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Abstract. Helium can be prepared with a purity much higher than any other element. As a 
consequence, it is an ideal material in which to study nucleation processes. We describe work in which 
liquid helium has been studied at pressures below the pressure range in which the liquid is the 
thermodynamically stable phase. This has made possible the study of a wide range of interesting 
phenomena including the quantum nucleation of bubbles and the imaging of the motion of single 
electrons moving through the liquid.  
 
 
I. Introduction 
It is a great honour to be one of the recipients of Fritz London Memorial Award for LT26. I would like 
to thank all of the people who have helped my research over the past forty years. As a graduate 
student, I worked on the propagation of very high frequency sound in solids. My first involvement 
with helium was in 1970 when together with W.E. Massey I became interested in how sound was 
attenuated by interactions with phonons in liquid helium [1]. We came to the conclusion that the 
experimental data could only be explained if the dispersion in helium was anomalous, i.e., if the 
phonon dispersion relation curved upwards as the momentum increased. This was a radical idea at the 
time because it was in disagreement with the established theoretical ideas dating from the work of 
Landau and Khalatnikov in the 1950’s. Fortunately, the radical idea was quickly confirmed by specific 
heat measurements of N.E. Phillips and his students [2] who had been reluctant to publish their results 
because they thought there must be something wrong in their experiment. The modification to the 
dispersion relation later made it possible to understand the sound attenuation, normal fluid viscosity of 
helium at low temperatures and some aspects of second sound propagation [3]. The details of the 
roton-phonon dispersion relation, in particular the fact that rotons had enough energy to evaporate 
helium atoms, was also important for our later work on the development of a liquid helium-based 
detector of solar neutrinos [4].  
    I became interested in metastable quantum liquids when studying the supercooling of liquid 
molecular hydrogen. Before describing this work, I mention some general properties of metastable 
states [5]. The rate of nucleation of a stable phase from a metastable phase as a result of thermal 
fluctuations is given by the expression  

,( , ) exp( / )thermal att thermal barrierP T E kT    ,                                      (1) 

where ,att thermal is the attempt frequency per unit volume and per unit time, and barrierE  is the height of 

the nucleation barrier. Nucleation can also occur as result of quantum tunnelling through the barrier. 
The rate of nucleation by quantum tunnelling is  

,( , ) exp( 2 )quantum att quantumP T I    ,         (2) 
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where I  is determined by the height and width of the barrier and  ,att quantum is the attempt frequency. 

The total nucleation rate   is the sum of these two rates. This quantity can be measured by taking a 
volume V  of the metastable phase and measuring the probability S  that nucleation of the stable phase 
occurs. This probability is one minus the probability that nucleation does not occur within a time   
and so  

1 exp( )S V   .     (3) 
To measure   in this way it is essential to eliminate the possible effects of heterogeneous nucleation, 
i.e., nucleation associated with impurities or occurring on the walls of the sample container.  For 
nucleation studies, quantum liquids (helium and hydrogen) have the great advantage that they can be 
made extremely pure (especially helium).  However, it is still necessary to use some special method to 
eliminate the possibility of nucleation on the walls.  
   The normal freezing temperature of hydrogen is 13.9fT   K. By extrapolating the measured 

specific heat of liquid hydrogen to lower temperatures we estimated that the difference in energy 
between liquid and solid hydrogen at 0T   K was only 6.5 K [6]. This is very small compared to the 
90 K total binding energy of the solid [7] and suggested that it might be possible to supercool liquid 
hydrogen far below fT . We then calculated the rate at which nucleation of the solid phase should 

occur in supercooled liquid. In the region just below fT  the energy barrier barrierE decreases rapidly as 

T goes down giving a rapid increase in thermal .  However, far below fT  the barrier becomes constant 

and then, since the energy kT  available to overcome the barrier is decreasing, the nucleation rate due 
to thermal fluctuations becomes very small. The nucleation rate then falls to a low temperature value 

0 which is determined by the rate of quantum tunnelling through the nucleation barrier.  

