frac{2}{s_{12}}
\]

The total transition amplitude to order \(O(a) \)

\[
\sigma_{\text{tot}}(q) = \int dP_S^2 |M_{O_{20}' \rightarrow ss}|^2 + \int dP_S^3 \left(|M_{O_{20}' \rightarrow ssg}|^2 + |M_{O_{20}' \rightarrow s\lambda\lambda}|^2 \right) + O(a^2)
\]

\[
= \frac{1}{8\pi} \left[1 + aF_{\text{virt}}(q^2) \right] + a \int dP_S^3 \frac{s_{12}^2 + 2s_{13}s_{23}}{s_{12}s_{13}s_{23}} + O(a^2) = \frac{1}{8\pi} + 0 \cdot a + O(a^2)
\]

Protected from perturbative corrections
Weighted cross-sections from amplitudes II

- Energy correlations

\[\sigma_E(q) = \sigma_{\text{tot}}^{-1} \left[\int \text{dPS}_2 \ w_E(p_1, p_2) \ |\mathcal{M}_{O_{20'}}\rightarrow ss|^2 \right. \\
\left. + \int \text{dPS}_3 \ w_E(p_1, p_2, p_3) \left(|\mathcal{M}_{O_{20'}}\rightarrow ssg|^2 + |\mathcal{M}_{O_{20'}}\rightarrow s\lambda\lambda|^2 \right) + O(a^2) \]

- Single detector (space-time orientation is specified by the light-like vector \(n^\mu = (1, \vec{n}) \))

\[\langle E(\vec{n}) \rangle = \frac{1}{4\pi} \frac{(q^2)^2}{(qn)^3} \]

Protected from loop corrections

- Two detectors (unprotected quantity) [Zhiboedov],[Engelund,Roiban]

\[\langle E(\vec{n}_1)E(\vec{n}_2) \rangle = -\frac{a}{4(2\pi)^4} \frac{q^2}{(n_1n_2)^3} \frac{z \ln(1-z)}{(1-z)} + O(a^2) \]

The scaling variable in the rest frame of the source \(q^\mu = (q^0, \vec{0}) \)

\[z = \frac{q^2(n_1n_2)}{2(qn_1)(qn_2)} = \frac{(1 - \cos \theta_{12})}{2}, \quad 0 < z < 1 \]

Two-loop corrections to \(\langle E(\vec{n}_1)E(\vec{n}_2) \rangle \) are hard to compute (\(\sim 10^2 \) diagrams)
Weighted cross-sections from correlation functions I

✔ Energy flow operator

\[
\langle \mathcal{E}(\vec{n}_1) \rangle \sim \int d^4 x \, e^{i q x} \langle 0 | O(x, \vec{Y}) \, \mathcal{E}(\vec{n}_1) \, O(0, Y) | 0 \rangle
\]

\[
= \int d^4 x \, e^{i q x} \int_0^\infty dt \, \lim_{r \to \infty} r^2 \langle 0 | O(x, \vec{Y}) \, T_0 \vec{n}_1(x_1) \, O(0, Y) | 0 \rangle \bigg|_{x_1 = (t, r \vec{n}_1)}
\]

✔ Generalization for \(\ell \) detectors

\[
\langle \mathcal{E}(\vec{n}_1) \ldots \mathcal{E}(\vec{n}_\ell) \rangle = \text{Fourier} \times \text{Limit} \left[\langle 0 | O(x, \vec{Y}) \, T_0 \vec{n}_1(x_1) \ldots T_0 \vec{n}_\ell(x_\ell) \, O(0, Y) | 0 \rangle \bigg|_{x_i = (t_i, r_i \vec{n}_i)} \right]
\]

✔ How to compute energy flow correlators:

✗ Compute corr.function \(\langle O(x) T(x_1) \ldots T(x_\ell) O(0) \rangle \) in Euclid

✗ Continue to Minkowski with Wightman prescription

✗ Take detector limit + perform Fourier

✔ Correlation functions in \(\mathcal{N} = 4 \) SYM have a lot of symmetry :

✗ \(\langle O(x) T(x_1) O(0) \rangle \) is fixed by conformal symmetry → exact result for \(\langle \mathcal{E}(\vec{n}_1) \rangle \) [Hofman,Maldacena]

✗ \(\langle O(x) T(x_1) T(x_2) O(0) \rangle \) is not fixed by conformal symmetry
Hidden beauty of $\mathcal{N}=4$ SYM:

- Quantum corrections to various correlation functions are determined by the same scalar function

$$\langle O(x_1)O(x_2)O(x_3)O(x_4) \rangle_E = \frac{1}{x_{12}^2 x_{23}^2 x_{34}^2 x_{41}^2} \Phi(u, v; a)$$

$$\langle O(x_1)T(x_2)T(x_3)O(x_4) \rangle_E = \frac{1}{(x_{12}^2 x_{23}^2 x_{34}^2)^2} P(\partial_u, \partial_v) \Phi(u, v; a)$$

Conformal ratios

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad v = \frac{x_{23}^2 x_{41}^2}{x_{13}^2 x_{24}^2}$$

