Methods
- Stimuli: 384 living things (plants and animals) and nonliving artifacts (tools, weapons, household items, clothing, etc.)
- Each paired with one shared and one distinctive feature
- Filler stimuli were paired with false features
- Participants: native English-speaking, right-handed adults who reported no history of neurological disorder
- Functional magnetic resonance imaging (fMRI): N = 16
- Transcranial magnetic stimulation (TMS) pilot: N = 6
- Imaging: 3T Trio scanner with 32-channel head coil; TR = 2500 ms
- ROI analysis on anatomically-defined AG in each hemisphere using Talairach atlas in AFNI
- TMS: MagStim Rapid Plus
- Offline continuous theta-burst stimulation and sham stimulation: 600 pulses delivered in 50-Hz 3-pulse triplets at 200-ms intervals
- Sites: left AG and right AG, real and sham stimulation to each site (+/− 47, −8, 43)
- Stimulation at 80% of active motor threshold
- Task: participants verified features using a button press (yes/no)

Background
- Patient research has investigated the role of the temporal lobe in processing semantic information
- Category-specific deficits (e.g., living things vs. nonliving things)
- More vs. less specific information (e.g., ‘zebra – has stripes’ vs. ‘zebra – has four legs’)
- Angular gyrus (AG): Involved in integration during semantic processing (Seghier, 2013)
- The left hemisphere is typically considered to be dominant but the right AG is implicated as well
- The left hemisphere may be important to verbal conceptual information while the right is sensitive to low-level feature processing (Gainotti, 2011)
- Possible roles for the right angular gyrus:
 - Plays a similar role in semantic processing to the left AG but less efficient at processing information at the level of the concept
 - Unique role in processing semantic features: crucial for normal semantic processing
 - Angular gyrus (AG): involved in integration during semantic processing (Gainotti, 2011)

Patient research has investigated the role of the temporal lobe in processing semantic information. The left hemisphere is typically considered to be dominant but the right AG is implicated as well. The left hemisphere may be important to verbal conceptual information while the right is sensitive to low-level feature processing (Gainotti, 2011). Possible roles for the right angular gyrus include:

- Plays a similar role in semantic processing to the left AG but less efficient at processing information at the level of the concept.
- Unique role in processing semantic features: crucial for normal semantic processing.

Behavioral lateralization: both hemispheres process shared features faster than distinctive features, but the right hemisphere is particularly slow to process distinctive features (Reilly, Machado & Blumstein, 2015).

References and Acknowledgments

This research funded by: American Association of University Women Dissertation Fellowship, NIH grant R01 DC006220, Brown Institute for Brain Science.