    This dependence of the nucleation rate on temperature raised the intriguing possibility that if 
hydrogen could be cooled quickly through the temperature range in which the nucleation rate was high 
(roughly 4 to 8 K), then perhaps the liquid could be cooled down to arbitrarily low temperatures. To 
give the best chance of this working it would be best to use a very small volume of liquid and cool it 
quickly through the temperature range in which the nucleation rate was large. It was also necessary to 
eliminate nucleation on the container walls. To achieve this we inserted drops of liquid hydrogen into 
helium fluid, i.e., helium above the critical point of 5.2 K [8]. The helium was much more 
compressible than the hydrogen and so by adjusting the pressure applied to the helium we could make 
the densities match and have the hydrogen drops float in the helium far away from the walls. The 
smallest drops that we could study had a radius of 50 µ and these could be cooled to only about 10.7 K 

before solid nucleated. At this temperature the nucleation rate was ~ 710  cm-3s-1. It was difficult to use 
smaller drops or cool faster using this approach. 
    A second approach was to first magnetically levitate a large drop of liquid helium (of the order of 1 
cm3) at a temperature of 1K, for example, and then to condense hydrogen molecules onto this drop. In 
this way, bulk hydrogen liquid would be first formed at low temperatures and would not have to be 
cooled through the temperature range where the nucleation rate was high.  For various reasons we 
never completed this experiment (we still hope to!), but the helium levitation experiment did lead to 
many interesting results [9]. One remarkable result was that under certain conditions two levitated 
superfluid helium drops would approach and appear to make contact but not coalesce. A photo of this 
is shown in Fig. 1. On occasion two drops would even bounce off of each other. The detailed 
explanation of why coalescence did not occur  is given in ref. [10]  
    Since this work there have been many attempts to make low temperature liquid hydrogen using 
much smaller helium droplets formed from a jet rather than magnetically levitated. For a review of the 
status of this field, see ref. [11].  
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II. Liquid helium at negative pressures 
We then began to think about what liquid helium might be like under negative pressure. There had 
been many reports of studies of the formation of bubbles in liquid helium [12]. In most of these 
experiments a sound pulse was applied to the liquid giving positive and negative pressure swings. The 
formation of bubbles on the negative swing was monitored either optically or by detecting the acoustic 
noise produced when the bubbles collapsed. In these experiments it had been found that bubbles first 
appeared at a threshold negative pressure that was just a small fraction of 1 bar. However, these 
experiments had been performed using helium in the main helium bath of a glass dewar, and mostly 
with the sound applied to a large volume of the liquid. Under these conditions, it was certainly 
possible that impurities, such as small particles of solid air, could provide sites for heterogeneous 
nucleation. In 1989, Nissen et al.[13] published a paper describing measurements in which a 
hemispherical ultrasonic transducer was used to generate sound that came to a focus within a volume 

of only ~ 510  cm3.  This small volume reduced the chance that impurities can affect the measurement. 
They found that bubbles were first formed at a negative pressure which became larger as the 
temperature decreased. They estimated that the pressure reached a value of  about 8.1  bars at 1.6 K.   
    We had already made some rough theoretical estimates of the properties of helium at negative 
pressure and we were surprised by the large magnitude of this negative pressure. When a negative 
pressure is applied to a liquid, the bulk modulus B and the sound velocity c  both decrease. At a 
critical negative pressure sP  (the spinodal pressure), B and c go to zero and the liquid becomes 

unstable against long wavelength density fluctuations. One can try to estimate the value of sP   by 

extrapolating the measured values of c for positive pressure into the negative pressure range. If the 
energy of the liquid can be represented by a polynomial in the density so that close to the spinodal 

density s  the pressure varies as  2
..s sP P      , then it is easy to show that for pressures 

slightly greater than cP  the sound velocity should vary with pressure according to  
4

sc P P          (4) 

By fitting experimental data to this law we obtained  a value for sP  of around – 9 bars  at 0T   K 
[14,15].  Monte-Carlo calculations [16,17] and density-functional calculations [18] give values which 
are consistent with this value of the spinodal pressure.  
    To develop a more detailed theory of nucleation we constructed a density-functional theory [14] to 
describe not only the properties of bulk uniform helium, but also non-uniform liquid; this is required 
in order to estimate the nucleation barrier and nucleation rate. More accurate density-functional 
calculations were performed by the group of M. Barranco in Barcelona [19]. The calculations were 
later extended to include nucleation by quantum tunnelling [20] and the possible effects of quantized  

