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Abstract

We develop a general method for solving multi-dimensional screening problems in which
the ‘physical’ allocation space is one-dimensional, and provide necessary and sufficient
conditions for the existence of ‘exclusion’ in the optimal mechanism. We illustrate the
application of our method to an example with quadratic utility and uniformly distributed
types. Interestingly, the optimal solution exhibits discontinuity along the boundary of the
region between exclusion and non-exclusion for a large set of parameter values.
JEL Nos: C72, D82
Keywords: multi-dimensional screening, private information.

1 Introduction

This paper studies a screening problem in which the type space is multi-dimensional and the
allocation space is one-dimensional. Such problems are common in economics, for two distinct
reasons.

First, in many important economic environments agents typically differ along several di-
mensions on which there is private information. In the area of price discrimination, consumers
differ both in demand intensity (intercept of demand) and price sensitivity (slope of demand).
For example, high demand consumers can be price insensitive (because they are rich) or price
sensitive (because they are poor and have large families). Similarly, an industrial customer’s
valuation for an input may depend both on the technology this firm uses to process the input,
and the demand for the final product. Additionally, firms often have available multiple so-
cioeconomic data that are imperfectly correlated with customers’ purchase patterns. In other
areas, multi-dimensionality of types is also prevalent. In insurance, customers differ both in
risk aversion and the probability of having an accident. In labour taxation, the government
may wish to differentially treat individuals who have low ability and those who have a high
preference for leisure. And in the regulation of monopolies, the regulatory agency may wish
to allow a different regulatory price and access charge for firms that have a high cost than for
firms that have a low demand.
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Secondly, in many of these screening environments, the principal cannot discriminate be-
tween agents along more than one dimension. In price discrimination, firms can often differ-
entially treat customers only by purchase quantity. For non-durable consumption goods there
may be no opportunity to differentiate by quality, so quantity becomes the only instrument.
Examples include soft drinks (which come in various sizes), residential electricity, and public
transportation. On the other hand, for many consumer durables customers only purchase one
unit, so then the only available dimension for discrimination becomes quality. Frequently,
there is only one (or at least one dominant) dimension of quality, such as the speed of a micro-
processor or internet connection, or the number of megapixels in a camera. In auctions, there
is often only one unit offered for sale, and the single dimension then becomes the probability
of obtaining the object. In areas other than price discrimination, the allocation space if often
also one-dimensional. In insurance markets, the allocation consists of the amount of coverage,
in labor taxation the instrument is the tax rate, and in regulation it is the regulatory price.

Our paper contains several methodological contributions. First, by correctly character-
izing the isoquants, the set of agent types that consume the same quantity, we are able to
reduce the multi-dimensional screening problem to a one-dimensional optimal control prob-
lem, whose solution is governed by an ordinary differential equation. Our solution method
is therefore accessible to most economists, and generates analytical solutions. Second, we
formulate the multi-dimensional screening problem as one of assigning agent types and tariff
to the one-dimensional allocation. This approach is not only natural here, underscoring the
one-dimensional nature of the principal’s optimization problem, but also avoids some of the
difficulties associated with discontinuities in the quantity allocation as a function of types
that typically arise in our problem (see the discussion in the next paragraph). Our method
also handles bunching in a straightforward and transparent way, without any need to resort
to “ironing” or “sweeping”. Finally, we present a novel condition, termed Single Crossing of
Demand (SCD), which ensures that the solution to the principal’s relaxed problem is globally
incentive compatible.

The solution to our multi-dimensional screening problem exhibits several interesting prop-
erties. First, it may or may not be optimal to exclude some consumer types from consumption.
The result that it can be optimal to have full consumer participation contrasts with estab-
lished wisdom, which holds that when the type space is multi-dimensional, exclusion is generic
(Armstrong (1996), Basov (2005)). Second the optimal quantity allocation is discontinuous
at the boundary between the region of exclusion (where the optimal quantity is zero) and the
region of non-exclusion (where the optimal quantity is generally bounded away from zero).
Finally, and perhaps most surprisingly, we find that there can be a bunching of quantities
allocated to a type located on the boundary between exclusion and non-exclusion, i.e. there
can be a discontinuity of quantity as a function of type. The consumer type on which the
quantities are bunched is then indifferent between all quantities in the bunch.

The rest of the paper is organized as follows. Section 2 introduces the model. Section
3 introduces the SCD condition, and characterizes the associated implementable allocations.
Section 4 uses this characterization to reformulate the principal’s problem to a one-dimensional
screening problem in which the density of types is endogenous. Section 5 solves the associated
optimal control problem, and presents necessary and sufficient conditions for exclusion to
occur. Section 6 studies an example with linear quadratic utility and uniformly distributed
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types. Section 7 contains the conclusion.

2 Literature Review

Despite the existence of a rather voluminous literature on screening, relatively little is known
about the type of problem we study. There are several reasons for this. First, as we
will demonstrate, one of the dominant current approaches, the method of demand profiles
(pioneered by Goldman, Leland and Sibley (1984), and further popularized by Brown and
Sibley (1986) and, most forcefully, by Wilson (1993)) fails to adequately solve the problem.
The difficulty with the demand profile method is that it requires that the derived marginal price
schedule intersect a customer’s demand schedule from below. In the one-dimensional type
case, this is assured by the condition that marginal valuation is increasing in type (uqθ > 0),
and that the assignment of quantities to types is nondecreasing (ensured by a monotonic
inverse hazard rate, or by ironing). In the multi-dimensional case, no such sufficient condition
is known. Furthermore, crossing from below is hard to ensure, because demand curves vary
both in slope and intercept - sufficient variation in the intercept will thus necessarily lead
to a violation of the required condition. As a consequence, the allocation will fail to be
incentive compatible: the quantity assigned to customers whose demand curve intersects the
tariff from above will correspond to a local minimum rather than a global maximum of their
surplus maximization problem. Many of the worked out examples in the literature, such as
the linear quadratic one studied in Wilson (1993, p. 196), therefore involve tariffs that are
not incentive compatible.

To illustrate this, consider the following example.
Example 1 Suppose that a monopolistic seller of a good faces a consumer with utility

function u(q, α, θ) = θq− b−α
2 q2, where q is the quantity of the good, (α, θ) is privately known

consumer type distributed uniformly over the unit square, and b is a constant satisfying b < 3
2 .

The seller has zero cost of production. We are interested in the optimal pricing strategy or,
equivalently, the optimal screening mechanism.

Following Wilson (1993) define the demand profile N(p, q) as the fraction of consumers in
the population whose demand price uq exceeds p. A simple calculation yields:

N(p, q) =

{
1
2q{(1− p− (b− 1)q)2 − (1− p− bq)2}, if p+ bq ≤ 1

1
2q (1− p− (b− 1)q)2, if p+ bq ≥ 1.

According to the demand profile approach, N(p, q) represents the demand schedule for quantity
increment q. Thus for the quantity increment q, monopolist should charge the price p(q) =
P ′(q) to solve

max
p

{(p− c)N(p, q)}

Performing this maximization gives

p(q) =

{ 1
2 − 1

4(2b− 1)q, if q ≤ 2
2b+1

1
3(1− (b− 1)q), if q ≥ 2

2b+1 .
.
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resulting in the tariff P (q) =
∫ q
0 p(z)dz

P (q) =

{
1
2q +

(
1
8 − b

4

)
q2, if q ≤ 2

2b+1
1

6(2b+1) +
q
3 − b−1

6 q2, if q ≥ 2
2b+1 .

.

For this approach to be correct, every consumer type whose demand price equals p(q) should
also be willing to purchase all increments q′ < q and not purchase any increments q′ > q. This
will be the case if the iso-price curves in type space, defined by the equation uq(q, α, θ) = p(q),
do not intersect, for then every consumer type α, θ will have only one solution to the first
order condition associated with her surplus maximization problem maxq{u(q, t)− P (q)}.1

Let us therefore examine the iso-price curves associated with the schedule P . Solving the
equation θ − (b− α)q = p(q) yields

θ(q, α) =

{ 1
2 + 1

4(2b+ 1− 4α)q, if q ≤ 2
2b+1

1
3 + 1

3(2b+ 1− 3α)q, if q ≥ 2
2b+1 .

Figure 1 illustrates these iso-price curves. All iso-price curves are straight lines. For q ∈
[0, 2

2b+1 ], iso-price lines go through the point (α, θ) = (2b+1
4 , 12), rotating up form a flat line at

the level q = 0 to the the quantity q = 2
2b+1 , where the northwest corner point (α, θ) = (0, 1)

is reached. For q ≥ 2
2b+1 , all iso-price lines rotate up through the point (α, θ) = (2b+1

3 , 13),

until the quantity q = 1
b−1 is reached, when the north-east corner point (α, θ) = (1, 1) is

hit. This means that any point (α, θ) in the interior of triangle ∆ defined by the inequalities
1+2b−2α

1+2b ≤ θ ≤ 1/2 and α ≥ 2b+1
4 is the intersection point of an iso-price line from the region q

< 2
2b+1 and an iso-price line from the region q > 2

2b+1 . The objective function of such a type

therefore has two stationary points, one at a quantity q−(α, θ) <
2

2b+1 and one at a quantity

q (α, θ) > 2
2b+1 . It is easy to see that q− corresponds to a local minimum, and q+ to a local

maximum.
The presence of a local minimum to the consumer’s objective function has two immediate

consequences. First, the demand profile approach, in which consumers are presented with
marginal price schedules p(q), is no longer equivalent to the original approach, where consumers
are presented with a nonlinear tariff P (q). Indeed, any consumer in the above mentioned
triangle would be unwilling to purchase any quantity increment in the interval [0, q−], whereas
they might purchase this increment when presented with the nonlinear pricing schedule P .
Secondly, and more damagingly, the quantity q+ may no longer be a global maximum to the
consumer’s optimization problem.

Since the only other candidate for an optimum occurs at q = 0, this raises the important
issue of whether all consumer types who are purchasing increment q+ under the marginal
schedule p(q) would be willing to participate in the mechanism. As indicated above, this is

1More formally, consider any type (α, θ) on the iso-price curve at the quantity q, i.e. uq(q, α, θ)− p(q) = 0.
Since iso-price lines do not cross, iso-price curves at quantities q′ > q will lie to the northeast of the iso-
price curve at quantity q, and iso-price curves at quantities q′ < q will lie to the southwest of the iso-price
curve at quantity q. It then follows from assumption 1(iii) that uq(q

′, α, θ) − p(q′) > 0 for q′ < q, and
uq(q

′, α, θ) − p(q′) > 0 for q′ > q. Consequently, type (α, θ)’s objective function is strictly quasiconcave,
implying that q is a global maximum.
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not an issue for consumer types with θ ≥ 1
2 , since iso-price lines do not cross for such types.

For consumers types in the triangle ∆, only q > 2
2b+1 can be a maximum, and for such q we

have

u(q, α, θ(q, α))− P (q) =
1

6

(
(1 + 2b)q2 − 1

1 + 2b

)
− α

2
q2

Setting this expression equal to zero yields

α(q) =
1 + 2b

3
− 1

3(1 + 2b)q2

θ(q) =
1 + (1 + 2b)q

3(1 + 2b)q

These equations trace out a strictly decreasing a curve in type space, which may equivalently
be expressed as

θ(α) =
1

3
+

√
(1 + 2b)(1 + 2b− 3α)

3(2b+ 1)

Note that the participation constraint is violated for all types in ∆ that lie below the curve
θ. As a consequence, the demand profile approach necessarily fails whenever when b < 3

2 .
McAfee and McMillan (1988) propose a closely related approach. These authors introduce

a condition termed “Generalized Single Crossing” which ensures that any solution satisfying
the first and second order conditions of the agent’s surplus maximization problem is globally
incentive compatible. Generalized Single Crossing implies that iso-price curves are linear in the
type space, thereby permitting a reduction to a one-dimensional screening problem. McAfee
and McMillan’s contribution is considerable, but suffers from a number of drawbacks. First,
the limitation to linear iso-price curves is significant in our context. Second, their approach
implicitly assumes that in equilibrium all agent types along an iso-price line will participate.
Unfortunately, as our analysis will reveal, this assumption is often violated.2

Lewis and Sappington (1988) adopt the Generalized Single Crossing assumption, but in-
stead of formulating the problem in terms of demand profiles use the direct method pioneered
by Mussa and Rosen (1978), leading to an objective based on virtual utility functions. Because
it is based upon McAfee and McMillan’s method for reducing the problem to a one-dimensional
screening problem, this approach suffers from the same drawbacks. In addition, Lewis and
Sappington’s analysis assumes that in equilibrium there is no exclusion. They do not provide
conditions for exclusion to be absent, and unfortunately, as we will show, exclusion is rather
prevalent. In particular, in the context of nonlinear pricing, absence of exclusion requires the
aggregate demand curve to be perfectly inelastic at the seller’s marginal cost of production.3

Finally, Lewis and Sappington implicitly assume that the slope of iso-price curves in type

2Properly taking into account the agent’s participation constraint changes the integrand of principal’s ob-
jective function in an essential way: rather than depending only on the allocation q(t1) and its derivative q′(t1)
it now also depends on q(t′1) for all t′1 > t1. As a consequence, McAfee and McMillan’s formulation of the
problem can no longer be solved by the method of calculus of variation.

3Armstrong (1999) already pointed out this deficiency, but he did not provide neccessary and sufficient
conditions for exclusion to occur, nor did he solve the associated multi-dimensional screening problem.

5



space is constant, which (in the nonlinear pricing interpretation) can happen only if the slope
of the agent’s demand function is independent of type.4

The crossing of iso-price lines demonstrated in Example 1 also implies that the methods
of McAfee and McMillan and Lewis and Sappington are flawed. Indeed, since a consumer
type can lie on two distinct iso-price lines uq(q, α, θ) − p(q) = 0, merely being located on an
iso-price line generally cannot identify the quantity purchased by a consumer.

There are several approaches to resolving these difficulties. One could try to identify
conditions under which iso-price curves never cross. This is a useful approach, and we pursue
it elsewhere (Deneckere and Severinov, 2009b). The main drawback of this approach is that
it fails to solve some of the most rudimentary examples, such as the one presented above.
For this reason, the present paper concentrates on the more difficult question of solving the
multi-dimensional screening problem when iso-price curves are allowed to intersect.

Rochet and Stole (2001) develop the direct method for arbitrary multi-dimensional screen-
ing problems. Their approach has two drawbacks. First, because the problem is not reduced
to a one-dimensional screening problem, the associated first-order conditions require the solu-
tion of a partial differential equation, which cannot be solved analytically, except in very special
cases. Secondly, because the direct approach only imposes the local incentive compatibility
constraints, the solution typically violates the conditions for global incentive compatibility. A
general method for solving our type of problem therefore remains lacking.

Lastly, a solution method for our problem has recently become available for the special
case where the agent’s utility function is linear in type. This was made possible by two
breakthroughs in the analysis of multi-dimensional screening problems. First, Rochet and
Choné (1998) developed a “sweeping” procedure (analogous to ironing for the one-dimensional
case), which adjusts the solution derived by the direct method so as to ensure global incentive
compatibility. Rochet and Choné’s method requires that the dimension of the type space
and allocation space coincide. However, by interpreting the coefficients on consumer types
as artificial goods in the utility function, Basov (2001) was able to transform the problem
from one where the number of consumer characteristics exceeds the dimension of the physical
allocation space to one where the two dimensions coincide. While ingenious, this approach
also has several drawbacks. It requires agents’ utility functions to be linear in type, which is
great for applications such as auctions, but quite limiting in the current context. The method
also necessitates the solution of a partial differential equation, which generally can be solved
only numerically. Finally, sweeping is a complicated procedure which does lend not itself to
analytical solutions.

It is fair to conclude that because of all these issues, our type of screening problem has
hitherto remained inaccessible to most economists, and therefore failed to generate interesting
practical applications.

4As a consequence, Lewis and Sappington’s characterization of an optimal mechanism (Proposition 1, p.
447) is generally incorrect. However, it does hold for the special example studied in Section 5 of their paper.
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3 The Model and Characterization of Isoquants

A monopolist supplier of a single good faces a population of consumers. Consumers are dis-
tinguished by a two dimensional preference parameter t = (α, θ), which is private information.
The limitation to two dimensions of uncertainty is made here for ease of exposition and com-
pactness in notation. With minor modifications, our results generalize to higher dimensions
(for details, see Deneckere and Severinov (2009a). When consuming a quantity q ∈ R+ of
the good, acquired at cost p, a consumer of type t receives net utility u(q, t)− p. Consumers’
reservation utilities are equal to zero.

The distribution function F (α, θ) of consumer types in the population is common knowl-
edge. We assume that F (.) is twice continuously differentiable function, with density function
f(α, θ) > 0, and a rectangular support [a, b] × [c, d]. Renormalizing, we can without loss of
generality take the support to be [0, 1]× [0, 1].

We assume that the firm’s marginal and average cost of production is constant at the level
c > 0. To handle the case in which the monopolist’s aggregate cost C(Q) is an increasing
function of aggregate output Q =

∫
q(t)f(t)dt we would need one extra step. Precisely, for

any given constant marginal cost level c, our model would predict the corresponding aggregate
output level Q selected by the firm. In the optimal mechanism, C ′(Q) = c.

We maintain the following assumptions on preferences throughout the paper:

Assumption 1 The function u(q, α, θ): R+ × [0, 1]2 is of class C3. Furthermore,
(i) u(0, α, θ) = 0 for all (θ, α) ∈ [0, 1]2;
(ii) uq(q, α, θ) > 0, uθ(q, α, θ) > 0 and uα(q, α, θ) > 0, for all q > 0 and (α, θ) ∈ [0, 1]2;
(iii) uθq(q, α, θ) > 0, uαq(q, α, θ) > 0, for all (α, θ) ∈ (0, 1]2and q > 0;
(iv) uqq(q, α, θ) < 0 for all θ, α and q.

Assumption 1 is fairly standard. Part (iii) requires consumer’s utility functions to be
supermodular. Part (iv) ensures that consumers’ demand functions are downward sloping.

We also make extensive use of a novel assumption, specific to the higher-dimensional type
space, which we term “Single-Crossing of Demand”:

Assumption 2 (SCD) d
dq

uqα

uqθ
> 0 for all q > 0.

The economic interpretation of Assumption 2 is that the inverse demand functions can
intersect at most once, as the next Lemma demonstrates.

Lemma 1 Suppose Assumption 2 holds and α′ > α. Then uq(q, α
′, θ′) = uq(q, α, θ) implies

uqq(q, α
′, θ′) > uqq(q, α, θ) .

Assumption 2 should not be confused with the single-crossing condition in one-dimensional
screening problems, which guarantees that consumers’ indifference curves in (q, t) space in-
tersect at most once. In fact, the latter condition is extremely restrictive, as it implies that
consumers’ demand curves do not intersect at all, i.e. can be ranked. In the next section, we
will show that Assumption 2 has many important consequences. In particular, it implies that
isoquants in (θ, α) space cannot intersect, and must “fan out”.
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By the Revelation Principle, the monopolist’s problem is to choose a direct mechanism
(q(α, θ), t(α, θ)), where q(α, θ) is the quantity assigned to type (α, θ) and t(α, θ) is the transfer
that this type pays to the firm, so as to maximize her expected profits subject to the consumer’s
incentive constraints and individual rationality. 5. Formally, the firm’s problem can be stated
as follows:

max
∫
[0,1]2 t(α, θ)dF (α, θ) (1)

u(q(α, θ), α, θ)− t(α, θ) ≥ u(q(α′, θ′), α, θ)− t(α′, θ′) for all (α, θ), (α′, θ′2 (2)

u(q(α, θ), α, θ)− t(α, θ) ≥ 0 for all (α, θ) ∈ [0, 1] (3)

The solution to this problem exists by standard arguments, since u(.) is continuous and
bounded in (α, θ).