- Universal function in $\mathcal{N}=4$ SYM at weak coupling

$$\Phi(u, v) = a \Phi^{(1)}(u, v) + a^2 \left(\frac{1}{2} (1 + u + v) \left[\Phi^{(1)}(u, v) \right]^2 + 2 \left[\Phi^{(2)}(u, v) + \frac{1}{u} \Phi^{(2)}(v/u, 1/u) + \frac{1}{v} \Phi^{(2)}(1/v, u/v) \right] \right) + O(a^3)$$

$\Phi^{(1)}(u, v)$ ‘box’ integral, $\Phi^{(2)}(u, v)$ ‘double’ box integral

- ‘Permutation symmetry’ allows us to determine $\Phi_{\text{weak}}(u, v)$ to six loops

- AdS/CFT correspondences predicts $\Phi(u, v)$ at strong coupling
From Euclid to Minkowski

✔ Brute force method: compute anew using Schwinger-Keldysh technique (too hard)

✔ Better method: analytically continue correlation functions from Euclid to Minkowski+Wightman

✔ Warm-up example: free scalar propagator $D_{\text{Euclid}}(x) = \langle \phi(x)\phi(0) \rangle \sim 1/x^2$

$$
\langle 0|\phi(x)\phi(0)|0 \rangle = \sum_{n} \langle 0|\phi(x)|n \rangle \langle n|\phi(0)|0 \rangle \\
= \sum_{E_n > 0} e^{-iE_n(x^0-i0)+i\vec{p}\cdot\vec{x}} \langle 0|\phi(0)|n \rangle \langle n|\phi(0)|0 \rangle \sim \frac{1}{(x^0-i0)^2-x^2}
$$

✔ How to get Wightman correlation functions (‘magic’ recipe)

✗ Go to Mellin space:

$$
\Phi_{\text{Euclid}} = \int_{-\delta-i\infty}^{-\delta+i\infty} \frac{dj_1 dj_2}{(2\pi i)^2} M(j_1, j_2; a) u^{j_1} v^{j_2} , \quad u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} , \quad v = \frac{x_{23}^2 x_{41}^2}{x_{13}^2 x_{24}^2}
$$

✗ Substitute $x_{ij}^2 \rightarrow x_{ij}^2 = x_{ij}^2 - i0 \cdot x_{ij}^0$

$$
\Phi_{\text{Wightman}} = \int_{-\delta-i\infty}^{-\delta+i\infty} \frac{dj_1 dj_2}{(2\pi i)^2} M(j_1, j_2; a) \left(\frac{x_{12}^2 + x_{34}^2}{x_{13}^2 + x_{24}^2} \right)^{j_1} \left(\frac{x_{23}^2 + x_{41}^2}{x_{13}^2 + x_{24}^2} \right)^{j_2}
$$

✔ $M(j_1, j_2; a)$ is known both at weak and strong coupling in planar $\mathcal{N} = 4$ SYM
Energy correlations

✔ Energy correlations for arbitrary coupling

\[\langle \mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2) \rangle = \frac{1}{(4\pi^2)^2} \frac{q^2}{(n_1 n_2)^3} \mathcal{F}_\mathcal{E}(z; a), \quad z = (1 - \cos \theta_{12})/2 \]

✗ Weak coupling:

\[\mathcal{F}_\mathcal{E}(z; a < 1) = -\frac{a}{4} \frac{z \ln(1 - z)}{(1 - z)} + O(a^2) \]

[Zhboedov],[Engelund,Roiban]

✗ Strong coupling:

\[\mathcal{F}_\mathcal{E}(z; a \to \infty) = 8z^3 + O(1/\sqrt{a}) \]

[Hofman,Maldacena]

✔ All-loop representation

\[\mathcal{F}_\mathcal{E}(z; a) = \int_{-\delta-i\infty}^{-\delta+i\infty} \frac{dj_1 dj_2}{(2\pi i)^2} \left[\frac{M(j_1, j_2; a) K_\mathcal{E}(j_1, j_2)}{\Gamma(1-j_1-j_2)} \right] K_\mathcal{E}(j_1, j_2) \left(\frac{1-z}{z} \right)^{j_1+j_2} \]

Detector function is independent on the coupling

\[K_\mathcal{E}(j_1, j_2) \sim \frac{\Gamma(1-j_1-j_2)}{\Gamma(j_1+j_2)[\Gamma(1-j_1)\Gamma(1-j_2)]^2} \]

\[M(j_1, j_2; a) = aM^{(1)}(j_1, j_2) + a^2 M^{(2)}(j_1, j_2) + \ldots \]

are known

✔ Analytical expression for \(\mathcal{F}_\mathcal{E}(z; a) \) at two loops, extension to higher loops is feasible
Conclusions and open questions

✔ Energy correlations are good/nontrivial physical observables in $\mathcal{N} = 4$ SYM

✔ Relation to energy flow correlations in QCD (most complicated part)?

✔ All symmetries of $\mathcal{N} = 4$ SYM are preserved, what is the manifestation of integrability?

✔ Interpolation between weak and strong coupling?

✔ Other proposals for ‘good’ observables?