Figure 1. Two levitated helium 
drops touching each other. The 
drops are viewed from above. The 
drop on the right is attached to the 
capillary used to introduce liquid 
into the cell.  
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vortices on nucleation [21]. These calculations predicted that because of the effect of the spinodal, 
nucleation should occur at negative pressures of somewhat smaller magnitude than had been found by 
Nissen et al. [13]. A review of more recent measurements of the cavitation threshold has been given 
by Balibar [22]. The results are in reasonable agreement with theory although the accurate estimation 
of the negative pressure that is reached in these ultrasonic experiments remains a challenge [23]. The 
measurements confirm the estimates of the spinodal pressure in both helium-3 and helium-4 [23] and 
are consistent with the assumption that nucleation near 0T   K takes place as a result of quantum 
tunnelling [24].    
    With D.O. Edwards, I then made a calculation of the phase diagram of helium-4 as a function of 
temperature throughout the negative pressure regime [25]. The result is shown in Fig. 2. This 
calculation involved putting together many pieces including an estimate of the roton-phonon 
dispersion curve, the effect of interactions between rotons as the lambda transition was approached, 
etc. While all of the details are described in the original publication, there are several points of special 
interest to mention.  
1) It turns out that the sound velocity as a function of pressure is rather poorly described by Eq. 4, but 
is fit with remarkable accuracy by the law   

3

sc P P           (5) 

This is shown in Fig. 3. Equation 5 implies that for a density slightly greater than the spinodal density 
the pressure varies with density as  

 3
..

s s
P P                (6) 

    It was possible to understand this behaviour based on a renormalization group theory in which the 
contribution of zero-point fluctuations to the internal energy of the liquid was treated in a self-
consistent way. But although this is a theory for near the spinodal it is found that  the law of Eq. 5  

Figure 2. The calculated phase diagram of helium as estimated in ref. [25]. The dashed lines are 
lines of constant entropy for entropies of 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 0.1, 0.2 0.5, 1.0 
and 2 J g-1 K-1. The spinodal for the normal liquid (solid circles) is from the estimate made in 
Ref. [15].The curve showing the saturated vapor pressure PSVP and the location of the critical 
point are the standard experimental values. 
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holds with great accuracy up to the freezing pressure for both liquid helium-3 and for helium-4.  It 
even holds remarkably well for solid helium-4 up to a pressure of 150 bars!  The law seems to be a 
very general feature of highly quantum systems. But to date there is no explanation of this.  
2) For most crystalline solids the phonon dispersion relation is linear for very small momentum and 
then bends over, i.e., the first correction to the dispersion is negative.  However, as already mentioned 
for helium at zero pressure the dispersion relation curves slightly upwards but curves down at higher 
pressures. Once the existence of the spinodal was recognized it became easier to understand. Near to 
the spinodal the sound velocity goes to zero and so certainly the dispersion relation must curve 
upwards. Thus, one can consider that the positive dispersion at zero pressure comes about because, in 
some sense, liquid helium at zero pressure is near to the spinodal.  
3) In his classic book on superfluids [26], F. London discussed the arrangement of atoms in liquid 
helium. His goal was to understand how helium can “hold together” considering its large molar 
volume. He notes that if  helium at 0P   had a close packed structure the spacing between nearest 

neighbour atoms would be  1/31/62 / 4.0a V N  Å. However, when the spacing between two helium 

atoms exceeds 3.2 Å the effective spring constant between atoms is negative and so, at least based on 
classical mechanics, such a structure would be unstable. He then discusses the idea that helium has a 
much more open structure in which each atom has only 6 nearest neighbours; this had been proposed 
earlier by Keesom and Taconis [27] and is shown in Fig. 4. With this structure the interatomic spacing  
is 3.16 Å. London emphasized that he is not implying that the liquid is crystalline; he is simply giving 
an example of an atomic configuration that has the same volume per atom as the real liquid. But now 
consider helium close to the spinodal. For helium-4 the molar volume at the spinodal is 42.5 cm3 and 
for helium-3 it is 56 cm3! How does the liquid withstand a negative pressure at these molar volumes?  
It would be of great interest to investigate, for example, by computer simulation, how the average 
coordination number and the atomic arrangement changes as the spinodal is approached. Some 
preliminary results on this have been obtained by Boronat [28].   
4) Given that there may be a significant change in the structure of the liquid near to the spinodal, are 
there some new phases that appear in this pressure range? For example, in the case of helium-3 the 
transition temperature to the superfluid B-phase decreases as the pressure goes down. Based on a 
simple extrapolation of the transition temperature, it appears that this temperature goes to zero at a 
critical pressure BP  which is around – 3 bars. If BP  is in fact positive with respect to sP  (-3.14 bars) 

Figure 3. Plots of the cube of the sound velocity as a 
function of pressure for helium-3 and for helium-4.  

Figure 4. The 2
dT  structure proposed 

by Keesom and Taconis as a model for 
the arrangement of atoms in liquid 
helium.  
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then decreasing the pressure at zero temperature  results in a quantum phase transition.  But it is also 
possible that for some reason BP  and sP  are equal.  
    How can one test these theoretical ideas? The most detailed tests performed so far come from the 
measurements of the negative pressure at which nucleation occurs. The analysis of these 
measurements is complicated because it is necessary to estimate the pressure that is reached and also 
to allow for the change in temperature that occurs when the liquid is expanded. Nevertheless, overall 
these experiments have given results in good agreement with experiment and support the estimated 
value of the spinodal pressure.  