Let T ∗(q̃|q(.), t(.)) denote the set of all types (α, θ) who are assigned the same quantity q̃ in
the mechanism, i.e. T ∗(q̃|q(.), t(.)) = {(α, θ)|q(θ, α) = q̃}. We will refer to T ∗(q̃|(q(.), t(.))) as
an isoquant at quantity q̃ in the mechanism (q(.), t(.)). For brevity, we will drop the argument
(q(.), t(.)) and simply write T (q̃).

The first goal of this section is to characterize the set T (q) in an incentive compatible
and individually rational mechanism. Note that several quantity pairs may provide the same
net utility for a type (α, θ) who is assigned quantity q(α, θ) in the mechanism. That is, for
such type incentive constraints (2) may hold as equality for a set of (α′, θ′). This point will
turn out to be important for the characterization of isoquants T (q), as we will show below.
Accordingly, let us define

Q∗(α, θ) = {q(θ′, α′)|(θ′, α′) ∈ argmax
θ′,α′

u(q(θ′, α′), α, θ)− t(θ′, α′)}

That is, Q∗(α, θ) denotes the set of optimal quantities for type (α, θ) in the mechanism
(q(.), t(.)). Clearly, Q∗(α, θ) is non-empty for all (α, θ), since q(α, θ) ∈ Q∗(α, θ). Further-
more, since the utility function u(.) is strictly supermodular, every selection of Q∗(α, θ) is an
increasing function.6

The following Lemma provides two important results which constitute the basis for our
characterization of the isoquants T (q). The two main ingredients behind this characterization
are the supermodularity of the agent’s payoff function and the single-crossing of demand (SCD)
property.

Lemma 2 Suppose Assumption 2 holds.
(i) Let q1 ∈ Q∗(θ1, α1) and

uq(q1, θ2, α2) = uq(q1, θ1, α1) for some (θ2, α2) s.t. α1 > α2. (4)

Then Q∗(θ2, α2) = q1.
(ii) Suppose in addition that Assumption 1(iii) holds. Let (θ, α) ∈ [0, 1] × [0, 1) be such

that {q1, q2} ∈ Q∗(θ, α) for some q1, q2 ∈ R++, q1 ̸= q2. Consider any (α′, θ′2 s.t. α′ > α and
uq(q1, α, θ) = uq(q1, α

′, θ′). Then q1 ̸∈ Q∗(α′, θ′).

5The Taxation principle implies that we can view this problem equivalently as the firm’s choice of the optimal
tariff P (q)

6Precisely, if q′ is a selection from Q∗ then q′′, α′) ≥ q′(θ, α) whenever θ′ ≥ θ and α′ ≥ α.
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Lemma 2 provides a partial characterization of the set T (q). Namely, starting from any
type (α1, θ1) for which q is optimal, the Lemma identifies an interval of types to the “left” of
α1 (types with lower values of this parameter) for which q is the unique optimum and which,
therefore, belong to T (q). These types satisfy condition (4). Lemma 2 also implies that the
types with higher values of the parameter α that satisfy condition (4) are not in T (q) if more
than one quantity is optimal at (α1, θ1). Accordingly, let us define:

I(q, α, θ) = {(α′, θ′) : uq(q, α
′, θ′) = uq(q, α, θ), α

′ > α } (5)

We will refer to the set I(q, α, θ) as left iso-price interval for q from (α, θ). Lemma 2 implies
that I(q, α, θ) ⊂ T (q) if q ∈ Q(α, θ). It follows that, if Q∗(α, θ) is multi-valued for some (α, θ),
then there are many left iso-price intervals emanating from (α, θ) at all quantities q ∈ Q∗(α, θ),
all of which correspond to optimal quantities on these intervals.

Our next goal is to characterize the boundary between the two regions in the mechanism
(q(.), t(.)): the participation region which includes all types who consume a positive quantity
and the exclusion region which includes all types who consume zero quantity. The boundary
between these two regions is defined as follows:7

θ(α) ≡ inf{θ|θ ≥ 0, q(α, θ) > 0}
Also, let s(α, θ) = max

θ′,α′
{u(q(θ′, α′), α, θ)− t(θ′, α′)}

Note that without loss of generality s(α, θ) = 0 if q(α, θ) = 0, for otherwise the mechanism is
suboptimal and can be improved by setting to zero the transfers paid by the types who get
zero quantity. A characterization of the lower boundary is provided in the following Lemma:

Lemma 3 Suppose that Assumptions 1 and 2 holds. The function s(.) is continuous, with
s(α, θ) > 0 if θ > θ(α) and s(α, θ) = 0 if θ < θ(α). The lower boundary θ(α) is continuous,
non-increasing in α, and strictly decreasing in α whenever q(α, θ(α)) > 0 and θ(α) > 0.

The optimal quantity correspondence along the lower boundary, Q∗(θ(α), α), is increasing
in α and, for almost all α, Q∗(θ(α), α) is a singleton i.e. Q∗(α, θ(α)) = q(α, θ(α)).

If, in addition, sup uα
uθ
(q, α, θ) <∞, then θ(α) is absolutely continuous and, for almost all

α s.t. 0 < θ(α) < 1, we have

dθ

dα
= −uα

uθ
(q(α, θ(α)), α, θ(α)). (6)

The lower boundary θ(α) can have flat segments. First, flat segments can be present
because θ(.) hits the lower (θ = 0) or upper (θ = 1) boundaries of the type space. Also,
Lemma 3 implies that the lower boundary is flat i.e., θ(.) is constant on an interval [α′, α′′], if
−uα

uθ
(q(α, θ(α)), α, θ(α)) is constant on this interval, as illustrated in Example 1. Accordingly,

let α̂ = sup{α|α ∈ [0, 1], θ(α) > 0}, and θ̂ = α̂.
Next, let

L ≡ {(α, θ(α)) : 0 ≤ α ≤ 1} ∪ {(1, θ) : θ ≥ θ(1)},
7We adopt the convention that the infimum of an empty set equals 1.
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In words, L traces out the lower boundary and the right boundary of the participation region.
The following Lemma establishes important properties of an optimal mechanism and of

the optimal quantity correspondence Q∗(.).

Lemma 4 In an optimal mechanism,
(i) the associated allocation q(α, θ) is continuous at all (α, θ) s.t. θ > θ(α).
(ii) Q∗(.) is closed and upper-hemicontinuous (u.h.c) correspondence. Q∗(α, θ) is convex-
valued for all (α, θ) s.t. α > 0 and θ < 1.
(iii) For every, (α, θ) s.t. q(α, θ) > 0 there exists a unique (θ′, α′) ∈ L s.t. (α, θ) ∈ I(q′, α′, θ′)
where q′∗(α′, θ′). So, q(α, θ) = q′.

Furthermore, I(q′, α′, θ′) ∩ L = (α′, θ′) for all (α′, θ′) ∈ L and q′∗(α′, θ′).

According to part (iii) of Lemma 4, every isoquant emanates from the boundary L and
never intersects L again, and each point in the participation region lies on some isoquant. As
a consequence, we make an important conclusion that both the isoquants and the quantity
allocation q(., .) are entirely determined by the behavior of the allocation q(α, θ) along the
curve L.

The results of the previous Lemmas can be summarized in the following Theorem:

Theorem 1 Suppose that Assumptions 1 and 2 hold and sup uα
uθ
(q, α, θ) < ∞. Consider a

direct incentive compatible and individually rational mechanism (q(α, θ), t(α, θ)) s.t. q(α, θ) is
continuous in the participation region.

Then there exists an absolutely continuous function θ(.) : [0, 1] → [0, 1], a type (α̂, θ̂),
with either α̂ = 1 or θ̂ = 0, and two non-decreasing, u.h.c, convex-valued correspondences
Q∗(·) : [0, 1] → R+ and Q

∗
(·) : [θ̂, 1] → R+ with Q∗(1) = Q

∗
(θ̂) such that:

(i) θ(α) = inf{θ|θ ≥ 0, q(α, θ) > 0} for all α ∈ [0, 1];
(ii) α̂ = sup{α|θ(α) > 0}, θ̂ = θ(α̂);
(iii) q(α, θ(α)) ∈ Q∗(α) for all α ∈ [0, 1]; q(1, θ) ∈ Q

∗
(θ) for all θ ∈ [θ̂, 1]

(iv) for all (α, θ) ∈ [0, 1]2 s.t. θ > θ(α), there exists either:
(a) a unique α̃ ∈ [0, 1] s.t. q(α, θ) ∈ Q∗(α̃). In this case, uq(q(α, θ), α, θ) = uq(q(α, θ), α̃, θ(α̃)),

t(α, θ) =

{
u(q(α, θ), α̃, θ(α̃)) if α̃ ≤ α̂

u(q(α̂, θ̂), α̂, θ̂) +
∫ α
α̂ uq(q(s, 0), s, 0)ds if α̃ ∈ (α̂, 1].

(7)

or (b) a unique θ̃ ∈ [θ̂, 1] s.t. q(α, θ) ∈ Q
∗
(θ̃). In this case, uq(q(α, θ), α, θ) = uq(q(α, θ), 1, θ̃),

and

t(α, θ) = u(q(α̂, θ̂), α̂, θ̂) +

∫ 1

α̂
uq(q(s, 0), s, 0)ds+

∫ θ

θ̂
uq(q(1, z), 1, z)dz (8)

Theorem 1, which will be discussed in more details below, establishes that every incentive
compatible, individually rational mechanism uniquely induces a boundary L and allocation
along it. In particular, part (i) describes the lower boundary θ(.). Part (iii) asserts that
every point in the participation region lies on an isoquant emanating from a point on the
boundary L. Part (iv) links the transfer function t(.) in a mechanism to the allocation along
the boundary L. The final result of this section provides a converse to Theorem 1:
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Theorem 2 Suppose Assumptions 1 and 2 hold, and sup uα
uθ
(q, α, θ) <∞. for all (α, θ) ∈ [0, 1]

and q ∈ [0, q∗(1, 1)].
Consider some (α̂, θ̂) ∈ [0, 1]2 s.t. either α̂ = 1 or θ̂ = 0 or both, and two non-decreasing,

u.h.c., convex-valued, correspondences Q∗(·) : [0, 1] → R+ and Q
∗
(·) : [θ̂, 1] → R+ with

Q∗(1) = Q
∗
(θ̂).

Then, the following direct mechanism (q(α, θ), t(α, θ)) is incentive compatible and individ-
ually rational:
(i) Take q(α, θ(α)) to be some selection from Q∗(α) and q(1, θ) be some selection from Q

∗
(θ);

(ii) θ(α) is uniquely defined by θ(α̂) = θ̂ and equation (6) for α ∈ [0, α̂] s.t. maxQ∗(α) > 0;

θ(α) = 1 for α ∈ [0, α̂] s.t. maxQ∗(α) = 0; and θ(α) = θ̂ for α ∈ [α̂, 1]. 8

(iii) For every (α, θ) s.t. θ > θ(α) there exists either (a) α′ ∈ [0, 1] and q̃ ∈ Q∗(α′) s.t.

uq(q̃, α, θ) = uq(q(α, θ), α
′, θ(α′)). In this case, q(α, θ) = q̃.

(b) or θ′ ∈ [θ, 1] and q̄ ∈ Q(θ′) s.t. uq(q̄, α, θ) = uq(q̄, 1, θ
′). In this case, q(α, θ) = q̄.

(iv)

t(α, θ) =

{
u(q(α, θ), α′, θ(α′)) for all (α, θ) s.t. q(α, θ) ∈ [0,maxQ∗(α̂)],

u(maxQ∗(α̂), α̂, θ(α̂)) +
∫ q

maxQ∗(α̂)
uq(z, α(z), θ(z))dz for (α, θ) s.t. q(α, θ) ∈ [maxQ∗(α̂),maxQ

∗
(1)]

(9)

Theorems 1 and 2 establish a one-to-one relationship between the set of incentive com-
patible individually rational direct mechanisms, on the one hand, and, on the other hand,
the set of quantity correspondences (Q∗(α), Q

∗
(θ)) on the boundary L and the “junction”

points (α̂, θ̂) at which θ(α) intersects the boundary of the type space. Per Lemma 3, the lower
boundary θ(α) is uniquely determined by the choice of (α̂, θ̂) and the quantity allocation q(.)
on the lower boundary. Since Q∗(.) is increasing and u.h.c., Q∗(α) is unique for almost all
α. So, q(.) is uniquely determined by Q∗(.) for almost all α, and hence θ(α) is also uniquely

determined by the choice of (α̂, θ̂) and Q∗(.).
Thus, to find the solution to problem (1)-(3), we could optimize over the set of non-

decreasing, u.h.c., convex-valued quantity correspondences Q∗(·) and Q∗
(·) for the boundary

L and “junction” points (α̂, θ̂). We will use this method to compute the optimal mechanism.
However, before we will be able to to do, we will need to tackle the following issues. First, we
need to complete the reformulation of our problem to express the expected profits in terms
of the Q∗(·), Q∗

(·), and (α̂, θ̂). Second, we will also have to deal with additional technical

complications that arise when Q∗(α) and Q
∗
(θ) are sets rather than singletons, as well as

when Q∗(.) is constant over some interval. These issues will be considered in the following
sections.

8Since Q∗(α) is an increasing and closed correspondence, it must be a singleton for almost all α ∈ [0, 1]. So,

for given Q∗(α), the choice of q(α, θ(α)) is trivial for almost all α ∈ [0, 1]. The same applies to Q
∗
(θ). Hence,

θ(α) is uniquely defined by specifying Q∗(α) and (α̂, θ̂).
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4 The Reformulated Problem

In the previous section we have established an isomorphy between the set of incentive compat-
ible individually rational mechanism and the set an element of which consists of a point (α̂, θ̂)
(s.t. either α̂ = 1 or θ̂ = 0) and two nondecreasing, u.h.c, convex-valued correspondences
Q∗(·) : [0, 1] ⇒ R+, Q

∗
(·) : [θ̂, 1] : [0, 1] ⇒ R+ and Q∗(1) = Q

∗
(θ̂). This will allow us to

simplify the problem (1)-(3). However, maximizing over the set of correspondences is analyt-
ically cumersome. So we now proceed with an additional simplification. Instead of assigning
quantities to types, as in the standard mechanism setting, we will proceed in the opposite
direction and will be assigning types to quantities. Specifically, suppose that we are given two
nondecreasing, u.h.c, convex-valued correspondences Q∗(·), Q∗

(·) s.t. Q∗(1) = Q
∗
(θ̂) and a

point (α̂, θ̂) s.t. either α̂ = 1 or θ̂ = 0.
Then, let us define a pair of functions (α(q), θ(q)) as follows. For q ∈ [0, Q∗(1)], let

α(q) = max{α|q ∈ Q∗(α)}, θ(q) = θ(α(q)) where the function θ(.) is defined according to

(ii) in Theorem 2. For q ≥ maxQ∗(1) let α(q) = 1, θ(q) = max{θ|q ∈ Q
∗
(θ)}. Note that

intervals where Q∗(.) or Q
∗
(.) are constant correspond to the discontinuities in the functions

(α(·), θ(·)). Furthermore, if α(.) is constant on some interval in [0,maxQ∗(1)], then θ(.) must
also be constant on this interval by the definition of θ(.). For otherwise, θ(.) would not be a
function.

Given the above definitions and for fixed (α̂, θ̂) ∈ [0, 1]2, q̄ ∈ R+ with either α̂ = 1 or
θ̂ = 0, there is a 1-to-1 relationship between the set of nondecreasing, u.h.c, convex-valued,
bounded correspondences Q∗(·), Q∗

(·) s.t. maxQ
∗
(1) = q̄ and the set of functions (α(.), θ(.))

continuous a.e. on [0, q̄] and such that α(.) is increasing and θ(.) is decreasing on [0,maxQ∗(1)],
while on [maxQ∗(1), q̄] α(.) is equal to 1 and θ(.) is increasing, and θ(q) = θ(α(q)) for q s.t.
q ≤ min q|α(q) ≥ 1, where θ(.) is given by the solution to (ii) in Theorem 2.

Note that any pair of admissible functions (θ(q), α(q)) together with (α̂, θ̂) uniquely deter-
mines maxQ∗(1) via the condition Q∗(1) = max{q|α(q) = 1, θ(q) ≤ θ̂}. We will henceforth
define q(1) = Q∗(1) = min{q|α(q) = 1}. Also, q̂ can be set to be any solution to the equations
α̂ = α(q) and θ(q) ≤ 1. Specifically, we will set q̂ = min{q|α(q) = α̂, θ(q) ≤ 1}. Also, be-
cause θ(.) must be constant on any interval where α(.) is constant, for any pair of admissible
functions (α(.), θ(.)), θ(α) is well-defined by

θ(α) = θ(q′), where q′ saisfies α(q′) = α (10)

Using this isomorphism, we will now proceed to reformulate the problem (1)-(3) in terms
of an optimal choice of a 5-tuple (α(.), θ(.), α̂, θ̂, q̄) which we will henceforth refer to as a
mechanism (Recall that q̄ = maxQ

∗
(1)).

In order to complete this reformulation, we need to define a probability measure on the
set of quantities induced by a mechanism (α(.), θ(.), α̂, θ̂, q̄). For this, we need another piece
of notation. For any point (α, θ) let the function σ(q, α, θ, ·.) represent the iso-price curve
through (α, θ) at the quantity q. That is, for any q ∈ R+, (θ, α) ∈ (0, 1]× [0, 1] and a ∈ [0, 1],
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the function σ(q, α, θ, a) = σ where σ is defined as follows:

uq(q, σ, a) = uq(q, θ, α), if uq(q, 1, a) ≥ uq(q, θ, α) ≥ uq(q, 0, a)

σ = 1, if uq(q, 1, a) < uq(q, θ, α)

σ = 0, if uq(q, 0, a) > uq(q, θ, α) (11)

Observe that, whenever σ(q, α, θ, a) ∈ (0, 1), we have:

σq(q, α, θ, a) =
uqq(q, α, θ)− uqq(q, a, σ)

uqθ(q, a, σ)
(12)

σθ(q, α, θ, a) =
uqθ(q, α, θ)

uqθ(q, a, σ)
(13)

σα(q, α, θ, a) =
uqα(q, α, θ)

uqθ(q, a, σ)
(14)

Further, let α(q, α, θ) be defined as the solution in a to the equation σ(q, α, θ, a) = 1, that
is uq(q, α, θ) = uq(q, α(q, α, θ), 1) if such a solution exists, and α(q, α, θ) = 0, otherwise i.e.
if uq(q, α, θ) ≤ uq(q, 0, 1). (In the latter case, there exists θ′ ∈ [0, 1) such that uq(q, α, θ) =
uq(q, 0, θ

′)).
Next, define

H(q, α, θ) =

∫ 1

α(q,α(q),θ(q))

∫ 1

max{σ(q,α,θ,a),θ(a)}
f(a, t)dtda (15)

Then the probability measure of the set of types assigned quantities that do not exceed q is
equal to

1−H(q, α(q), θ(q)).

The points of discontinuity of α(q) correspond to atoms of the probability distribution 1 −
H(q, α(q), θ(q)). Particularly, the size of an atom at a quantity q̃ is equal to:

lim
q↑q̃

H(q, α(q), θ(q))−H(q̃, α(q̃), θ(q̃))

When α(.) and θ(.) are differentiable, then the density of the quantity q is equal to:

ĥ(q) ≡ h̃(q, α(q), θ(q), α′(q), θ′(q)) =

∫ α

0
f(σ(q, α, θ, a), a)[σq(q, α, θ, a)+σθ(q, α, θ, a)θ

′+σα(q, α, θ, a)α
′]da

Thus the expected seller’s revenue in the mechanism is equal to

ER =

∫ q̄

0
t(q)d (1−H(q, α(q), θ(q)) (16)

Since,

t(q) = t(α(q), θ(q)) =

{
u(q, α(q), θ(q)), for all q ∈ [0, q̂]

u(q̂, α(q̂), θ(q̂)) +
∫ q
q̂ uq(z, α(z), θ(z))dz, for all q ∈ [q̂, q̄]

,
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(16) can be rewritten as follows:

ER =

∫ q̂

0
u(q, α(q), θ(q))d (1−H(q, α(q), θ(q))) + u(q̂, α(q̂), θ(q̂))H(q̂, α(q̂), θ(q̂))+∫ q̄

q̂

∫ q

q̂
uq(z, α(z), θ(z))dzd (1−H(q, α(q), θ(q))) (17)

We will henceforth assume that the functions α(q) and θ(q)) are piecewise continuously
differentiable on the interval (q0, q̄] where q0 = minQ∗(0). This assumption can be justified
as follows. Suppose there exists a solution to problem (1) when (α(·), θ(·)) is piecewise con-
tinuously differentiable. Because piecewise continuously differentiable functions are dense in
the set of measurable functions, such a solution must also be a solution to the unrestricted
problem. Below we will identify conditions under which the restricted problem has such a
solution. Under those existence conditions the quantity allocation along L is increasing and
hence ‘ironing’ will not be needed. When ‘ironing’ is necessary, a more complicated approach
using impulse control is appropriate (see Deneckere and Severinov, 2009c). We may now state:

Theorem 3 Suppose Assumptions 1 and 2 hold, and consider mechanism (α(.), θ(.), α̂, θ̂, q̄)
s.t. (α(·), θ(·)) are piecewise continuous and piecewise continuously differentiable. Let q̂ =
min{q|α(q) = α̂, θ(q) ≤ 1}

Then the monopolist’s profits are given by∫ q̂

0

u(q, α(q), θ(q))h̃(q, α(q), θ(q), α′(q), θ′(q))dq + u(q̂, α̂, θ̂)H(q̂, α̂, θ̂) +

∫ q̄

q̂

H(q, α(q), θ(q))uq(q, α(q), θ(q))dq

(18)

Theorem 3 says that the monopolist’s profits consists of two parts. The first part de-
pends only upon the allocation (α(q), θ(q)) for q ≤ q̂ on the lower boundary, with the
associated transfer equal to the gross utility of the type (α(q), θ(q)) (as the types on the
lower boundary earn zero surplus) and the density of types from which this transfer is col-
lected, h̃(q, α(q), θ(q), α′(q), θ′(q)) i.e., the types located on the isoquant through the point
(α(q), θ(q)).

The second part depends only upon the allocation (α(q), θ(q)) for q ≥ q̂. Over this interval,
the firm’s profits equals the sum of two terms. First, from each type that consumes more than q̂
the monopolist collects u(q(α̂), α̂, θ̂), the price paid by type (α̂, θ̂). The probability measure of

these types isH(q(α̂), α̂, θ̂). Second, the monopolist collects the marginal price uq(q, α(q), θ(q))
from each type that consumes more than q, of which there are H(q, α(q), θ(q)).

Consequently, the monopolist’s optimization problem can be split into the following three
subproblems.

Subproblem (i). For fixed q̂ ∈ R+ and (α̂, θ̂) ∈ [0, 1]2 such that either α̂ = 1 or θ̂ = 0,
choose functions α(q) and θ(q) to solve

W (q̂, α̂, θ̂) = max

∫ q̂

0
u(q, α(q), θ(q))h̃(q, α(q), θ(q), α′(q), θ′(q))dq (19)
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subject to the following constraints:

α(0) ≥ 0, α(q̂) = α̂, θ(q̂) = θ̂

α′(q) ≥ 0

θ′(q) = −uα(q, θ(q), α(q))
uθ(q, θ(q), α(q))

α′(q) (20)

Subproblem (ii). Given q̂ ∈ R+ and (α̂, θ̂) ∈ [0, 1]2 such that either α̂ = 1 or θ̂ = 0,
choose q(1) and q̄ ∈ R+, and functions α ∈ Lip([q̂, q(1)]) and θ ∈ Lip([q(1), q̄(1)]) to solve:

Z(q̂, α̂, θ̂) = max

∫ q̄

q̂
H(q, α(q), θ(q))uq(q, α(q), θ(q))dq (21)

subject to the following constraints:

q̂ ≤ q(1) ≤ q̄,

α(q) and θ(q) are nondecreasing

α(q̂) = α̂, α(q) = 1 for q ≥ q(1),

θ(q) = θ̂ for q ∈ [q̂, q(1)], θ(q̄) = 1.

Subproblem (iii). Finally, select q̂ ∈ R+ , and (α̂, θ̂) ∈ [0, 1]2 such that either α̂ = 1 or
θ̂ = 0 to solve

V (q̂, α̂, θ̂) = max
q̂,α̂,θ̂

W (q̂, α̂, θ̂) + u(q̂, α̂, θ̂)H(q̂, α̂, θ̂) + Z(q̂, α̂, θ̂) (22)

4.1 Solution to Subproblem (i)

First, consider the density function h̃(q, α, θ, α′, θ′) in the integrand of (19). According to
(20), along the lower boundary θ′(q) is uniquely determined by the value of the four-tuple
(q, α(q), θ(q), α′(q)). Therefore, the 5-tuple of arguments (q, α, θ, α′, θ′) of h̃(.) can be replaced
with a 4-tuple (q, α, θ, α′) and, with a slight abuse of notation, we obtain:

h̃(q, α, θ, α′, θ′) ≡ h(q, α, θ, α̇) =

∫ α

α(q,α,θ)
f(σ(q, α, θ, a), a) {σq − σθgα̇+ σαα̇} da. (23)

Next, note that
h(q, α, θ, α̇) = h0 + (h2 − gh1)α̇. (24)

where:

h0(q, α, θ) =

∫ α

α(q,α,θ)
f(σ(q, α, θ, a), a)σq(q, σ(q, α, θ, a), a)da (25)

h1(q, α, θ) =

∫ α

α(q,α,θ)
f(σ(q, α, θ, a), a)σθ(q, σ(q, α, θ, a), a)da (26)

h2(q, θ, α) =

∫ α

α(q,α,θ)
f(σ(q, α, θ, a), a)σα(q, σ(q, α, θ, a), a)da. (27)
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Recall that α(q, α, θ) in (25)-27) is the solution in a to the equation σ(q, α, θ, a) = 1, if such
a solution exists, and α(q, α, θ) = 0, otherwise.

Next, let q0 ≡ infq α(q) > 0. Note that each of (25),(26) and (27) and hence (23) is equal to
zero at any point (q, α(q), θ(q)) s.t. α(q) = 0. Therefore,

∫ q0
0 u(q, α(q), θ(q))h(q, α(q), θ(q), α̇(q))dq =

0, and so we can rewrite (19) as follows:

W0(q̂, α̂, θ̂) = max
q0≥0,α̇(·)≥0

∫ q̂

q0

u(q, α(q), θ(q))h(q, α(q), θ(q), α̇(q))dq. (28)

Now, we are ready to state Subproblem (i) as an optimal control problem. To this end,
let us form the Hamiltonian:

J(q, α, θ, α̇, µ, λ) = uh+ µα̇− λgα̇ = uh0 + [u(h2 − gh1) + (µ− λg)] α̇, (29)

where µ and λ are the multipliers on the state evolution equations for α and θ, respectively.
Equation (24) makes it apparent that the integrand of (22) is linear in α̇. Equation (20)

for the evolution of θ is also linear in α̇ and the expression for the evolution of α is an identity
and, therefore, is also linear in α̇. So, the Hamiltonian (29) is also linear in the control α̇.

This linearity creates certain technical difficulties for solving subproblem (i) as it implies
that α̇ cannot be solved for directly from the standard first-order conditions of optimality for
an optimal control problem. Also, recall that α̇ may exhibit discontinuities. Nevertheless, the
optimal control theory can still be used to solve this problem, albeit with some intricacies.
Notably, by Pontryagin’s Maximum principle, it remains true that the optimal control α̇ ≥ 0
maximizes the Hamiltonianm (29). So, let

S(q, α(q), θ(q), µ(q), λ(q)) = u(h2 − gh1) + (µ− λg) (30)

Then optimality requires the following:

S(q, α(q), θ(q), µ(q), λ(q)) < 0 ⇒ α̇ = 0 (31)

S(q, α(q), θ(q), µ(q), λ(q)) = 0 ⇒ α̇ ≥ 0

The function S(q, α(q), θ(q), µ(q), λ(q)) is called the switching function. Note that it can never
be strictly positive, since then the value of the objective would be infinite and optimal control
α̇ would be undefined.

An interval of q on which S vanishes (S = 0) is called a singular arc. Note that on a
singular arc, the optimality conditions do not pin down the value of the optimal control α̇.
An interval of q on which S < 0 is called a nonsingular arc. A point q at which a singular and
a nonsingular arc meet is called a junction point. It is apparent from the switching conditions
that at a junction point the optimal control may be discontinuous.

To recover the optimal control along a singular arc, we proceed as follows. Considering
S(q, α(q), θ(q), µ(q), λ(q)) as a function of q along a singular arc, we will choose the control α̇
to maintain S(q, α(q), θ(q), µ(q), λ(q)) ≡ 0. For this let us define:

ψ(q, α, θ) ≡ uq(q, α, θ)uθ(q, α, θ)

∫ α

α(q,α,θ)

f(σ(q, α, θ, a), a)

uqθ(q, a, σ(q, α, θ, a))
da. (32)

Then we have:
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Lemma 5 The optimal solution (q, α(q), θ(q)) satisfies:

Ṡ = gq(ψ − uh1 − λ) (33)

Along a non-singular arc:

S̈ =
dgq
dq

(ψ − uh1 − λ) + gq (ψq + uθh0 − uqh1)

On a singular arc:

S̈ = gq {[ψq + uθh0 − uqh1] + [ψα − ψθg − uf(θ, α) + uθ(h2 − gh1)− ψgθ] α̇} , (34)

Lemma 5 allows us to solve for the optimal control α̇ by setting (34) equal to zero, since
along a singular arc S̈ = 0. Applying Pontryagin’s maximum principle we also obtain the op-
timal solutions to (28) on non-singular arcs. The result is provided in the following Theorem.

Theorem 4 The solution to the maximization problem (28 ) has the following properties:
(i) Over any interval where α(q) is strictly increasing and hence θ(q) is strictly decreasing, we
have:

α̇(q) =
uθh0 − uqh1 + ψq

uf + ψgθ + ψθg − ψα − uθ(h2 − gh1)
(35)

θ̇(q) = −gα̇. (36)

λ(q) = ψ − uh1 (37)

µ(q) = ψg − uh2 (38)

(ii) Over any interval on which α, and hence θ, are constant, we have:

µ̇ = −uαh0 − u
∂h0
∂α

(39)

λ̇ = −uθh0 − u
∂h0
∂θ

(40)

(iii) The functions µ(q) and λ(q) are continuous.
(iv) We have: α(q0)q0 = 0.

Theorem 4 provides the optimal solution on every singular and non-singular arc. It also
gives a partial answer regarding the location of such arcs. Particularly, by Part (iii) of this
Theorem, the juncture points between singular and non-singular arcs must be chosen so that
the Lagrange multipliers λ and δ remain continuous throughout. Below, we will explore this
property further to provide a more detailed characterization of the solution. Before doing this,
we provide additional details of the solution in the following two Lemmas.
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Lemma 6 (Generalized Legendre-Clebsch): Let D(q, α, θ) be equal to the denominator
of (35) i.e.,

D(q, α, θ) ≡ uf + ψgθ + ψθg − ψα − uθ(h2 − gh1) (41)

The solution to the maximization problem (28) is such that D(q, α, θ) ≤ 0 along any optimal
singular (sub) arc.

Next, recall that q0 ≡ infα(q)>0 q. Also, let q∗∗ be such that σ(q∗∗, α(q∗∗), θ(q∗∗), 0) = 1.
In words, the isoquant corresponding to q∗∗, I(q∗∗, α(q∗∗), θ(q∗∗)), hits the “northwest” cor-
ner (0, 1) of the type space, and consequently, the density function h(q, α(q), θ(q), α̇(q)) is
discontinuous at q∗∗. To see this, consider the lower limit of the integrals in (25)- (27),
α(q, α(q), θ(q)). It is fairly apparent that it is not continuously differentiable at q∗∗ since its
total derivative from the left is zero, while its right-hand side derivative is strictly positive.

Using Lemma 6 we can establish the following properties of the optimal q0 and q∗∗:

Lemma 7 Suppose that u− uθuq

uqθ
> 0 for all (q, α, θ) s.t. q > 0. Then

(i) q0 = 0 and α(q0) > 0.
(ii) θ(q∗∗) < 1.

Note that the condition, u − uθuq

uqθ
> 0 for all (q, α, θ), holds for most commonly specified

utility functions, and is satisfied whenever u − uθuq

uqθ
is strictly increasing in q. A sufficient

condition for the latter property is that uqqθ ≥ 0. (Indeed, we have ∂
∂q (uqθu − uθuq) =

uqqθu− uθuqq > 0 whenever uqqθ > 0, since uqq < 0.)

4.2 Solution to subproblems (ii)-(iii)

Consider subproblem (ii). It represents a maximization problem with fixed left hand and
right hand boundaries, fixed initial “time” q̂, and free right hand “time” q̄. The next theorem
describes its solution. To state it we need to introduce some additional notation. Let

ϕ(q, θ) = uq(q, 1, θ)Hθ(q, 1, θ) + uθq(q, 1, θ)H(q, 1, θ) (42)

κ(q, α) = uq(q, α, 0)Hα(q, α, 0) + uαq(q, α, 0)H(q, α, 0) (43)

Let θϕ(q) be the solution to ϕ(q, θ) = 0, when such exists; θϕ(q) = 0 if ϕ(q, θ) > 0 for all
θ ∈ [0, 1]; θϕ(q) = 1 if ϕ(q, θ) < 0 for all θ ∈ [0, 1].

Also, let ακ(q) denote the solution in α to the equation κ(q, α) = 0 when such solution
exists, ακ(q) = 0 if for all α ∈ [0, 1] κ(q, α) < 0 and ακ(q) = 1 if κ(q, α) > 0 for all α ∈ [0, 1].

Theorem 5 Suppose that ϕ(.) is increasing in q and decreasing in θ. Also, suppose that
κ(q, α) is increasing in q and decreasing in α. Let q(1) be defined by ϕ(q(1), 0) = 0. Then
q(1) also satisfies κ(q(1), 1) = 0. Also, let q̄ be defined by ϕ(q̄, 1) = 0.

Then the solution to problem (21) is as follows.
If α̂ = 1, then θ(q̂) = [θ̂,max{θ̂, θϕ(q̂)}], θ(q) = max{θϕ(q), θ̂} for q ∈ (q̂, q̄), so that

θ(q̄) = 1.
If α̂ < 1, then α(q̂) = [α̂,max{α̂, ακ(q̂)}], α(q) = max{α̂, ακ(q)} for all q ∈ (q̂,max{q(1), q̂}],

θ(max{q(1), q̂}) = [0, θϕ(max{q(1), q̂})], θ(q) = θϕ(q) for q ∈ (max{q(1), q̂}, q̄], so that θ(q̄) =
1.
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Under the conditions of Theorem 5 the monotonicity constraints α′(q) ≥ 0 and θ′(q) ≥ 0
can be ignored, and problem (21) is solved by pointwise maximization under the integrand.
The conditions κ(q, α) = 0 and ϕ(q, θ) = 0 are a multi-dimensional version of a condition
familiar from the one-dimensional type case, that at the optimum marginal virtual surplus
must be equal to zero.9

Since limq→q̄(1)H(q, α(q), θ(q)) = 0 and limq→q̄(1)Hθ(q, α(q), θ(q)) < 0, we also obtain the
familiar condition that the allocation of the “top” type (1, 1) is undistorted i.e.,

uq(q̄(1), 1, 1) = 0.

Note that when θ̂ > θϕ(q̂), or when θ̂ = 0 and α̂ > ακ(q̂), then there is a non-empty right
neighborhood of q̂ over which all isoquants emanate from (α̂, θ̂). We shall show in Theorem 6
that it is never optimal to do so.

When the monotonicity constraints are binding, then as in subproblem (i) we must asso-
ciate Lagrange multipliers µ(q) ≥ 0 and δ(q) ≥ 0 with the constraints α′(q) ≥ 0 and θ′(q) ≥ 0,
respectively. Our next result describes how to obtain a solution in this case.

Lemma 8 The solution to subproblem (ii) satisfies µ(q)α′(q) = 0 and δ(q)θ′(q) = 0. If α̂ < 1
and q̂ < q(1), then µ′(q) = κ(q, α(q)) over any interval in (q̂, q(1)] on which µ(q) > 0. Also,
δ′(q) = ϕ(q, θ(q)) over any interval in [q(1), q̄] on which δ(q) > 0.

4.3 Transversality Conditions for (α̂, θ̂) and q̂.

It remains to combine the solutions to subproblems (i) and (ii) and establish the transversality
conditions for (α̂, θ̂) and q̂. Recall that there are only two free variables, since either α̂ = 1
or θ̂ = 0. Our first result establishes that at the optimum there is a one to one relationship
between (α̂, θ̂) and q̂, effectively reducing our optimization problem to the determination of a
single parameter.

Theorem 6 Suppose that the functions ϕ(q, θ) and κ(q, α) are increasing in q and decreasing
in α and θ. Then at the optimum, θ̂ = θϕ(q̂) whenever α̂ = 1, and α̂ = ακ(q̂) whenever θ̂ = 0.

Define q0 to be the unique solution to the equation ϕ(q, 0) = 0. According to Theorem 6
whenever q̂ ≥ q0 it must be that θ̂ = θϕ(q̂), and whenever q̂ ≤ q0we have α̂ = ακ(q̂).