 
III. Electrons and negative pressures 
The use of negative pressures has opened up completely new possibilities for the study of electrons in 
liquid helium as we will now describe. It was Richard Ferrell who in 1957 [29] first proposed that an 
electron in helium may exist in a “bubble state”. Because an electron would prefer to be in vacuum 
rather than in helium  (energy difference 1 eV) , it is energetically favorable for an electron in helium 
to force open a cavity in the liquid which is free of helium atoms. As a first approximation, one can 
consider that the energy of the electron bubble is given by the expression  

el lvE E A PV                                     (7) 

where elE  is the energy of the electron ( 2 2/ 8h mR for an electron in the 1S ground state of a spherical 
bubble), A is the surface area of the bubble, V is the volume and P is the pressure. For the 1S state at 
zero pressure the bubble is in a state of mechanical equilibrium when the radius is 19eqR  Å. A more 

accurate theory of the bubble can be constructed using density-functional theory [30,31,32]. 
    These bubbles have been studied in many experiments. The size can be checked through a 
measurement of the photon energies required to excite the electron to higher energy quantum states 
(1P and 2P) [33,34,35,36]. For a moving bubble the phonons and rotons in the liquid exert a drag  
force which is proportional to the radius squared. Mobility measurements therefore provide 
information about the bubble size and give results which are in good agreement with theory 
[37,38,39]. If a positive pressure is applied an electron bubble becomes smaller. For a negative 
pressure the bubble grows and at a critical negative pressure given by  

1/4
5/4

2

16 2
1.9

5 5
c

m
P

h

      
 

 bars,       (8) 

the bubble becomes unstable and begins to grow without limit. This result was first derived by 
Akulichev and Bulanov [40]. We have been able to detect these electron “explosions” and confirm 
that they do indeed occur at the expected negative pressure [30]. In the first experiment along these 
lines a hemispherical ultrasonic transducer was used as already described. In this situation an electron 
explosion will be seen only if an electron happens to be in the small region around the acoustic focus. 
The period of the sound is in the range around 1 µs and so the pressure is changing on a time scale 
which is very long compared to the time scale for vibrations of the bubble (~10-11 s). Thus, the 
explosion of the bubble is essentially a quasi-static process.  
    In more recent experiments [41] we have used a sound transducer to generate a planar sound pulse 
which as it passes through a volume of several cubic centimeters explodes every electron bubble in its 
path.  By applying a series of sound pulses (the rate in the first experiment was 4 per second), a movie 
can be made showing the motion of individual electrons. Two frames from one such movie are shown 
in Fig. 5. In these pictures the sound transducer is at the top and the electrons are always seen to move 
down the cell.  
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In this experiment the experimental cell contained no source of electrons and so it was interesting to 
investigate where the electrons came from. At first sight, it was surprising that the majority of the 
electron tracks began at the bottom surface of the sound transducer at the top of the cell. We were able 
to show that the electrons were mostly produced by an interesting mechanism involving cosmic rays. 
A cosmic ray muon passing through the liquid causes a large amount of ionization along its track. 
However, essentially all of these ions recombine and thus no free electrons are left in the liquid. But 
when recombination occurs, high energy photons are produced which can travel without attenuation 
through the liquid and lead to photoemission at the transducer surface. These are the electrons that we 
see. They move down the cell because when the sound transducer is driven energy is dissipated 
resulting in flow of normal fluid down the cell which drags the electron bubbles with it.  
    While most of the electrons that are seen follow slightly curved paths corresponding to the flow of 
the normal fluid, a small fraction have snake-like paths as shown in Fig. 5b. It appears that these 
electrons are attached to quantized vortices; the observed motion is presumed to be the sum of the 
motion of the electron along the vortex line together with the motion of the vortex itself.  
    A small number of electrons are first detected far from the walls of the cell  (see Fig. 6). These 
electrons appear to be the result of Compton scattering of gamma rays coming from outside the 

Figure 5. Two frames from a movie of an electron moving through superfluid helium. In part 
a) the electron is being dragged down the cell as a result of the flow of the normal fluid. In b) 
the motion of the electron is modified by trapping on a quantized vortex.  