Now, let us derive the optimal value of q̂. The next Theorem addresses this issue, using
the notation µ−(q

∗∗) = limq↑q∗∗ µ(q) and µ+(q
∗∗) = limq↓q∗∗ µ(q), and similarly for µ−(q

∗∗)
and µ+(q

∗∗):

Theorem 7 Suppose that the functions ϕ(q, θ) and κ(q, α) are increasing in q and decreasing
in α, respectively. Then:

(i) If ᾱ(q̂, α̂, θ̂) > 0 and α′(q̂) > 0 the following transversality condition must hold:

[µ+(q
∗∗)− µ−(q

∗∗)]
dα∗∗

dq̂
+ [λ+(q

∗∗)− λ−(q
∗∗)]

dθ∗∗

dq̂
= 0;

9More explicitly, letting t denote the type parameter in the one-dimensional screening model, and letting
F (t) denote its distribution function, the optimality condition is uqF

′ + uqt(1− F (t)) = 0.
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(ii) If ᾱ(q̂, α̂, θ̂) = 0, or if α′(q) = 0 for all q ≤ q̂, the following transversality condition
must hold:10

λ(q̂) = ψ(q̂, 1, θϕ(q̂))− u(q̂, 1, θϕ(q̂))hθ′(q̂, 1, θ
ϕ(q̂)), if θϕ(q̂) > 0

µ(q̂) = ψ(q̂, ακ(q̂), 0)g(q̂, ακ(q̂), 0)− u(q̂, ακ(q̂), 0)hα′(q̂, ακ(q̂), 0), if ακ(q̂) < 1

To interpret Theorem 7 note that in case (i) the transversality condition only has bite if
α′(q) > 0 in a right neighborhood of q∗∗ but α′(q) = 0 in a left neighborhood of q∗∗. Theorem
7 therefore suggests that at the optimum, whenever q̂ > 0 or α(q̂, α̂, θ̂) > 0, there will be an
interval of quantities (a left neighborhood of q∗∗ in case (i), and a left neighborhood of q̂ in
case (ii)) for which isoquants emanate from the same point (the point (α∗∗, θ∗∗) in case (i),
and the point (α̂, θ̂) in case (ii)). Our next Lemma simplifies the task of applying Theorem 7,
under an additional regularity condition:

Lemma 9 Suppose that ∂
∂q{uθh0 − uqhθ′ + ψq} < 0, and suppose that α′(q) = 0. Then

λ(q) = −
∫ q
0

∂(uh0)
∂θ (z, α(z), θ(z))dz and µ(q) = −

∫ q
0

∂(uh0)
∂α (z, α(z), θ(z))dz.

Note that the condition, u − uθuq

uqθ
> 0 for all (q, α, θ), holds for most commonly specified

utility functions, and is satisfied whenever u − uθuq

uqθ
is strictly increasing in q. A sufficient

condition for the latter property is that uqqθ ≥ 0. 11

5 Qualitative Properties of a Mechanism.

5.1 Singular and Non-singular Arcs

In this section, we characterize the regions where the solution to subproblem (i) consists of a
singular arc and where it consists of a non-singular arc. To this purpose, let N(q, α, θ) denote
the numerator in the differential equation (35) governing α̇ along a singular arc. That is,

N(q, α, θ) = ψq − uqh1 + uθh0 (44)

The following assumption imposes regularity conditions on N(q, α, θ)

Assumption 3 For all (q, α, θ), we have:
(i) Nqq > 0;
(ii) Nqαα > 0 and Nqθ ≤ 0.

10The proof of the Theorem states a more complicated condition that must hold if α′(q̂) = 0, but α′(q) > 0
for some q < q̂.

11We have ∂
∂q

(uqθu− uθuq) = uqqθu− uθuqq > 0 whenever uqqθ > 0, since uqq < 0.
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Under this assumption, the solution to subproblem (i) takes on a particularly simple form:

Suppose that Assumption 3 holds. Then for any q̂, there exists a unique junction point
q̃ ∈ (0, q̂] such that the solution to subproblem (i) is a nonsingular arc on [0, q̃] and a singular
arc on (q̃, q̂].

Theorem 5.1 saya that the optimal solution on the interval [0, q̃] is a nonsingular, and thus
the isoquants for all quantities q ∈ [0, q̃] emanate from the single point (α(q̃), θ(q̃)). Hence,
the type (α(q̃), θ(q̃)) is indifferent between all quantities q ∈ [0, q̃]. Importantly, all isoquants
associated with quantities in the interval q ∈ [0, q̃] emanate from the same point (α(q̃), θ(q̃))
on the lower boundary.

In other words, there is a discontinuity in the allocation assigned to types on the lower
boundary at the point (α(q̃), θ(q̃)). Unlike in the one-dimensional type case, this discontinuity
is not associated with gaps in the consumption schedule.12

5.2 Exclusion and Other Properties

We can use Theorem 7 to derive necessary conditions for the demand profile approach to yield
the correct optimal screening mechanism:

Theorem 8 Suppose that the functions ϕ(q, θ) and κ(q, α) are increasing in q and decreasing
in α and θ. Then for the demand profile approach to yield the optimal screening mechanism
it is necessary and sufficient that q̂ = 0 in the optimal mechanism.

The conditions of Theorem 8 are extremely stringent, as our example below will illustrate.
We can use Theorem 5 to establish necessary and sufficient conditions for the absence of

exclusion in the optimal screening mechanism:

Theorem 9 Suppose the conditions of Theorem 5 hold. Then almost all types get assigned
a strictly positive quantity if and only if there exist α̊ > 0 such that uqα(0, α, 0) = 0 for all
α ∈ [0, α̊] and

− uq(0, α̊, 0)

∫ α̊

0

f(a, 0)

uqθ(q, a, 0)
da+H(0, α̊, 0) = 0 (45)

Theorem 9 sheds light on how multi-dimensionality of customer types affects the monop-
olist’s incentive to exclude some customers from the market. To this effect, let us provide an
economic interpretation of equation (45). Consider the aggregate demand for the first incre-
ment of quantity, N(p, 0) = #{t : uq(0, t) ≥ p}. Let α(p) be such that the demand price of
type (α(p), 0) equals p, i.e. uq(0, α(p), 0) = p. Then we have N(p, 0) = H(0, α(p), 0). Thus
equation (45) says that the marginal price for the first increment must maximize the profits
from that increment, i.e.. it is equivalent to:

p
∂N

∂p
(p, 0) +N(p, 0) = 0

12In the one-dimensional type case, if there is an interval of [q1, q2] on which t(q) is constant, then no consumer
other than t(q1) purchases quantities in the interval [q1, q2].
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Exclusion will occur if and only if at the monopoly price for this increment some consumers
decide not to purchase the increment, i.e. if there are some types α < α̊ for which uq(0, α, 0) <
uq(0, α̊, 0). The condition uqα(0, α, 0) = 0 for all α ∈ [0, α̊] rules this out.

As in the one-dimensional type case, absence of exclusion requires the demand curve for
the first increment to be perfectly inelastic at a price equal to marginal cost. Indeed, if there
is no “gap” between the lowest demand price for the first increment and marginal cost, i.e.
if uq(0, α, 0) = 0, then equation (45) cannot hold since it requires

∫ α
0 f(a, 0)da = ∞. So,

exclusion occurs. On the other hand, if the gap between the lowest demand price for the first
increment and marginal cost is sufficiently large, then like in the one-dimensional type case
there can be no exclusion, provided uqα(q, α, 0) = 0 for all α ∈ [0, α̊]. Our next example
shows that this can indeed happen.

Example 3: Let u(q, α, θ) = 1+θ+k
2 q− b−α

2 q2 for some k ≥ 0 and b ≥ 1, and let f(α, θ) = 1
for all (α, θ) ∈ [0, 1]2. Then (45) becomes −(1 + k)α+ 1 = 0, so we have α̊ = 1

1+k ∈ (0, 1].

Armstrong (1996) has argued that exclusion necessarily occurs when types are multi-
dimensional. Since our other assumptions are consistent with Armstrong’s13, Theorem 9
indicates that Armstrong’s conclusion is specific to cases where the allocation space and the
type space have the same dimensionality. Nevertheless, our theorem also demonstrates that
there is a sense in which non-exclusion is harder to obtain when the type space is multi-
dimensional. When the monopolist raises the marginal price for the first increment above the
level where all consumers are included, she trades off the extra dollar gained on all existing
customers (measured by the term H(0, α, 0)) against the loss in revenue caused by some
consumers dropping out of the market (measured by the term in (45)). The number of lost
customers is measured (roughly) by the length of the isoquant emanating from the point (α̊, 0).
If α̊ = 0, then the number of customers dropping out would be negligible, and exclusion would
always pay. This is essentially the effect identified by Armstrong. On the other hand, if
α̊ > 0, then for no customer to be excluded at the price uq(0, α̊, 0) the isoquant through (α̊, 0)
at the quantity q = 0 must be flat. If uqα(0, α, θ) > 0 for all (α, θ), then exclusion would
necessarily occur.

6 A linear-quadratic example

In this section, we derive an explicit solution for a parametrically specified example. Let

u(q, α, θ) = θq − b− α

2
q2 (46)

where b ≥ 1. Furthermore, let (α, θ) be uniformly distributed on the unit square I =
[0, 1]× [0, 1]:

f(α, θ) = 1 for all (α, θ) ∈ I. (47)

Note that since uq(0, α, 0) = 0, by Theorem 9 there will always be exclusion in the optimal
mechanism. The solution to this example takes on a different qualitative form depending

13In particular, our type space is a strictly convex set with non-empty interior. Also, the utility function in
Example 3 is convex and homogeneous of degree one in types.
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upon whether b ≥ 3
2 or b < 3

2 . We start with the case b ≥ 3
2 , which was previously analyzed

by Laffont, Maskin and Rochet (1987).

Theorem 10 The optimal screening mechanism for the linear-quadratic uniformly distributed
example (46)-(47) with b ≥ 3/2 is as follows:

Let q∗ = 2
2b+1 , θ

∗ = 2b−1
2b+1 , and q̄ =

1
b−1 . Then α(q) = 1 for all q ∈ [0, q̄] and

θ(q) =

{
1+2(b−1)q

3 , for q ∈ [q∗, q̄]
1+(b− 3

2
)q

2 , for q ∈ [0, q∗].

Thus the optimal nonlinear tariff is given by:

P (q) =

{
1

6(2b+1) +
q(2−(b−1)q)

6 , for q ∈ [q∗, q̄]
q
8(4− (2b− 1)q), for q ∈ [0, q∗].

When b ≥ 3
2 , we have q

∗∗ = q̂ = 0 so the region associated with 19 is empty. All isoquants
therefore emanate from the portion of right hand boundary α = 1 above θ = 1

2 , i.e. the
interval of points {(1, θ) : θ ∈ [12 , 1]. Note in particular that the isoquant associated with
q = 0 is a flat line segment at θ = 1

2 , i.e. the collection of points {(α, 12) : α ∈ [0, 1]}.
Figure 2 illustrates the isoquants for this case. None of the iso-price lines associated with
this mechanism intersect each other in the type space. As a consequence, the demand profile
approach properly identifies the optimal mechanism. Since α varies from b − 1 to b, large
values of b are associated with low variability in the slope parameter. Thus, one way to
interpret this result is that when the uncertainty is (sufficiently) close to one dimensional, the
demand profile approach is valid. We now turn to the significantly more complicated case
where b < 3/2.

Theorem 11 The optimal screening mechanism for the linear-quadratic uniformly distributed
example (46)-(47) with b < 3/2 is as follows:

Let α∗∗ = 2b
3 , θ

∗∗ = 1− 2bq∗∗

3 , q∗∗ the unique non-negative root to the equation

(1 + bq − bq2(
3

2
+ 2b))2 = (1− bq)(1 + bq − bq2(

5

2
+ b))3, (48)

and

θ̂ =
1 +

√
(1− bq)(4(1 + bq)− 2bq2(5 + 2b)

3
,

and q̂ = 3θ̂−1
2(b−1) . Then

α(q) =


α∗∗, for q ∈ [0, q∗∗]

c0 +
c1
27(2−

√
1− 6

c1q
)(1 +

√
1− 6

c1q
)2, for q ∈ [q∗∗, q̂]

1, for q ∈ [q̂, q̄]
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and

θ(q) =


θ∗∗, for q ∈ [0, q∗∗]

2
3 − 1

3

√
1− 6

c1q
, for q ∈ [q∗∗, q̂]

1, for q ∈ [q̂, q̄]

where the constants c0 and c1 are related to θ̂ as follows:

c1 =
4(b− 1)

(1− θ̂)(3θ̂ − 1)2
, and (49)

c0 =
θ̂2(5 + 4b)− θ̂(2 + 4b) + 1

(3θ̂ − 1)2
< 0 (50)

Thus the optimal nonlinear tariff is given by:

P (q) =

{
u(q, α(q), θ(q)) , for q ∈ [0, q̂]
(b−1)q̂2

3 + q
6(2− (b− 1)q), for q ∈ [0, q∗].

For b < 3
2 , in the optimal screening mechanism the isoquants for q ∈ [0, q∗∗] all emanate

from the point (α∗∗, θ∗∗) on the lower boundary. In particular, for q = 0 the isoquant is the
flat segment at the level θ = θ∗∗ with α = α∗∗, i.e. the collection of points {(α, θ∗∗) : α ∈
[0, α∗∗]}. For q ∈ [q∗∗, q̂] the lower boundary is strictly decreasing, and given by the equation
α = c0 + c1θ(1 − θ)2. For this segment of q values there is a unique isoquant associated
with every point on the lower boundary. Note that since all types (α, θ∗∗) along the lower
boundary with α ≤ α∗∗ are assigned a quantity 0, and since all types along the lower boundary
with θ > θ∗∗ are assigned a quantity q ≥ q∗∗, there is a discontinuity in the optimal quantity
assignment along the lower boundary. Finally, for q ≥ q̂, all isoquants emanate from the
portion of the right hand boundary α = 1 with θ ≥ θ̂. Figure 3 illustrates the lower boundary
and the isoquants for the case b < 3

2 . It is important to observe that while the isoquants
associated with the optimal mechanism never intersect in the interior of the participation
region, the corresponding price lines would intersect in the region of non-participation. Thus
in accordance with Theorem 8 for every value of the parameter b with b < 3/2, the demand
profile is incapable of correctly identifying the optimal mechanism.
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7 Conclusions

In this paper, we have shown that the traditional method for identifying an optimal screen-
ing mechanism, the demand profile approach, generally fails when there is multi-dimensional
uncertainty. Only under rather extreme conditions on the type distribution, essentially re-
ducing the problem to one with single dimensional uncertainty, will the chosen mechanism
be optimal. We identified the reason for this failure: with multi-dimensional uncertainty,
a consumer’s demand schedule must generally intersect the optimal marginal price schedule
multiple times, thereby wreaking havoc with the global incentive compatibility requirement.

We introduced a novel condition, termed single crossing of demand (SCD), under which
global incentive compatibility can nevertheless be assured. This condition guarantees that if a
quantity q > 0 solves the surplus maximization problem of an agent of type (α, θ), then q must
also be a global optimum for any type on the portion of the iso-price curve at the quantity
q going through the point (α, θ) that lies to the northwest of this point. As a consequence,
isoquants are the portions of isoprice curves that lie above a lower boundary defined by the
individual rationality constraint.

Correct identification of these isoquants then allowes us to reduce the problem to a one-
dimensional screening problem, all be it a rather complicated one. We were able to reduce
the resulting optimization problem to an optimal control problem, and identify its solution.
We also illustrated application of our methodology to an example with quadratic demand and
uniformly distributed types.

Our methodology has already identified some relatively robust properties of optimal screen-
ing mechanism with multidimensional types. In particular, the allocation to an agent may
be discontinuous in type along the boundary of the participation region. We also showed
that the optimal mechanism may or may not exclude some types from participation. We
hope that our paper will stimulate new research into several of the applications cited in the
introduction.

While the present analysis was confined to the case where the (physical) allocation space
is one-dimensional, our approach should prove useful in analyzing more general screening
problems in which the dimensionality of the type space exceeds the dimensionality of the
allocation space.
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8 Appendix A

In the subsequent proofs, we will make use of the following technical Lemma:

Lemma 10 Suppose that Assumption 2 holds. Then
uqα(q,α,θ)
uqθ(q,α,θ)

− uα(q,α,θ)
uθ(q,α,θ)

> 0

Proof: Fix (α, θ) ∈ [0, 1]2 and define φ(q) =
uqα

uqθ
(q, α, θ) − uα

uθ
(q, α, θ). Then, φ′(q) =

d
dq

(
uqα

uqθ

)
−φ(q)

uqθ

uθ
. Assumption 2 implies that for any q > 0 s.t. φ(q) ≤ 0 we have φ′(q) > 0.

Thus, if φ(q) ≤ 0 for some q > 0, then φ(q′) < φ(q) for all q′ < q, and so limq′→0 φ(q
′) < 0.

But since uα and uθ both converge to zero as q → 0, it follows from l’Hospital’s rule that
limq→0 φ(q) = 0, a contradiction. Hence, φ(q) > 0 if q > 0. Q.E.D.

Proof of Lemma 1: Observe that, for a fixed q the relation uq(q, θ
′, α′) = uq(q, θ, α) implicitly

defines a function θ̃(α). Note that uqθ(q, θ̃(α), α)
dθ̃
dα+uqα(q, θ̃(α), α) = 0. Hence uqq(q, θ

′, α′)−
uqq(q, θ, α) =

∫ a′

α [uqqθ(q, θ̃(a), a)
dθ̃
dα +uqqα(q, θ̃(a), a)]da =

∫ α′

α [−uqqθ uqα

uqθ
+uqqα]da > 0, proving

the desired result. Q.E.D.

Proof of Lemma 2: (i) Let t1 be the transfer associated with quantity q1 in the mechanism
(i.e., there is a type (α̃, θ̃) s.t. q1 = q(α̃, θ̃), t1 = t(α̃, θ̃)). Since q1 ∈ Q∗(α1, θ1), u(q1, α1, θ1)−
t1 ≥ u(q(α′, θ′), α1, θ1)− t(α′, θ′) for all (α′, θ′2. Rearranging, we have

t(α′, θ′)− t1 ≥ u(q(α′, θ′), α1, θ1)− u(q1, α1, θ1) (51)

Next, note that by assumption of the Lemma, uq(q1, α1, θ1) − u1(q1, α2, θ2) = 0 i.e., q1 is a
stationary point of u(q, α1, θ1)− u(q, α2, θ2) viewed as a function of q. Further, Lemma 1 im-
plies that q1 is a unique stationary point and is, in fact, a global minimum of of u(q, α1, θ1)−
u(q, α2, θ2). Hence, u(q1, α1, θ1)− u(q1, α2, θ2) < u(q(α′, θ′), α1, θ1)− u(q(α′, θ′), α2, θ2). Com-
bining this inequality with inequality (51), we obtain:

t(α′, θ′)− t1 > u(q(α′, θ′), α2, θ2)− u(q1, α2, θ2)

Since (q(α′, θ′), t(α′, θ′)) was chosen arbitrarily, the pair (q1, t1) is the unique optimal choice
for type (α2, θ2) i.e., Q

∗(α2, θ2) = q1.
(ii) Let ti be the transfer associated with quantity qi in the mechanism, for i ∈ {1, 2} (i.e.,

there is a type (α̃i, θ̃i) s.t. qi = q(α̃i, θ̃i), ti = t(α̃i, θ̃i)).
For any α′ ∈ [α, 1], let θ̃(α′) solve the equation:

u(q1, α
′, θ̃(α′))− t1 = u(q2, α

′, θ̃(α′))− t2.

Thus, type (α′, θ̃(α′)) is indifferent between (q1, t1) and (q2, t2). Suppose that q1 < q2. The
proof for the opposite case is symmetric. By the implicit function theorem,

dθ̃

dα |α=α′
= −uα(q1, α

′, θ̃(α′))− uα(q2, α
′, θ̃(α′))

uθ(q1, α′, θ̃(α′))− uθ(q2, α′, θ̃(α′))
= −

∫ q2
q1
uqα(z, α

′, θ̃(α′))dz∫ q2
q1
uqθ(z, α′, θ̃(α′))dz
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It follows from Assumption 2 that

− uqα(q1, α
′, θ̃(α′))

uqα(q1, α′, θ̃(α′))
<
dθ̃

dα |α=α′
(52)

On the other hand, letting θ̂(α′) solve

uq(q1, α, θ) = uq(q1, α
′, θ̂(α′))

we obtain:
dθ̂

dα |α=α′
= −uqα(q1, α

′, θ̂(α′))

uqα(q1, α′, θ̂(α′))
(53)

Combining (52) and (53), we conclude that θ̂(α′) > θ̃(α′) for α′ > α. However, since type
(α′, θ̃(α′)) is indifferent between (q1, t1) and (q2, t2), q1 > q2, and u(.) is supermodular, type
(α′, θ̂(α′)) must strictly prefer (q2, t2) to (q1, t1) i.e., q1 ̸∈ Q∗(α′, θ̂(α′)). Q.E.D.

Proof of Lemma 3: The continuity of s(α, θ) follows from the continuity of the function
u(q, α, θ) in (α, θ). Note that in the optimal mechanism s(α, θ) = 0 if q(α, θ) = 0, for otherwise
the firm can increase its profits by setting to zero the transfer paid by the types who get zero
quantity in the mechanism. So, s(α, θ) = 0 if q(α, θ) = 0. Further, if (θ′, α) is such that
θ′ > θ(α), then q(α, θ′′) > 0 for any θ′′ ∈ (θ(α), θ′). Since s(α, θ′′) ≥ 0, strict monotonicity of
u(q(α, θ′′), α, θ) in θ implies that s(α, θ′) > 0.

The continuity of θ(α) then follows from the continuity of s(α, θ).
To establish that θ(α) is monotonically decreasing, recall that u(.) is supermodular in

(α, θ). Hence, Q∗(.) is an increasing correspondence. Therefore, if q(α, θ) > 0 for some type
(α, θ) and α′ > α, then q(α′, θ) > 0. Hence, θ(α′) ≤ θ(α).

Let us now show that θ(.) is strictly decreasing at α if q(α, θ(α)) > 0. Indeed, in this
case, the monotonicity of u(.) in θ implies that s(α′, θ(α)) > 0 and hence θ(α′) < θ(α) for all
α′ > α.

To show that Q∗(α, θ(α)) is increasing in α, suppose otherwise. Then there exist α1, α2 ∈
[0, 1], α1 > α2, with qi ∈ Q∗(αi, θ(αi)) for i ∈ {1, 2} s.t. q1 < q2. Consider the left isoprice line
I(q1, α1, θ(α1)) and some (α′, θ′) ∈ I(q1, α1, θ(α1)) \ (α1, θ(α1)) By Lemma 2, q1 = Q∗(α′, θ′).
Since without loss of generality the allocation (q = 0, t = 0) is one of the choices offered in
the optimal mechanism, the fact that {0} ̸∈ Q∗(α′, θ′) implies that s(α′, θ′) > 0 and, hence,
θ′ > θ(α′).

Since (α′, θ′) is an arbitrary point in I(q1, α1, θ(α1))\(α1, θ(α1)), it follows that I(q1, α1, θ(α1))∩
{(α, θ(α))|α ∈ [0, 1]} = (α1, θ(α1)). Combining the latter fact with Assumption 1 (iii)
we conclude that there exists α′′ ∈ (α2, α1) s.t. (α′′, θ(α2)) ∈ I(q1, α1, θ(α1)) and thus
Q∗(α′′, θ(α2)) = q1. But since q1 < q2 ∈ Q∗(α2, θ(α2)), this contradicts the fact that the cor-
respondence Q∗(.) is increasing. Since Q∗(α, θ(α)) is monotonically increasing and bounded
on [0, 1] it follows that, except at a countably many points, Q∗(α, θ(α)) is a singleton i.e.
Q∗(α, θ(α)) = q(α, θ(α)) and q(α, θ(α)) is continuous.
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To prove the absolute continuity of θ(α) under the additional assumption of the Lemma,
consider some α, α′ ∈ [0, 1] s.t. α > α′. From s(α, θ(α)) = s(α′, θ(α′)) = 0 and incentive
compatibility, it follows that

0 = u(q(α, θ(α)), α, θ(α))− t(α, θ(α)) ≥ u(q(α′, θ(α′)), α, θ(α))− t(α′, θ(α′))

0 = u(q(α′, θ(α′)), α′, θ(α′))− t(α′, θ(α′)) ≥ u(q(α, θ(α)), α′, θ(α′))− t(α, θ(α))

Consequently, we have

u(q(α, θ(α)), α, θ(α))−u(q(α, θ(α)), α′, θ(α′)) ≥ 0 ≥ u(q(α′, θ(α′)), α, θ(α))−u(q(α′, θ(α′)), α′, θ(α′))
(54)

Using the mean value theorem, we obtain

uθ(q(α
′, θ(α′)), α0, θ(α0))(θ(α)− θ(α′)) + uα(q(α

′, θ(α′)), α0, θ(α0))(α− α′) ≤ 0 (55)

uθ(q(α, θ(α)), α1, θ(α1))(θ(α)− θ(α′)) + uα(q(α, θ(α)), α1, θ(α1))(α− α′) ≥ 0 (56)

for some α0 and α1 s.t. α0, α1 ∈ [α′, α].
The inequalities (55) and (56) imply

− uα
uθ

(q(α, θ(α)), α1, θ(α1)) ≤
θ(α)− θ(α′)

α− α′ ≤ −uα
uθ

(q(α′, θ(α′)), α0, θ(α0)) (57)

Let T = max(q,α,θ)
uα
uθ
(q, α, θ) < ∞. From (57) it follows that the function θ(α) is Lipschitz

continuous with Lipschitz constant T , and hence it is absolutely continuous.
Since θ(α) is monotonically decreasing, it is differentiable almost everywhere. Taking limits

in (57), we obtain that at any continuity point of q(α, θ(α)) we have:

θ′(α) = −uα
uθ

(q(α, θ(α)), α, θ(α)). (58)

Q.E.D.

Proof of Lemma 4: (i) Rochet and Stole (2003) and Basov (2001) have shown that the
optimal allocation q(α, θ) must satisfy an elliptical partial differential equation. It is well-
known that solutions to elliptical partial differential equations on a domain with a piecewise
smooth boundary are continuous on the interior of that domain. (ii) Note that without loss
of generality, the optimal direct mechanism (t(α, θ), q(α, θ)) can be represented as a set of
quantity transfer pairs {(t, q)}q∈[0,q∗(1,1), where q1,1 = argmaxq u(q, 1, 1) and t is continuous
in q. Then, it follows from the Generalized Theorem of the Maximum (Ausubel and Deneckere,
1993) that Q∗(.) is a non-empty closed-valued u.h.c. correspondence.

To show that Q∗(α, θ) is convex-valued for any (α, θ) s.t. either θ < 1 or α < 1, suppose
that q1, q2 ∈ Q∗(α, θ) with q1 < q2, and let q ∈ (q1, q2). Choose some ε > 0 s.t. θ + ε ≤ 1.
Then by Lemma 2, for any θ′ ∈ (θ, θ+ ε) there exists α1 and α2 such that (α1, θ

′) ∈ I(q1, α, θ)
and (α2, θ

′) ∈ I(q2, α, θ), and so q(α1, θ
′) = q1 and (α2, θ

′) = q2.
Further, by continuity of q(.), there exists α′(θ′) ∈ (α1, α2) such that q = q(α′(θ′), θ′).

Since this is true for all θ′ ∈ (θ, θ + ε), it follows from u.h.c. of the correspondence Q∗ that
q ∈ Q∗(α, θ).
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(iii) Part (ii) of this Lemma implies that that the correspondence w : L → R defined
by w(α, θ) = {uq(q, α, θ) : q ∈ Q∗(α, θ)} is convex valued and hence that w(L) is a closed
interval.

Let us now show that for each (α, θ) /∈ L s.t. q(α, θ) > 0, there exists some (α′, θ′) ∈ L and
q′ ∈ Q∗(α′, θ′) such that uq(q

′, α, θ) = uq(q
′, α′, θ′). Since uqθ > 0, we have uq(q(α, θ(α)), α, θ(α)) <

uq(q(α, θ(α)), α, θ). Also, since uqα > 0, we have uq(q(1, θ), 1, θ)) > uq(q(1, θ), α, θ). Hence
there exists (α′, θ′) on the segment of L connecting (α, θ(α)) to (1, θ) and q′ ∈ Q∗(α′, θ′) such
that uq(q

′, α, θ) = uq(q
′, α′, θ′) i.e., (α, θ) ∈ I(q′, α′, θ′). From Lemma 2

Finally, if (α, θ) can lie on at most one isoquant emanating from L, for otherwise isoquants
would intersect in the interior of the participation region. Q.E.D.

Proof of Theorem 1: (ii) First, we shall argue that the correspondence Q∗ is nondecreasing
along L. To this effect, define an artificial type λ ∈ [0, 2 − θ̂] along L such that λ = α if
α < 1 and λ = 1 + (θ − θ̂) if α = 1. Lemma 10 implies that uqλ = uqθθ

′(α) + uqα > 0 for
λ < 1 and q > 0, and uqλ = uqα > 0 for λ ≥ 1. This supermodularity implies that every
selection from Q∗(λ) must be non-decreasing. Hence Q∗(λ) is single-valued for almost all
λ, and any selection from Q∗(λ) is a non-decreasing function. Since changing the allocation
on a set of measure zero of λ does not alter the monopolist’s expected profits, we may select
q(α) = minQ∗(α, θ(α)) and q(θ) = minQ∗(1, θ).

(iii) Let q ∈ Q∗(α, θ(α)) and q′ ∈ Q∗(α′, θ(α′)). Since the mechanism (q(.), t(.)) is incentive
compatible,

u(q, α, θ(α))− u(q′, α, θ(α)) ≤ t(q)− t(q′) ≤ u(q, α′, θ(α′))− u(q′, α′, θ(α′))

Using the mean value theorem, we obtain:

uq(z0, θ(α), α)(q − q′) ≤ t(q)− t(q′) ≤ uq(z1, θ(α
′), α′)(q − q′) (59)

for some z0 and z1between q and q′. Let M = max(θ,α)∈[0,1]2 uq(0, θ, α). Then it follows
from (59) that P is Lipschitz continuous with Lipschitz constant M , and hence absolutely
continuous.

If q ∈ [q(0), q(α̂)], then q ∈ Q∗(α, θ(α)) for some α . Hence we have s(α, θ(α)) = 0,
implying u(q, α, θ(α))− P (q) = 0.

Next, suppose that α̂ < 1, and q ∈ [q(α̂), q(1)]. First, consider any α ∈ [α̂, 1] at which
q(α) is discontinuous, so that Q∗(α, θ(α)) is multi-valued. Let q1 = minQ∗(θ(α), α) and
q2 = maxQ∗(θ(α), α). By (ii) we have u(q, α, θ(α)) − P (q) = u(q1, α, θ(α)) − P (q1) for all
q ∈ [q1, q2], implying uq(q, α, θ(α)) = P ′(q) for all q ∈ (q1, q2). Next, consider any α ∈ [α̂, 1]
at which q(α) is continuous and strictly increasing. Dividing (59) by (q′ − q) and taking
limits as α′ � α, it follows that P ′(q) = uq(q, α, θ(α)). We conclude that the Stieltjes integral
P (q) = u(q(α̂), α̂, θ(α̂)) +

∫ q
q(α̂) uq(z, θ(α(z)), α(z))dz holds. For q ∈ (q(1), q̄(1)] the argument

is analogous. Q.E.D.

Proof of Theorem 2: First, we establish that the allocation q(α, θ) is incentive compatible
along L. It follows from (ii) that q(α, θ(α)) = q(α) for all α ∈ [0, 1], and q(1, θ) = q̄(θ)
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for all θ ∈ [θ̂, 1]. Hence the allocation is nondecreasing along L. Since uqλ > 0, it fol-
lows that the allocation is incentive compatible along L. Lemma 2 then implies that q(α, θ)
is incentive compatible for all (α, θ) in the participation region. It remains to be shown
that Q∗(α, θ) = {0} for all (α, θ) such that θ < θ(α). Note that for any q > 0, we have
u(q, θ, α) − P (q) < u(q, θ(α), α) − P (q) ≤ s(θ(α), α)) = 0. Thus for any such type it is
uniquely optimal to select q = 0. That (iii) holds follows from the proof of part (iii) of
Theorem 1. Q.E.D.

Proof of Theorem 3: Theorem 2 implies that the set of types who are assigned quantities
that strictly exceed q is given by:

{(a, θ) ∈ [0, 1]2 : a ≤ α(q), θ > σ(q, α(q), θ(q), a)} ∪ {(a, θ) ∈ [0, 1]2 : a > α(q), θ ≥ θ(a)}

Therefore, the probability measure of the set of types who are assigned quantities above or
equal to q is

H(q, α(q), θ(q) =

∫ α(q)

0

∫ 1

σ(q,α(q),θ(q),a)

f(a, θ)dθda+

∫ 1

α(q)

∫ 1

θ(a)

f(a, θ)dθda =

∫ 1

0

∫ 1

max{σ(q,α(q),θ(q),a),θ(a)}
f(a, θ)dθda

Correspondingly, the measure of the set of types who are assigned quantities that do not exceed q is
equal to:

1−H(q, α(q), θ(q)).

Differentiation yields the density, h̃, of this probability measure over the interval [0, q̂]:

h̃(q, α(q), θ(q), α′(q), θ′(q)) =

∫ α(q)

0

f(σ(q, α(q), θ(q), a)
d

dq
σ(q, α(q), θ(q), a)da

Combining this with (7) allows us to rewrite the monopolist’s profits as follows:∫ q̂

0

u(q, α(q), θ(q))h̃(q, α(q), θ(q), α′(q), θ′(q))dq+

∫ q̄

q̂

{
u(q̂, α̂, θ̂) +

∫ q

q̂

uq(z, α(z), θ(z))dz

}
d(1−H(q, α(q), θ(q)))

Since H(q̄, α(q̄), θ(q̄)) = 0, integration by parts of the second integral yields:

H(q̂, α̂, θ̂)u(q̂, α̂, θ̂) +

∫ q̄

q̂

H(q, α(q), θ(q))uq(q, α(q), θ(q))dq

Q.E.D.

Proof of Lemma 5:
Differentiating S ≡ ∂J

∂α̇ yields:

Ṡ =
d

dq

∂J

∂α̇
=
d (u(h2 − gh1))

dq
+ µ̇− λ̇g − λ

dg

dq
(60)

By Pontryagin’s Maximum Principle the costate equations corresponding to Hamiltonian (29) are:

µ̇ = −∂J
∂α

= −∂(uh)
∂α

− ∂(µ− λg)

∂α
α̇ = −∂(uh0)

∂α
− ∂(u(h2 − gh1)

∂α
α̇+ λgαα̇ (61)

λ̇ = −∂J
∂θ

= −∂(uh)
∂θ

− ∂(µ− λg)

∂θ
α̇ = −∂(uh0)

∂θ
− ∂(u(h2 − gh1)

∂θ
α̇+ λgθα̇ (62)
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Then we have:

Ṡ =
d (u(h2 − gh1))

dq
− ∂(uh0)

∂α
− ∂(u(h2 − gh1)

∂α
α̇+ g

∂(uh0)

∂θ
+ g

∂(u(h2 − gh1)

∂θ
α̇− λgq (63)

=
∂(u(h2 − gh1))

∂q
− ∂(uh0)

∂α
+ g

∂(uh0)

∂θ
− λgq =

∂(u(h2 − gh1))

∂q
− u

(
∂h0
∂α

− g
∂h0
∂θ

)
− λgq (64)

where the first equality is obtained by substituting (61) and (62) into (60) and using dg
dq = gq+gαα̇−gθgα̇

to cancel terms. The second equality holds because d(u(h2−gh1))
dq = ∂(u(h2−gh1))

∂q + ∂(u(h2−gh1))
∂α α̇ −

g ∂(u(h2−gh1))
∂θ α̇. The third equality in (63) holds because, by definition, uα − guθ = 0. The fourth

equality follows because ∂h2

∂q = ∂h0

∂α and ∂h1

∂q = ∂h0

∂θ . The fifth (last) equality in (63) holds because, by

definition of ψ, gqψ = uq(h2 − gh1).

Our next step is to compute S̈ . For this, we need the following intermediate result:

Lemma 11

We have:
d

dq
h1 − hθ = f(θ, α)α̇+ gθh1α (65)

We will use Lemma 11 in computing S̈ below. First, fully differentiating (33) with respect to q, we
obtain:

S̈ =
dgq
dq

(ψ − uh1 − λ) + gq

(
d (ψ − uh1 − λ)

dq

)
(66)

Let us consider the second term of (66). We obtain:

d (ψ − uh1 − λ)

dq
= ψq + ψαα̇− ψθgα̇− uqh1 − u

dh1
dq

+
∂(uh0)

∂θ
+
∂(uh2 − gh1)

∂θ
α̇− λgθα̇ =

ψq + ψαα̇− ψθgα̇− uqh1 − u
dh1
dq

+ u
∂h

∂θ
+ uθh0 + uθ(h2 − gh1)α̇− λgθα̇ =

ψq + ψαα̇− ψθgα̇− uqh1 − uf(θ, α)α̇− ugθh1α̇+ uθh0 + uθ(h2 − gh1)α̇− λgθα̇ =

ψq + uθh0 − uqh1 + [ψα − ψθg − uf(θ, α) + uθ(h2 − gh1)− (λ+ uh1)gθ] α̇ (67)

The first equality in (67) is obtained by differentiating, substituting in the expression (62) for λ̇ and

also cancelling terms using the identity uα = guθ. The second equality uses h = h0+(h2−gh1)α̇. The
third equality holds by Lemma 11. The fourth equality holds by rearrangement. Substituting
(67) into (66) yields:

S̈ =
dgq
dq

(ψ − uh1 − λ) + gq (ψq + uθh0 − uqh1 + [ψα − ψθg − uf(θ, α) + uθ(h2 − gh1)− (λ+ uh1)gθ] α̇)

(68)

On a non-singular arc we have α̇ = 0, using which in (68) yields (??).
Further, on a singular arc we have Ṡ = 0, so by (33) λ = ψ−uh1. Using this in (68) yields

(34). Q.E.D.
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Proof of Lemma 11: Taking a partial derivative of h(q, α, θ, α̇) in (23) yields:

hθ = −αθf (σq − gσθα
′ + σαα

′) |a=α+

∫ α

α(q,α,θ)

fθσθ (σq − gσθα
′ + σαα

′)+f (σqθ − gσθθα
′ + σαθα

′)−fgθ(θ, α)σθα′da

(69)
On the other hand, fully differentiating (26) with respect to q we obtain:

dh1
dq

= α̇fσθ |a=α −
(
αq − αθgα̇+ ααα̇

)
fσθ |a=α +

∫ α

α(q,α,θ)

fθ (σq − gσθα̇+ σαα̇)σθ+f (σqθ − gσθθα̇+ σαθα̇) da

(70)
Combining (69) and (70) yields:

dh1
dq

− hθ = α̇fσθ |a=α +f(σ, a)
(
αθσq − αqσθ + (αθσα − αασθ) α̇

)
|a=α +gθ(α, θ)

∫ α

α(q,α,θ)

fσθα̇da

(71)
Note that σθ |a=α= 1 by (13). Then a comparison of (71) with (65) reveals that (65) holds if and only
if

αθσq − αqσθ + (αθσα − αασθ) α̇a=α = 0 (72)

Recall that, by definition, α = 0 if σ(q, α, θ, 0) < 1, and otherwise α solves the equation σ(q, θ, α, a) =

1 in a. So, (72) holds for all (q, α, θ) such that α = 0, because there σq(.) = σα(.) = σθ(.).