Figure 6. Electrons that are first seen in the interior of the liquid helium cell and 
which are the result of Compton scattering of the background gamma radiation in 
the laboratory.  
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cryostat. We have confirmed this by bringing a gamma source up to the outside of the cryostat and 
thereby greatly increasing the rate of such electrons.  
    Now we mention some of the unsettled questions in this field; for a more detailed discussion see ref. 
[42]. One question arose in the first experiment in which electron bubbles were exploded using a 
focusing transducer. A small number of explosions were observed even when the sound amplitude was 
not large enough to reach the critical pressure of Eq. 8. it was determined that these explosions came 
about as follows [30]. In the experiment a  -source was used to inject electrons into the helium. 
When an electron came to rest in the liquid, it would force open a cavity which would grow rapidly, 
reach a volume larger than the equilibrium size, and then relax back to have the equilibrium radius 

eqR . Thus for a few picoseconds the electron bubble will have a radius larger than eqR and can be 

exploded by a pressure of smaller magnitude than cP . 
    A second question concerns the interaction of electrons with vortices. It is well known that at low 
temperatures, electrons in helium can become attached to quantized vortices [43]. It is possible to 
measure the pressure vort

cP at which these electrons explode and compare it with the explosion pressure 

cP  (see Eq. 8) for electrons in the bulk of the liquid [30]. It is found  that vort
cP  is about 13 % less than 

cP  whereas theory gives a difference of only 5%[30,44]. This difference is disturbing because an 
understanding of the interaction of foreign particles with vortices is currently of great interest for the 
interpretation of many experimental studies of the hydrodynamics of liquid helium [45 ]. In addition to 
this problem, it is found that below 1 K there appear to be some electron bubbles which are easier to 
break even than the electrons attached to vortices [46]. There is currently no understanding of the 
nature of these objects; possibly they are bubbles attached to more than one vortex, but to date this has 
not been demonstrated.  
    A third question concerns the so-called exotic ions. Time-of-flight mobility measurements 
performed by Ihas and Sanders [47] and others [48] have revealed that in addition to the normal 
electron bubble there are  a large number of other negatively charged objects (at least 12) with a radius 
between about 8 and 16 Å. These ions have been seen when the source of electrons has been an 
electrical discharge above the surface of the liquid.  These objects have discrete mobilities; this 
indicates that they have discrete sizes, not a continuous distribution. At the present time there is no 
understanding of the physical nature of these objects. One possible way to determine their structure 
may be to apply a negative pressure and find out the pressure at which each ion explodes.  
    A final mystery concerns how electron bubbles are affected by light. As already mentioned, it is 
possible to excite the electron to a higher energy state, such as 1P or 2P. When this is done, the 
outward pressure exerted by the electron on the helium changes and the bubble shape is modified. 
Because the wave function no longer has spherical symmetry, the bubble loses spherical symmetry. It 
is straightforward to calculate this shape, and results for the 1P state at different pressures are shown 
in Fig. 7 [49]. Note that the bubble has a distinct waist because the wave function of the electron 
vanishes in the 0z   plane. These objects are referred to as peanut bubbles. Because the electron is 
now pushing outward harder than in the 1S state, the 1P bubbles explode at a smaller negative 
pressure; this is calculated to be -1.63 bars [50]. We have been able to excite to the 1P state (the CO2 
laser has the right wavelength to do this) and confirm that this does indeed produce 1P bubbles which 
explode at the predicted decreased negative pressure [51]. When these experiments are performed in 
the temperature range from about 1.5 K up to near the lambda point, the liquid contains many thermal 
excitations (phonons and rotons) and thus the damping of the motion of the bubble wall is large. As a 
result after the light is absorbed the bubble shape relaxes smoothly towards the new equilibrium shape. 
However, at lower temperatures the damping becomes small and the bubble overshoots the 
equilibrium shape. If the pressure is larger than about 1 bar, theory then predicts that the bubble will 
break into two “baby bubbles”, and it is not known what happens next. In our experiments, we have 
confirmed that under these conditions, i.e.,  1.5T   K and pressure   1 bar, optical excitation to the 
1P state does not result in the production of any peanut bubbles; this confirms the idea that bubble  
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fission takes place, but does not determine what is produced. Does part of the wave function of the 
electron become trapped in each baby bubble? [52]If it does, what happens next? Does the helium 
make a measurement, find the electron in one bubble, and cause the wave function in the other bubble 
to collapse? And, if this does indeed happen, at what time does it occur? Simulations in which collapse 
is included show that the motion of the surviving bubble after the collapse is affected by the time at 
which the collapse occurs and so it may be possible to determine this time experimentally [53].   
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