Next, if α > 0, then the partial derivatives of the function α(.) can be computed by differentiating

σ(q, θ, α, a) = 1. In particular, differentiating the latter equation we get σq(q, θ, α, α)+σa(q, θ, α, α)αq =

0, σθ(q, θ, α, α) + σa(q, θ, α, α)αθ = 0, and σα(q, θ, α, α) + σa(q, θ, α, α)αα = 0. The first two of

these equations imply that αθσq − αqσθ = 0 and the second and the third equations imply that

αθσα − αασθ = 0. Thus, (72) holds in this case also. Q.E.D.

Proof of Theorem 4 :
(i) An interval on which α(q) is strictly increasing must be a singular (aub)arc where S = Ṡ = S̈ = 0.

Then setting (34) to zero yields the differential equation (35). Equation (36) is identical to (20).

Further, setting (33) to zero yields (37). Then setting (30) to zero and combining this with (37)

yields (38).

(ii) Equations (39) and (40) follow immediately from “co-state evolution” equations for our optimal

control problem, (61) and (62), respectively, when we set α̇ = θ̇ = 0.

(iv) To prove part (iv), note that there is nothing to prove when q0 = 0. If q0 > 0, then the

transversality condition associated with free left time q0 is that the Hamiltonian

J(q0, α(q0), θ(q0), α
′(q0), µ(q0), λ(q0)) defined in (29) is equal to zero.

Note that the linearity of (29) in α′ imply that Sα̇ = 0 for all q and so

J(q0, α(q0), θ(q0), α
′(q0), µ(q0), λ(q0)) = u(q0, α(q0), θ(q0))h0(q0, α(q0), θ(q0))

Inspecting the definition of h0 in equation (25) is easy to see that J(q0, α(q0), θ(q0), α
′(q0), µ(q0), λ(q0)) =

0 is equivalent to either q0 = 0 or α(q0) = 0. Q.E.D.
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Proof of Lemma 6: Let Jα̇ be the partial derivative of the Hamiltonian (29) with respect
to α̇. The Generalized Legendre Clebsch condition requires that if p is the smallest number
such that d2pJα̇

dq2p
̸= 0 at some point on the optimal singular arc, then:

(−1)p
d2pJα̇
dq2p

≤ 0.

In our case, p = 1, and d2pJα̇
dq2p

= −D. So we must have D ≤ 0. Q.E.D.

Proof of Lemma 7: (i) We will prove that α(q0) > 0. From this, by Theorem 4 (iv) it
follows that q0 = 0.

The proof is by contradiction. So suppose that α(q0) = 0. Then by definition of q0, for
every ε > 0 there exists q ∈ [q0, q0 + ε) such that α(q) > 0. But since α(q0) = 0, the optimal
solution must include a singular arc in a right neighborhood of q0.

We will next show that D(q, α, θ) > 0 for all sufficiently small α, which would contradict Lemma
6. To this end, let us first show the following:

D =

(
u− uθuq

uqθ

)
f + 2(uqθuα − uqαuθ)

∫ α

0

f(a, σ)

uqθ(q, a, σ)
da (73)

+uq(uqθuα − uqαuθ)

∫ α

0

fθuqθ − fuqθθ
u3qθ

(q, a, σ)da

To see this, let us consider the terms in the definition of D in (41) one by one. Note that because

α(q0) = 0, we have α(q, α(q), θ(q)) = 0 for all q in some right neighborhood of q0. We will use this to

set the lower limit of the integrals below.
First, by definition of g (the first equation)and by (26), (27), (13) and (14) (second equation), we

have:

− uθ(h2 − gh1) = uαh1 − uθh2 = (uαuqθ − uqαuθ)

∫ α

0

f(a, σ)

uqθ(q, a, σ)
da. (74)

Next, combining the definitions of ψ in (32) and g = uα

uθ
yields: ψ(q, α, θ)g(q, α, θ) = uq(q, α, θ)uα(q, α, θ)

∫ α

0
f(a,σ)

uqθ(q,a,σ)
da.

Differentiating, we obtain:

ψθg + ψgθ = (uquαθ + uqθuα)

∫ α

0

f(a, σ)

uqθ(q, a, σ)
da+ uquα

∫ α

0

(
fθ(σ, a)

uqθ(q, σ, a)
− f(σ, a)uqθθ(q, σ, a)

u2qθ(q, σ, a)

)
σθda

(75)

Finally,

ψα = f
uθuq
uqθ

(q, α, θ) + (uqαuθ + uquθα)

∫ α

0

f(σ, a)

uqθ(q, σ, a)
da+ uquθ

∫ α

0

(
fθ(σ, a)

uqθ(q, σ, a)
− f(σ, a)uqθθ(q, σ, a)

u2qθ(q, σ, a)

)
σαda

(76)

Substituting (74), (75) and (76) into (41) yields (73).

Since
(
u− uθuq

uqθ

)
> 0 by the Assumption of the Lemma and uqθ is bounded away from zero,

equation (73) implies that D(q, α, θ) > 0 if α is sufficiently small. Therefore, D(q, θ(q), α(q)) > 0 for

all q ∈ (0, ε) for some ε > 0, contradicting Lemma 6.
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(ii) Suppose to the contrary that θ(q∗∗) = 1. Then α(q∗∗, α(q∗∗), θ(q∗∗)) = α(q∗∗), and α(q, α(q), θ(q)) >
0 for all q ≥ q∗∗. Therefore, we need to use α(q, α(q), θ(q)) explicitly as the lower limit of the integrals
that enter terms of D(q, θ(q), α(q))). Specifically, performing the same derivations as in part (i) we
obtain that for q in some neighborhood of q∗∗ we have:

D(q, θ(q), α(q))) =
(
u− uθuq

uqθ

)
f + 2(uqθuα − uqαuθ)

∫ α

α(q,α(q),θ(q))
f(a,σ)

uqθ(q,a,σ)
da+ (77)

uq(uqθuα − uqαuθ)
∫ α

α(q,α(q),θ(q))
fθuqθ−fuqθθ

u3
qθ

(q, a, σ)da− uquααθ
f(α,1)

uqθ(q,α,1)
+ uquθαα

f(α,1)
uqθ(q,α,1)

Evaluating (77) at q = q∗∗, we obtain:

D(q∗∗, θ(q∗∗), α(q∗∗)) =

(
u+

uθuq
uqθ

(αα − 1)− uαuq
uqθ

αθ

)
f(α, 1) (78)

Since by definition α(q, α(q), θ(q)) solves σ(q, α(q), θ(q), a) ≡ 1 for a, it follows that

αα = −σα
σa

and αθ = −σθ
σa
. (79)

Then substituting (12), (14) and (13) into (79) yields:

αα =
uqα(q, α, θ)

uqα(q, a, σ)
and αθ =

uqθ(q, α, θ)

uqα(q, a, α)

At q = q∗∗ we have αα = 1 and αθ =
uqα

uqθ
. Using this in (78) yields:

D(q∗∗, θ(q∗∗), α(q∗∗)) =

(
u− uαuq

uqα

)
f (80)

Finally, since u − uθuq

uqθ
> 0 by assumption of the Lemma, and since uθ

uqθ
> uα

uqα
, the value of (80) is

strictly positive. But this contradicts that q∗∗ must lie on a singular arc, since by definition q∗∗ is the

largest quantity such that (α, 1) lies on an isoquant emanating from (q∗∗, α(q∗∗), θ(q∗∗)). Q.E.D.
Proof of Theorem 5: Let

G(q, α, θ) ≡ uq(q, α, θ)H(q, α, θ).

Also, let q̄ be defined by ϕ(q̄, 1) = 0. Note that q̄ > q(1).
First, let us consider the case when α̂ = 1. The first-order condition for (21) is:

Gθ(q, 1, θ) = ϕ(q, θ) = 0 (81)

Let θϕ(q) be the solution to (81), when such exists. Also, let θϕ(q) = 1 if ϕ(q, θ) < 0 for all θ ∈ [0, 1]

and let θϕ(q) = 0 if ϕ(q, θ) > 0 for all θ ∈ [0, 1]. Since ϕq > 0 and ϕθ < 0, θϕ(q) is increasing in θ.

If θϕ(q̂) > θ̂, then the boundary condition θ(q̂) = θ̂ implies that it is optimal to set θ(q̂) = [θ̂, θϕ(q̂)],

θ(q) = θϕ(q) for all q ∈ (q̂, q̄].

On the other hand, if θϕ(q̂) ≤ θ̂, then set θ(q) = θ̂ for q s.t. θϕ(q) ≤ θ̂, θ(q) = θϕ(q) for q s.t.

θϕ(q) > θ̂, and θ(q̄) = 1.

To summarize, θ(q̂) = [θ̂,max{θ̂, θϕ(q̂)}], θ(q) = max{θϕ(q), θ̂} for q ∈ (q̂, q̄), θ(q̄) = 1.

Now suppose that α̂ < 1 and θ̂ = 0. In this case, the first-order condition for (21) with respect to
α is:

Gα(q, α, 0) = κ(q, α) = 0 (82)
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Let qs solve κ(qs, α̂) = 0 and let q(1) solve ϕ(q(1), 0) = 0. Note that qs < q(1) < q̄. Below, we will

show that q(1) also solves κ(q(1), 1) = 0.

If q̂ ≤ qs, then it is optimal to set α(q) = max{α̂, ακ(q)} for q ∈ [q̂, q(1)], θ(q) = θϕ(q) for

q ∈ [q(1), q̄].

If qs < q̂ < q(1), then set α(q̂) = [α̂, ακ(q̂)], α(q) = ακ(q) for q ∈ (q̂, q(1)], θ(q) = θϕ(q) for

q ∈ [q(1), q̄].

If qs < q(1) ≤ q̂ ≤ q̄, then set α(q̂) = [α̂, 1], θ(q̂) = [0, θϕ(q̂)], θ(q) = θϕ(q) for all q ∈ (q̂, q̄].

To summarize, we have α(q̂) = [α̂,max{α̂, ακ(q̂)}], α(q) = max{α̂, ακ(q)} for all q ∈ (q̂,max{q(1), q̂}],
θ(q) = θϕ(q) for q ∈ [max{q(1), q̂}, q̄].

Let us now show that ϕ(q, 0) = 0 if and only if κ(q, 1) = 0, and consequently ακ(q(1)) = 1 implies

that θϕ(q(1)) = 0. In fact, we will show that Hθ(q, 1, 0) =
uqθ(q,1,0)
uqα(q,1,0)Hα(q, 1, 0), so that ϕ(1, 0) =

uqθ(q,1,0)
uqα(q,1,0)κ(q, 1), implying the desired result.

Finally, differentiating (15) we obtain:

Hθ(q, 1, θ) = −
∫ 1

ᾱ(q,1,θ)

f(a, σ(q, 1, θ, a)σθ(q, 1, θ, a))da (83)

Hα(q, α, 0) = −
∫ 1

ᾱ(q,α,0)

f(a, σ(q, α, 0, a)σα(q, α, 0, a)da (84)

where ᾱ(q, α, θ) is the solution in a to the equation σ(q, α, θ, a) = 1 if such a solution exists and is

nonnegative, and 0, otherwise. Then, combining (13), (14), (83) and (84), then yields Hθ(q, 1, 0) =
uqθ(q,1,0)
uqα(q,1,0)Hα(q, 1, 0). Q.E.D.

Proof of Lemma 8: We can formulate the maximization problem (21) on the interval (max{q̂, q(1)}, q̄(1)]
via the Lagrangian:

maxL(q, 1, θ, θ′) = G(q, 1, θ) + δθ′ (85)

The first-order conditions associated with maximizing (85) are:

Lθ −
d

dq
Lθ′ = ϕ(q, θ)− δ′ = 0 (86)

δ(q)θ′(q) = 0

δ(q) ≥ 0

θ′(q) ≥ 0

In addition, the transversality condition for the free ‘terminal time’ q̄(1) is:

L− Lθ′θ′ = ϕ(q̄(1), 1) = 0

Since H(q̄(1), 1, 1) = 0, and since Hθ(q̄(1), 1, 1) < 0, the transversality condition yields uq(q̄(1), 1, 1) =

0. From (86), we have δ′(q) = Gα(q, α(q), 0) = κ(q, α(q)). The proof for µ(q) is analogous. Q.E.D.

Proof of Theorem 6: We need to consider several cases depending upon whether α̂ = 1 or
θ̂ = 0. Here, we will consider the case α̂ = 1; the proof for the other cases is similar.
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Suppose now that contrary to the statement of the theorem we had θ̂ > θϕ(q̂). Then we
may rewrite (22) as follows:

V (q̂, 1, θ̂) =W (q̂, 1, θ̂) + Z(q̂, 1, θ̂)

where

Z(q̂, 1, θ̂) = u(q̂, 1, θ̂)H(q̂, 1, θ̂)+

∫ qϕ(θ̂)

q̂
H(q, 1, θ̂)uq(q, 1, θ̂)dq+

∫ q̄(1)

qϕ(θ̂)
H(q, 1, θ(q))uq(q, 1, θ(q))dq,

and qϕ(θ̂) is the unique solution to the equation θϕ(q) = θ̂. We will show that marginally
lowering θ̂ raises V (q̂, 1, θ̂).

The partial derivative w.r.t. θ̂ of the value function W (q̂, 1, θ̂) is given by (Seierstad and
Sydsaeter, p. 213):

∂W

∂θ̂
= −λ(q̂)

Furthermore, we may calculate

∂Z

∂θ̂
= uθ(q̂, 1, θ̂)H(q̂, 1, θ̂) + u(q̂, 1, θ̂)Hθ(q̂, 1, θ̂) +

∫ qϕ(θ̂)

q̂
ϕ(q, θ̂)dq

where
ϕ(q, θ̂) = uq(q, 1, θ̂)Hθ(q, 1, θ̂) + uθq(q, 1, θ̂)H(q, 1, θ̂)

Combining, we obtain:

∂V

∂θ̂
(q̂, 1, θ̂) = −λ(q̂) + uθ(q̂, 1, θ̂)H(q̂, 1, θ̂) + u(q̂, 1, θ̂)Hθ(q̂, 1, θ̂) +

∫ qϕ(θ̂)

q̂
ϕ(q, θ̂)dq

= −ψ(q̂) + uθ(q̂, 1, θ̂)H(q̂, 1, θ̂) +

∫ qϕ(θ̂)

q̂
ϕ(q, θ̂)dq

≤
∫ qϕ(θ̂)

q̂
ϕ(q, θ̂)dq < 0

The second equality follows because λ(q) = −uh1 + ψ, and because by definition, we have

Hθ(q̂, 1, θ̂) = −
∫ 1

α(q̂,1,θ̂)
f(a, σ((q̂, 1, θ̂, a))σθ(q, 1, θ, a)da = −h1(q̂, 1, θ̂)

where the second equality follows from we used λ(q) = −uhθ′ + ψ, and the penultimate
inequality follows because ϕ(q, θ) is decreasing in θ yields:

ϕ(q̂, θ̂) = uq(q̂, 1, θ̂)Hθ(q̂, 1, θ̂) + uθq(q̂, 1, θ̂)H(q̂, 1, θ̂) ≤ ϕ(q̂, θϕ(q̂)) = 0

and so

uθ(q̂, 1, θ̂)H(q̂, 1, θ̂) ≤ uquθh1
uqθ

(q̂, 1, θ̂) = ψ(q̂, 1, θ̂)
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It follows that the perturbation is profitable, showing that in an optimal solution to (22) we
cannot have θ̂ > θϕ(q̂).

Next, suppose that contrary to the statement of the theorem we had θ̂ < θϕ(q̂). Then
since by Theorem 5 all types (1, θ) with θ ∈ [θ̂, θϕ(q̂)] are assigned the quantity q̂, and hence
pay t(q̂) we may rewrite (22) as follows:

V (q̂, 1, θ̂) =W (q̂, 1, θ̂) + Z(q̂, 1, θ̂)

where

Z(q̂, 1, θ̂) = u(q̂, 1, θ̂)H(q̂, 1, θ̂) +

∫ q̄(1)

θϕ(q̂)
H(q, 1, θϕ(q))uq(q, 1, θ(q))dq,

We may then calculate

∂V

∂θ̂
(q̂, 1, θ̂) = −λ(q̂) + uθ(q̂, 1, θ̂)H(q̂, 1, θ̂) + u(q̂, 1, θ̂)Hθ(q̂, 1, θ̂)

= −ψ(q̂) + uθ(q̂, 1, θ̂)H(q̂, 1, θ̂)

> 0

The second equality follows because λ(q) = −uh1+ψ because Hθ(q̂, 1, θ̂) = −h1(q̂, 1, θ̂). The
final inequality follows because θ̂ > θϕ(q̂) implies ϕ(q̂, θ̂) > ϕ(q̂, θϕ(q̂)) = 0, and so

uθ(q̂, 1, θ̂)H(q̂, 1, θ̂) >
uθ(q̂, 1, θ̂)

uθq(q̂, 1, θ̂)
uq(q̂, 1, θ̂)h1(q̂, 1, θ̂) = ψ(q̂).

We conclude that raising θ̂ marginally is profitable, showing that in an optimal solution to
(22) we cannot have θ̂ < θϕ(q̂) either.

Q.E.D.

Q.E.D.

Proof of Theorem 7: (i) We need to consider two cases: α̂ = 1 and θ̂ = 0. We give a proof for the

case α̂ = 1. The proof for the case θ̂ = 0 is analogous. According to Theorem 6 we have θ̂ = θϕ(q̂).
Hence

W (q̂, θϕ(q̂)) = u(q̂, 1, θϕ(q̂))H(q̂, 1, θϕ(q̂)) +

∫ q̄(1)

q̂

H(q, 1, θϕ(q))uq(q, 1, θ
ϕ(q))dq

Thus we have

d

dq̂
W (q̂, θϕ(q̂)) = uHq + (uθH + uHθ)

dθϕ

dq

= −uh0 + (
uθuq
uqθ

− u)hθ′
dθϕ

dq
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where the final equality follows from ϕ(q̂, θ̂) = uqHθ + uθqH = 0, and the definition ψ =
uquθ

uqθ
hθ′ .

Furthermore, we have
∂W2

∂q
+
∂W2

∂θ

dθϕ

dq
= uh0 − λ

dθϕ

dq

Hence (
∂W2

∂q
+
∂W2

∂θ

dθϕ

dq

)
+

d

dq̂
W (q̂, θϕ(q̂)) = (ψ − uhθ′ − λ)

dθϕ

dq
= 0 (87)

where the ultimate equality follows from the assumption that α′(q̂) > 0 and the expression for λ in

Theorem 4.
Next, observe that

∂W1

∂q∗∗
+
∂W2

∂q∗∗
= 0

and

∂W1

∂α∗∗ +
∂W2

∂α∗∗ = µ+(q
∗∗)− µ−(q

∗∗)

∂W1

∂θ∗∗
+
∂W2

∂θ∗∗
= λ+(q

∗∗)− λ−(q
∗∗)

Since at the optimum we must have
d

dq̂
V (q̂, 1, θϕ(q̂)) = 0

it follows that we must have

[µ+(q
∗∗)− µ−(q

∗∗)]
dα∗∗

dq̂
+ [λ+(q

∗∗)− λ−(q
∗∗)]

dθ∗∗

dq̂
= 0

(ii) Again, there are two cases to be considered, α̂ = 1 and θ̂ = 0. We give a proof for the case

α̂ = 1. The proof for the case θ̂ = 0 is analogous. If α′(q̂) = 0 then (87) still holds, but we no longer

have λ(q̂) = ψ − uhθ′ . Hence if α(q̂, α̂, θ̂) ≤ 0 then

d

dq̂
V (q̂, 1, θϕ(q̂)) = (−ψ − uhθ′ − λ)

dθϕ

dq

It follows that we must have λ(q̂) = ψ − uhθ′ . If α(0, α∗∗(0), θ(0)) > 0, then V (q̂, 1, θϕ(q̂)) =
W2(q

∗∗, α∗∗, θ∗∗, q̂, θϕ(q̂)) +W (q̂, θϕ(q̂) we have

d

dq̂
V (q̂, 1, θϕ(q̂)) = (ψ − uhθ′ − λ)

dθϕ

dq
+ µ(0)

dα∗∗

dq̂
+ λ(0)

dθ∗∗

dq̂
− uh0

dq∗∗

dq̂

The desired conclusion then follows from the transversality condition for problem (28): µ(0) = λ(0) = 0,

and the fact that u(0, α, θ) = 0 for all (α, θ). We are therefore left with the case where α(q̂, α̂, θ̂) > 0
and α(0, α∗∗(0), θ(0)) = 0. We then have

d

dq̂
V (q̂, 1, θϕ(q̂)) = (ψ − uhθ′ − λ)|q=q̂

dθϕ

dq
(q̂) + [µ+(q

∗∗)− µ−(q
∗∗)]

dα∗∗

dq̂
+ [λ+(q

∗∗)− λ−(q
∗∗)]

dθ∗∗

dq̂

The desired result then follows because α′(q̂) = 0 and the regularity assumption ∂
∂q{uθh0−uqhθ′+ψq} <

0 imply α′(q) = 0 for all q ∈ [0, q̂]. In that case µ and λ are continuous on the interval [0, q̂], and so

the last two terms in the above expression equal zero. Q.E.D.
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Proof of Theorem 5.1: Consider subproblem (i), and assume that q̂ > 0. Along the
solution to this problem, there could be two types of junction points. One is associated with
a transition from a nonsingular region to a singular region; let us call this a type I junction
point. The other one is associated with a transition from a singular region to a nonsingular
region. We call this a type II junction point. First we establish that there cannot be a type
II junction point on the interval (0, q̂).

Lemma 12 Suppose Assumption 3 holds. Then along the solution to subproblem (i) there is no type

II junction point q# ∈ (0, q̂).

Proof of Lemma 12: We proceed in two steps. First, we establish that if there existed a type

II junction point q# ∈ (0, q̂), then there cannot be a type I junction point greater than q#.
This then implies that we must have α̇ = 0 for all q ∈ (q#, q̂).

Suppose to the contrary that q′ is the first type I junction point greater than q#. Because
there is a left neighborhood of q# and a right neighborhood of q′ on which the solution is
singular, it follows from equation (35) and Lemma 6 that we have N(q#) ≤ 0 and N(q′) ≤ 0,
where

N(q) = ψq + uθh0 − uqh1.

By Assumption 3(i) we have Nqq > 0; it follows that N < 0 for all q ∈ (q#, q′).
Equation (33) and the fact that gq > 0 imply that over the interval (q#, q′) the sign of Ṡ

equals the sign of the term ψ− uh1 −λ. From the proof of Lemma 5, on this interval we have

∂

∂q
(ψ − uh1 − λ) = ψq + uθh0 − uqh1 = N < 0

Since at q = q# we have ψ−uh1−λ = 0 (see equation (37), this implies that ψ−uh1−λ < 0
that on [q#, q′], and hence that Ṡ < 0 on [q#, q′]. Since we have S(q#) = 0, this then implies
that S(q′) < 0. But this contradicts that q′ is a type I junction point, establishing step 1.
We conclude that if there exists a type II junction point q# ∈ (q̃, q̂), then the solution must
be nonsingular for q ∈ (q#, q̂), i.e. that we must have α(q#) = α(q̂) = 1.

Next, it now follows from Theorem 6 that we must have q# = q̂, so there cannot be a type
II junction point on the interval (q̃, q̂). Thus on this interval, the solution must be singular.

We now show that Assumption 3(ii) implies that there exists a type I junction point q̃ > 0.

Lemma 13 Suppose Assupmption 3 holds. Then the solution to subproblem (i) contains a unique

type I junction point q̃ ∈ (0, q̂).

Proof : Suppose to the contrary that the solution to subproblem (i) is a singular arc on [0, q̂]. We

will show that in this case we would have α(q) → 0 as q → 0, which contradicts Lemma 7.
To establish the claim, recall that

N = uθ

{∫ α

0

f(a, σ)
2uqq(q, α, θ)− uqq(q, a, σ)

uqθ(q, a, σ)
da+ uq

∫ α

0

fθuqθ − fuqθθ
u2qθ

uqq(q, θ, α)− uqq(q, σ, a)

uqθ(q, σ, a)
da

}

−uθ
{
uq

∫ α

0

f(a, σ)

uqθ(q, a, σ)2
uqqθ(q, a, σ)da

}
(88)
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and

D =

(
u− uθuq

uqθ

)
f + (uqθuα − uqαuθ)

{
2

∫ α

0

f(a, σ)

uqθ(q, a, σ)
da+ uq

∫ α

0

fθuqθ − fuqθθ
u3qθ

(q, a, σ)da

}
Since u(0, α, θ) = uα(0, α, θ) = uθ(0, α, θ) = 0, a Taylor series expansion shows that

uθ(q, α, θ) = quqθ(0, α, θ) + o(q)

Similarly, a second order Taylor series expansion shows that

u− uθuq
uqθ

= q2
(
−uqq +

uquqqθ
uqθ

)
|(0,α,θ) + o(q2)

and that
uqθuα − uqαuθ = (uqqθuqα − uqqαuqθ)|(0,α,θ) + o(q2)

Hence we have

α̇ =
1

q
κ(q, α, θ)

where κ(q, α, θ) = (N/q)
(D/q2) .

We will show below that there exists ε1 > 0 such that |N/q| ≥ ε1 in a neighborhood of q = 0.
Since

lim
q→0

N

q
(q, α, θ) = Nq(0, α, θ)

it will suffice to show that Nq(0, α, θ) is bounded away from zero.
To establish this, observe that since the solution is singular on [0, q̂], it follows from equation

(35) and Lemma 6 that N(q, α(q), θ(q)) ≤ 0 for all q ∈ (0, q̂). Meanwhile, recall that by
definition we have:

ψ =
uquθ
uqθ

h1.

Using the above expression in (44) yields:

N(q, α, θ) = uθ

(
h1

∂

∂q

(
uq
uqθ

)
+

uq
uqθ

∂

∂q
h1 + h0

)
. (89)

Since uθ(0, α, θ) = 0, we haveN(0, α(q), θ(q)) = 0. SinceN(q, α(q), θ(q)) ≤ 0 andN(0, α(q), θ(q)) ≤
0, it follows from Assumption 3(i) that N(q′, α(q), θ(q)) < 0 for all q′ ∈ (0, q). We shall now
show that this implies that Nq(0, α(q), θ(q)) < 0 for all q ∈ (0, q̂).

For suppose instead we had Nq(0, α(q), θ(q)) ≥ 0 for some q ∈ (0, q̂). The strict convexity
of N(x, α(q), θ(q)) in x then implies that N(x, α, θ) > 0 for all x > 0. Combining this with the
fact that N(0, α(q), θ(q)) = 0 implies that N(q′, α(q), θ(q)) > 0 for all q′ ∈ (0, q), contradicting
what we established above. Hence we have Nq(0, α(q), θ(q)) < 0 for all q ∈ (0, q̂).

BecauseNqθ ≤ 0 by Assumption 3, and because θ(0) > θ(q), it follows thatNq(0, α(q), θ(0)) ≤
Nq(0, α(q), θ(q)) < 0. Since Nq(0, 0, θ(q)) = 0, and since by Lemma 7 we have α(0) > 0,
the convexity of Nq in α then implies that Nq(0, α(0), θ(0)) < 0, finally establishing that
Nq(0, α(q), θ(q)) is bounded away from zero in a neighborhood of q = 0.

Since |D/q2| remains bounded above in a neighborhood of q = 0, |N/q| ≥ ε1 in a neighborhood of
q = 0, it follows that there exists ε2 > 0 such that κ(q, α, θ) ≥ ε2 over this neighborhood. Hence we
have

α̇ ≥ ε

q
,
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implying
α(q) ≤ α(q1) + ε ln q

Thus α(q) = 0 for some q > 0, thereby establishing the required contradiction. Q.E.D.

Q.E.D.

Proof of Theorem 8: First, let us establish that it is necessary that α′(q) = 0 for all q ≤ q̂. Suppose

instead that in the optimal mechanism there existed an interval [q−, q+] of q < q̂ on which α′(q) > 0.

Then for any q ∈ [q−, q+) we have θ > 0. It follows that the iso-price line σ(q, α(q), θ(q), a) trough

the point (α(q), θ(q)) at the level q contains points (those with coordinates a ∈ (α, α(q̂)]) which violate

the individual rationality condition. Types (σ(q, α(q), θ(q), a), a) with a ∈ (α, α(q̂)] will therefore not

consume the the increment q, or any of the increments z < q, as is assumed in the demand profile

approach.
Next, we establish the necessity of q̂ = 0. Suppose to the contrary that we had q̂ > 0. Let us now

assume that θϕ(0) > 0 ; and entirely analogous argument treats the case where θϕ(q) = 0 for some

q > 0. It follows from Theorem 6 that θ̂ = θϕ(q̂), and so we have ϕ(q̂, θ̂) = 0. Furthermore, since ϕ is

decreasing in q, we have ϕ(q, θ̂) > 0 for all q < q̂, and so

uq(q, 1, θ̂)Hθ(q, θ̂) + uqθ(q, 1, θ̂)H(q, θ̂) > 0. (90)

Now recall that N(p, q) is be the measure of types (α, θ) for whom uq(q, α, θ) ≥ p. Thus, letting θ̃(p, q)

be the solution to uq(q, 1, θ) = p, we have N(p, q) = H(q, θ̃(p, q)). The optimality condition for the
problem maxp pN(p, q) can thus be written as

N(p, q) + p
∂N

∂p
(p, q) = 0, (91)

or equivalently that

uqθ(q, 1, θ)H(q, θ) + uq(q, 1, θ)Hθ(q, θ) = 0 at θ = θ̃(p, q). (92)

It follows from (90), (92) and the fact that ϕ is increasing in θ that θ̂ > θ̃(p, q). Consequently, the

optimal mechanism must differ from the mechanism selected by the demand profile approach.

Next, let us establish sufficiency. If q̂ = 0, then in the optimal mechanism we have ϕ(q, θϕ(q)) = 0

for all q ∈ [0, q̄(1)], implying that (91) holds at p = uq(q, 1, θ
ϕ(q)). Furthermore, the monotonicity of ϕ

in θ implies that there is no θ ̸= θϕ(q) for which (92) holds, so p = uq(q, 1, θ
ϕ(q)) is a global optimizer

of (91), and so the demand profile approach identifies the optimal mechanism. Q.E.D.
Proof of Theorem 9: Note that (13), (15), (43) and (83) can be combined to show that ϕ(q, θ) =
uqθ(q, 1, θ)v(q, θ), where

v(q, θ) = −uq(q, 1, θ)
∫ 1

α−(q,θ)

f(a, σ(q, 1, θ, a)

uqθ(q, a, σ(q, 1, θ, a))
da+H(q, 1, θ)

Also, it follows from (14), (15), (43) and (84) that κ(q, α) = uqα(q, α, 0)ρ(q, α), where

ρ(q, α) = −uq(q, α, 0)
∫ α

α−(q,α)

f(a, σ(q, α, 0, a))

uqθ(q, a, σ(q, α, 0, a))
da+H(q, α, 0)
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Next, we show the necessity of condition (45). Suppose first that ρ(0, α̊) = 0 for some α̊ ∈ (0, 1] but

uqα(0, α, 0) > 0 for some α ∈ (0, α̊) . Since σα(0, α, 0, a) = uqα(0, α, 0)/uqθ(0, a, σ(0, α, 0, a)), it then

follows that σ(0, α, 0, 0) > 0. Thus a positive measure of types must receive a zero quantity. Next,

suppose that uqα(0, α, 0) = 0 for all α, but there exists no α̊ ∈ (0, 1] such that ρ(0, α) = 0. Since

ρ(0, 0) = 1, we must then have ρ(0, α) > 0 for all α. Because ϕ(0, 0) = uqθ(0, 1, 0)ρ(0, 1) > 0, and

because by assumption we have ϕθ < 0, it then follows that ϕ(0, θ(0)) = 0 for some θ(0) > 0. Therefore

all consumer types (α, θ) with θ < θ(0) are excluded.

Next, we will argue that if the conditions of the Theorem hold, then the associated mechanism is

optimal and no consumer is excluded. Let the monopolist select (α̂, θ̂) = (α̊, 0) and q̂ = 0.

Theorem 5 implies that in this case q(1) is the solution to the equation κ(q, 1) = 0, on the interval

[0, q(1)] α(q) is defined as a solution to κ(q, α) = 0, while on the interval [q(1), q̄(1)] θ(q) is defined as

a solution to ϕ(q, θ) = 0. There is no exclusion in this mechanism, because the isoquant emanating

from the point (α̊, 0) is flat, i.e. σa(0, α̊, 0, a) = −uqα(0,a,0)
uqθ(0,a,0)

= 0. Q.E.D.

9 Appendix B

In this appendix, we prove Theorems 10 and 11. Observe that u− uθuq

uqθ
= (b−α)

2 q2 > 0 for all q > 0. It

then follows from Lemma 7(i) that q(0) = 0. We start by considering the solution to Subproblem (ii)

in (21) for an arbitrary fixed q̂ > 0.

Lemma 14 Suppose that u(q, θ, α) = θq − b−α
2 qγ, and F (θ, α) is uniform on [0, 1]2. Then in

the optimal solution α∗ = 2b
3 and the interval [0, q∗] forms a non-singular arc where α′ = θ′ = 0,

while the interval [q∗, q̂] forms a singular arc where α′ > 0.

Proof of Lemma 14:
Step 1. Preliminary Computations.
Note the following simple results:

σ = θ +
γ

2
(α− a)qγ−1 (93)

σθ = 1 (94)

σα =
γ

2
qγ−1 (95)

σq =
γ(γ − 1)

2
qγ−2 (96)

− dθ

dα
= g ≡ uα

uθ
=
qγ−1

2
(97)
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Let us first focus on the case q ∈ [0, q∗]. Then α = 0, and so we have:

h0(q) =
α2γ(γ − 1)

4
qγ−2 (98)

h1(q) = α (99)

h2(q) =
αγ

2
qγ−1 (100)

ψ(q) = α
(
θq − γ

2
(b− α)qγ

)
(101)

Using (98)-(101), we obtain:

D(q, α, θ) ≡ uf + ψgθ + ψθg − ψα − uθ(h2 − gh1) =
γ − 1

2
(b− 3α) qγ (102)

N(q, α, θ) ≡ uθh0 − uqh1 + ψq =
αγ(γ − 1)

(
3α
2 − b

)
2

qγ−1 (103)

Combining (102) and (103), we obtain:

α′ =
N

D
=
γα
(
3α
2 − b

)
q(b− 3α)

(104)

Next, consider q ∈ [q∗, q̂]. In this case, α = α− 2(1−θ)
γqγ−1 , and so we have:

h0(q) =
(1− θ)2(γ − 1)

γ
q−γ (105)

h1(q) =
2(1− θ)

γqγ−1
(106)

h2(q) = (1− θ) (107)

ψ(q) =
2θ(1− θ)

γ
q2−γ − (b− α)(1− θ)q (108)

Using (105)-(108), we obtain that for q ∈ [q∗, q̂]:

D(q, α, θ) ≡ uf + ψgθ + ψθg − ψα − uθ(h2 − gh1) = (3θ − 2)

(
1− 1

γ

)
q (109)

N(q, α, θ) ≡ uθh0 − uqh1 + ψq = (1− θ) (1− 3θ)
γ − 1

γ
q1−γ (110)

Combining (109) and (110), we obtain for q ∈ [q∗, q̂]::

α′(q) =
N

D
=

(1− θ) (1− 3θ)

qγ(3θ − 2)
(111)

Step 2. Let us introduce some additional notation. Let qb/3 = d sup{q : α(q) ≤ b
3},

q2b/3 = sup{q : α(q) ≤ 2b
3 }.

Let us show that for any q ∈ [q0,min{q∗, qb/3}), we have α′(q) = 0.
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Proof: The proof is by contradiction so suppose that there exists some q′ ∈ [q0,min{q∗, qb/3})
s.t. α′(q′) > 0. Then q′ belong to a singular arc and from equation (102), D(q′, α(q′), θ(q′)) >
0. But this contradicts Generalized Legendre-Clebsch condition of Lemma 6.

Step 3. Suppose that qb/3 < min{q2b/3, q∗}. Then any q ∈ [qb/3,min{q2b/3, q∗}] lies on a
singular arc.

By step 1, S(q) ≤ 0 and α′(q) = 0 for any q ∈ [q0, qb/3]. So to prove this step by
contradiction, assume that there exists q′′ ∈ [qb/3,min{q2b/3, q∗}) s.t. S(q′′) = 0 and S(q) > 0
in any right neighborhood of q′′.

By definition, S = u(h2 − gh1) + (µ− λg). Using (97) and (99)-(100), we obtain:

u(h2 − gh1) = (θq − b− α

2
qγ)(

αγ

2
qγ−1 − qγ−1

2
α) = (θq − b− α

2
qγ)

α(γ − 1)qγ−1

2
(112)

Also, by Theorem 4 on the interval [qb/3,min{q2b/3, q∗}) we have: µ̇ = −uαh0 − u∂h0
∂α ,

λ̇ = −uθh0 − u∂h0
∂θ . Since µ(0) = 0 and λ(0) = 0, we have:

µ(q) =

∫ q

0
µ′(x)dx =

∫ q

0
−uαh0 − u

∂h0
∂α

dx

=

∫ q

0
−x

2(γ−1)γ(γ − 1)α2

8
− αγ(γ − 1)xγ−2

2
(θx− b− α

2
xγ)dx =

− αθ(γ − 1)qγ

2
+
αγ(γ − 1)(b− 3

2α)q
2γ−1

4(2γ − 1)
(113)

λ(q) =

∫ q

0
λ′(x)dx =

∫ q

0
−uθh0 − u

∂h0
∂θ

dx =

∫ q

0
−α

2γ(γ − 1)

4
xγ−1dx = −α

2(γ − 1)qγ

4
(114)

Combining (112), (113) and (114) yields:

S = u(h2 − gh1) + µ− λg =

(θq − b− α

2
qγ)

α(γ − 1)qγ−1

2
− αθ(γ − 1)qγ

2
+
αγ(γ − 1)(b− 3

2α(q))q
2γ−1

4(2γ − 1)
+
qγ−1

2

α2(γ − 1)qγ

4
=

− b− α

2
qγ
α(γ − 1)qγ−1

2
+
αγ(γ − 1)(b− 3

2α)q
2γ−1

4(2γ − 1)
+
qγ−1

2

α2(γ − 1)qγ

4
=(

−1 +
γ

2γ − 1

)
α(γ − 1)(b− 3

2α(q))q
2γ−1

4
=
α(γ − 1)2(32α− b)q2γ−1

4(2γ − 1)
(115)

Note that (115) is negative if α < 2b
3 and is positive if α < 2b

3 So, we cannot have α(q) > 2b
3

for q < q∗.
Step 4. The interval [0, q∗] is such that α′(q) = 0 for all q ∈ [0, q∗]. Also, α∗ ≥ 2b

3 .
Step 5. Let [0, q̄) be the non-singular arc (so that α′(q) = 0 for all q ∈ [0, q̄)). Then

q̄ = q∗ and α∗ = 2b
3 , θ

∗ = 1− α∗ αγ
2 (q∗)γ−1.

Proof: The previous steps have established that q̄ ≥ q∗. So we only need to show that we
cannot have q̄ > q∗.
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To complete the proof, let us compute the value of S(q̄). By definition, we have: S(q̄) =
(u(h2 − gh1) + µ− gλ) (q̄).

By Theorem 4, on the non-singular arc [0, q̄), µ̇ = −uαh0 − u∂h0
∂α λ̇ = −uθh0 − u∂h0

∂θ , and
also µ(0) = 0 and λ(0) = 0. Therefore, we have:

µ(q̄) =

∫ q̄

0
µ′(q)dq =

∫ q̄

0
−uαh0 − u

∂h0
∂α

dq =

∫ q∗

0
−uαh0 − u

∂h0
∂α

dq +

∫ q̄

q∗
−uαh0 − u

∂h0
∂α

dq =∫ q∗

0
−x

2(γ−1)γ(γ − 1)α2

8
− αγ(γ − 1)xγ−2

2
(θx− b− α

2
xγ)dx+∫ q̄

q∗
−x

γ

2

(1− θ)2(γ − 1)

γ
x−γdx =

− αθ(γ − 1)(q∗)γ

2
+
αγ(γ − 1)(b− 3

2α)(q
∗)2γ−1

4(2γ − 1)
− (1− θ)2(γ − 1)

2γ
(q̄ − q∗) . (116)

λ(q̄) =

∫ q̄

0
λ′(q)dq =

∫ q̄

0
−uθh0 − u

∂h0
∂θ

dq =

∫ q∗

0
−uθh0 − u

∂h0
∂θ

dq +

∫ q̄

q∗
−uθh0 − u

∂h0
∂θ

dq =∫ q

0
−α

2γ(γ − 1)

4
xγ−1dx+

∫ q̄

q∗
−(1− θ)2(γ − 1)

γ
x1−γ − (θx− b− α

2
xγ)

−2(1− θ)(γ − 1)

γ
x−γdx

= −α
2(γ − 1)(q∗)γ

4
− (b− α)(1− θ)(γ − 1)

γ
(q̄ − q∗) +

(3θ − 1)(1− θ)(γ − 1)

γ

∫ q∗

q̄
q1−γdq

(117)
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Using (97), (99)-(100), (106)-(107), (116) and (117), we can now compute S(q̄) for q ≥ q∗:

S(q̄) = u(h2 − gh1) + µ− gλ =

(θq̄ − b− α

2
q̄γ)(1− θ)

γ − 1

γ

− (1− θ)θ(γ − 1)q∗

γ
+

(1− θ)2(γ − 1)(b− 3
2α)q

∗

αγ(2γ − 1)
− (1− θ)2(γ − 1)

2γ
(q̄ − q∗)

+
α2(γ − 1)(q∗)γ

8
q̄γ−1 +

(b− α)(1− θ)(γ − 1)

2γ
(q̄ − q∗) q̄γ−1 − (3θ − 1)(1− θ)(γ − 1)

2γ

∫ q̄

q∗

(
q̄

q

)γ−1

dq =

(3θ − 1)(1− θ)(γ − 1)

2γ
(q̄ − q∗)− b− α

2
q̄γ(1− θ)

γ − 1

γ
+

(1− θ)2(γ − 1)(b− 3
2α)q

∗

αγ(2γ − 1)

+
α2(γ − 1)(q∗)γ

8
q̄γ−1 +

(b− α)(1− θ)(γ − 1)

2γ
(q̄ − q∗) q̄γ−1 − (3θ − 1)(1− θ)(γ − 1)

2γ

∫ q̄

q∗

(
q̄

q

)γ−1

dq =

(3θ − 1)(1− θ)(γ − 1)

2γ
(q̄ − q∗)− (b− α)(1− θ)(γ − 1)

2γ
q∗q̄γ−1 +

(1− θ)2(γ − 1)(b− 3
2α)q

∗

αγ(2γ − 1)

+
α2(γ − 1)(q∗)γ

8
q̄γ−1 − (3θ − 1)(1− θ)(γ − 1)

2γ

∫ q̄

q∗

(
q̄

q

)γ−1

dq =

− (3θ − 1)(1− θ)(γ − 1)

2γ

∫ q̄

q∗

(
q̄

q

)γ−1

− 1dq −
(b− 3

2α)(1− θ)(γ − 1)

2γ
q∗q̄γ−1 +

(1− θ)2(γ − 1)(b− 3
2α)q

∗

αγ(2γ − 1)
=

− (3θ − 1)(1− θ)(γ − 1)

2γ

∫ q̄

q∗

(
q̄

q

)γ−1

− 1dq −
(b− 3

2α)(1− θ)2(γ − 1)

αγ
q∗
(
1

γ
− 1

2γ − 1

)
(118)

If α∗ < 2b
3 , then taking into account that q̄ ≥ q∗, and inspecting the last equality in (118)

establishes that S(q̄) < 0. But this contradicts the fact that S(q̄) < 0 since q̄ is a juncture
point between a non-singular and singular arcs and hence we must have S(q̄) = 0. So, α∗ = 2b

3 .
Then, we also must have q̄ = q∗, because otherwise S(q̄) < 0.

It remains to check that the solution with α∗ = 2b
3 and q̄ = q∗ is consistent with the

continuity of the Lagrange multipliers, particularly at the juncture point q̄.
Since q̄ is a juncture point, there exists z > 0 such that [q̄, q̄ + z] in a singular arc. By

Theorem 4, on a singular arc , µ(q̄) = (ψg − uh2) (q̄) and λ(q̄) = (ψ − uh1) (q̄). Therefore, we
must have: ∫ q̄

0
µ′(q)dq =

∫ q̄

0
−uαh0 − u

∂h0
∂α

dq = µ(q̄) = (ψg − uh2) (q̄)∫ q̄

0
λ′(q)dq =

∫ q̄

0
−uθh0 − u

∂h0
∂θ

dq = λ(q̄) = (ψ − uh1) (q̄).
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Using (97), and (106)-(108) we may compute:

(ψg − uh2) (q̄) = (1− θ)

(
2θ

γ
q2−γ − (b− α)q

)
qγ−1

2
− (1− θ)

(
θq − (b− α)

qγ

2

)
= −(1− θ)θ

γ − 1

γ
q̄,

(119)

(ψ − uh1) (q̄) = (1− θ)

(
2θ

γ
q2−γ − (b− α)q

)
−
(
θq − (b− α)

qγ

2

)
2(1− θ)

γqγ−1
= −(1− θ)(b− α)

γ − 1

γ
q̄

(120)

To check the continuity of µ equate (116) and (119) to obtain:

− (1− θ)θ
γ − 1

γ
q̄ = −αθ(γ − 1)(q∗)γ

2
+
αγ(γ − 1)(b− 3

2α)(q
∗)2γ−1

4(2γ − 1)
− (1− θ)2(γ − 1)

2γ
(q̄ − q∗) .

(121)

Since α and θ are constant functions of q on the interval [0, q̄], and q̄ ≥ q∗, from the definition
of q∗ it follows that 1 = θ + αγ

2 (q∗)γ−1. Substituting this into the first and second terms on
the right-hand side of (121) yields:

− (1− θ)θ
γ − 1

γ
q̄ = −(1− θ)θ(γ − 1)q∗

γ
+

(1− θ)2(γ − 1)(b− 3
2α)q

∗

αγ(2γ − 1)
− (1− θ)2(γ − 1)

2γ
(q̄ − q∗) .

(122)

which can be further simplified as follows:

q̄ = q∗ +
(2b− 3α)

α(2γ − 1)
q∗,

q̄ =
2(b+ 2α(γ − 2))

α(2γ − 1)
q∗ (123)

Simple observation establishes that the equality (123) holds when α = 2b
3 and q̄ = q∗.

Now let us check the continuity of the Lagrange multiplier λ at q̄. Equating (117) and
(120) we obtain:

− (1− θ)(b− α)
γ − 1

γ
q̄ = −α

2(γ − 1)(q∗)γ

4
− (b− α)(1− θ)(γ − 1)

γ
(q̄ − q∗) +

(3θ − 1)(1− θ)(γ − 1)

γ

∫ q∗

q̄

q1−γdq

Using the equation 1− θ = αγ
2 (q∗)γ−1 and cancelling the term on the left-hand side with the first part

of the expansion of the second term on the right-hand side yields:

0 = −α(1− θ)(γ − 1)q∗

2γ
+

(b− α)(1− θ)(γ − 1)

γ
q∗ +

(3θ − 1)(1− θ)(γ − 1)

γ

∫ q∗

q̄

q1−γdq

0 =
(b− 3α

2 )(1− θ)(γ − 1)

γ
q∗ +

(3θ − 1)(1− θ)(γ − 1)

γ

∫ q∗

q̄

q1−γdq (124)

It is easy to see that the equality (124) holds when α = 2b
3 and q̄ = q∗, which completes the proof.

Q.E.D.
Next, we consider the solution to Subproblem (ii) in (21) for an arbitrary fixed q̂ > 0.
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Lemma 15 Let u(q, θ, α) = θq − b−α
2 qγ and suppose that the types are distributed uniformly over

[0, 1]2. Let q̄ =
(

2
γ(b−1)

) 1
γ−1

. and q̃ =
(

4
γ(2b+1)

) 1
γ−1

. If b ≥ 3
2 , then the solution to subproblem (ii) in

(21) is as follows:

θϕ(q) =
1 + γ(b− 1)qγ−1

3
for q ∈ [q̂, q̄]. (125)

If b < 3/2, then the solution to the problem (21) is given by:

θϕ(q) =

{
1+γ(b−1)qγ−1

3 , if q ∈ [q̃, q̄]
1+γqγ−1( 2b−3

4 )
2 , if q ∈ [0, q̃].

(126)

Proof: By Theorem (6), the solution to the problem (21) is found by setting (42) to zero and
solving that equation i.e., ϕ(q, θ) ≡ uq(q, 1, θ)Hθ(q, 1, θ) + uθq(q, 1, θ)H(q, 1, θ) = 0

So, first we need to compute H(q, 1, θ) ≡
∫ 1

α(q,1,θ)

∫ 1

σ(q,θ,1,a)
f(t, a)dtda. Recall that α(q, 1, θ) =

1− 2(1−θ)
γqγ−1 > 0 if θ > 1− γqγ−1

2 and α(q, 1, θ) = 0 otherwise, while σ(q, θ, 1, a) = min{θ+ γ(1−a)
2 qγ−1, 1}

with σ(q, θ, 1, a) = θ + γ(1−a)
2 qγ−1 for all a ∈ [α(q, 1, θ), 1].

So, when α(q, 1, θ) = 1− 2(1−θ)
γqγ−1 > 0 we may compute:

H(q, 1, θ) =

∫ 1

α(q)

∫ 1

σ(q,θ,1,a)

dtda =

∫ 1

1− 2(1−θ)

γqγ−1

∫ 1

θ+
γ(1−a)

2 qγ−1

dtda =

∫ 1

1− 2(1−θ)

γqγ−1

1− θ − γ(1− a)

2
qγ−1da

=
(1− θ)2

γqγ−1
(127)

Then using (127) in the equation ϕ(q, θ) ≡ uq(q, 1, θ)Hθ(q, 1, θ) + uθq(q, 1, θ)H(q, 1, θ) = 0 and solving
yields:

θϕ(q) =
1 + γ(b− 1)qγ−1

3
. (128)

Next, suppose α(q, 1, θ) = 0. Then we have:

H(q, 1, θ) =

∫ 1

0

∫ 1

σ(q,θ,1,a)

dtda =

∫ 1

0

∫ 1

θ+
γ(1−a)

2 qγ−1

dtda =

∫ 1

0

1− θ − γ(1− a)

2
qγ−1da = 1− θ − γ

4
qγ−1(129)

Then solving ϕ(q, θ) ≡ uq(q, 1, θ)Hθ(q, 1, θ)+uθq(q, 1, θ)H(q, 1, θ) = 0 with (129) substituted in, yields:

θϕ(q) =
1 + γqγ−1

(
2b−3
4

)
2

. (130)

It remains to determine the intervals on which (128) and (130) hold respectively. First, note that
simple monotonicity argument shows that, if (128) applies at q1, then it applies at q2 > q1. The
highest q for which (128) applies, q̄, is implicitly and uniquely defined by setting θϕ(q̄) = 1, which

yields q̄ =
(

2
γ(b−1)

) 1
γ−1

. Further, Lemma 14 establishes that α∗ = 2b
3 ≤ 1 when b ≤ 3

2 . So, in this case

α(q, 1, θϕ(q)) ≥ 0 for all q ≥ q̂, and hence (128) applies for all q ∈ [q̂, q̄].

If b > 2
3 , then α

∗ = 1, and α(q, 1, θϕ(q)) = 0 for q ∈ [q̂, q̃], where q̃ =
(

4
γ(2b+1)

) 1
γ−1

is the solution

to the equation α(q, 1, θϕ(q)) = 1− 2(1−θϕ(qγ−1))
γq = 0 for q. So, (130) applies for all q ∈ [q̂, q̃], and (128)

applies for all q ∈ [q̃, q̄]. Q.E.D.

The following Lemma characterizes the solution to subproblem (i), for the case b < 32, on its
unique singular arc [q∗, q̂] where α′ < 0.
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Lemma 16 Suppose that u = qθ − b−α
2 qγ , b < 3

2 , and F is uniform on [0, 1]2. The solution to
subproblem (i) on its unique singular arc [q∗, q̂] is as follows:

θ∗ ≡ θ(q∗) = 1− bγ(q∗)γ−1

3
(131)

α̂ ≡ α(q̂) = 1 (132)

θ(q) =
2−

√
1− bγ(q∗)γ(2−bγ(q∗)γ−1)

q

3
for all q ∈ [q∗, q̂] (133)

b(q∗)γ(2− bγ(q∗)γ−1) = (b− 1)q̂γ(2− (b− 1)γq̂γ−1) (134)

(
1

2
− b

3

)(
bγ(q∗)γ

3
(2− bγ(q∗)γ−1)

)γ−1

=

1− bγ(q∗)γ−1

3∫
1+γ(b−1)q̂γ−1

3

((1− θ)(3θ − 1))
γ−1

dθ (135)

Proof of Lemma 16: By Lemma 14, α∗ = 2b
3 . Substituting this into equation uq(q

∗, θ∗, α∗) =

uq(q
∗, 0, 1) i.e., θ∗ + bγ(q∗)γ−1

3 = 1 (via which the triplet (q∗, θ∗, α∗) is defined) gives us (131).

Further, Lemma 15 implies that, if b ≥ 3
2 , then θ̂ = θϕ(q̂) ≥ θϕ(0) = 1

2 , and if b < 3
2 then θ̂ = θ̃ ≥ 1

3 .
Hence regardless of the value of b, we have α̂ = 1, establishing (132).

Next, combining (97) and (111) yields for all q ∈ [q∗, q̂]:

θ′(q) =
dθ

dα
α′(q) = −1

2

(1− θ) (1− 3θ)

q(3θ − 2)

which can be rearranged as follows:

(4− 6θ)dθ

(1− θ) (1− 3θ)
=
dq

q

which can be integrated to yield that for all q ∈ [q∗, q̂] and some constant k > 0:

q =
k

(1− θ) (1− 3θ)
. (136)

Evaluating (136) at q∗ and making use of α∗ = 2b
3 and (131) allows us to compute the constant of

integration k as follows k = bγ
3 (q∗)γ(2 − bγ(q∗)γ−1). Solving (136) for θ and using k = bγ

3 (q∗)γ(2 −
bγ(q∗)γ−1) yields (133).

Next, the continuity of the solution at q̂ implies that the value of (133) at q̂ be the same as the one

given by the first expression in (126) , 1+γ(b−1)q̂γ−1

3 , or, equivalently, that the equality q̂(1− θ̂)(3θ̂−1) =

q∗(1− θ∗)(3θ∗ − 1) holds when we substitute into it α∗ = 2b
3 , (131), and θ̂ =

1+γ(b−1)q̂γ−1

3 . This yields
(134).

Finally, we have 1 − 2b
3 = α̂ − α∗ =

∫ θ∗

θ̂
α′(θ)dθ =

∫ θ∗

θ̂
− 2

qγ−1 dθ =
∫ θ̂

θ∗
2

qγ−1 dθ. where the third

equation uses (97). Using (136) with k = bγ
3 (q∗)γ(2− bγ(q∗)γ−1) in the last equation and simplifying

yields (135) Q.E.D.
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Figure 1: Typical shape of the isoquants
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Figure 2: Linear- quadratic case with uniform distribution. Isoquants in Case A: b > 3/2.
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Figure 3: Linear- quadratic case with uniform distribution. Isoquants in Case C: b < 3/2.
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