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We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sens-
ing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than tra-
ditionally required. Using CS, we successfully reconstruct a 64X 64 image of an object with pixel size
1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane,
and observe improved reconstruction quality when we apply phase correction. For our chosen image, only
about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our
system has the capability to reconstruct images with only a small subset of Fourier amplitude measure-
ments and thus has potential application in THz imaging with cw sources. © 2008 Optical Society of America

OCIS codes: 110.6795, 320.7100.

With applications to aerospace, homeland security,
medical imaging, and quality control of packaged
goods, time-domain terahertz (THz) imaging systems
have proven valuable in numerous fields. However,
these systems are generally limited by slow image ac-
quisition rate [1]. In the fastest example of raster-
scan THz imaging reported to date, a 400 X 400 pixel
image takes as long as 6 min to acquire [2]. Recent
developments using more sophisticated image pro-
cessing approaches, such as the radon transform [3,4]
and interferometric imaging [5], have shown prelimi-
nary successes but also face similar limitations in
speed, resolution, and/or hardware requirements.

Meanwhile a newly developed theory in signal pro-
cessing called compressed sensing (CS) has emerged.
CS enables reconstruction of an image using many
fewer measurements than are traditionally required
[6,7]. This CS theory assumes that most real-world
objects have a sparse representation in terms of some
basis, meaning that most energy of an image can be
compacted into just a few essential coefficients in
some transform domain [6]. For image reconstruc-
tion, CS searches for the sparsest solution in the so-
lution space based on the measurements via an opti-
mization procedure. Major applications of CS to
imaging have included tomography [7]; a single-pixel
camera [8], which uses a single-pixel detector instead
of a photodetector array for imaging in visible light;
and hyperspectral imaging [9]. In each of these ex-
amples, the CS theory has inspired new imaging sys-
tem designs, which feature simpler hardware and/or
better imaging efficiency.

In this paper we describe the first example of CS
applied to THz imaging. We demonstrate successful
reconstruction of a target’s image with a randomly
chosen subset of the samples from the Fourier plane.
We also combine CS with traditional phase retrieval
(PR) algorithms [10] for image reconstruction with
only a random subset of the Fourier amplitude im-
age. Incorporation of CS into THz imaging system de-
signs can significantly reduce the image acquisition
time, since fewer measurements are required.

0146-9592/08/090974-3/$15.00

Our imaging system consists of a pulsed THz
transmitter and receiver, both based on photoconduc-
tive antennas, and two lenses, one of which approxi-
mately collimates the THz beam while the other fo-
cuses the beam (see Fig. 1). The object mask, placed
in between the two lenses, scatters the THz waves.
The focusing lens forms the Fourier transform of the
object mask at its focal plane. The receiver, mounted
on a translation stage, performs a raster scan in the
focal plane, over an area of 64X 64 mm, at 1 mm in-
tervals. We place a circular aperture (1 mm in diam-
eter) in front of the receiver antenna so that it only
samples a small area of the Fourier pattern, rather
than relying on the ~6 mm receiver aperture [11].
The object mask is made of opaque copper tape on a
transparent plastic plate. In our experiments, our ob-
ject mask has an R-shaped hole, 34 mm height and
31 mm width.

At each detector position, an entire time-domain
THz waveform is measured. We compute the power
spectrum of each waveform and select the spectral
amplitude and phase at a particular wavelength (A
=1.5mm) to obtain a (complex) pixel value. In this
way, we assemble a 64 X 64 Fourier image. Direct 2D
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Fig. 1. THz Fourier imaging setup. An approximately col-
limated beam from the THz transmitter illuminates an ob-
ject mask, placed one focal length away from the focusing
lens. The THz receiver raster scans and samples the Fou-
rier transform of the object on the focal plane.
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Fourier inversion of this image reconstructs the ob-
ject mask as shown in Fig. 2(a). The pixel size is
given by Ax=\f/X, where X is the length in one di-
mension of the raster-scan area (64 mm) and f is the
focal length of the focusing lens (60 mm). Thus we ob-
tain a pixel size of Ax=1.406 mm in both dimensions,
at the chosen wavelength.

To estimate the resolution of the reconstructed im-
age in Fig. 2(a), we select a 5X 15 region containing
the left “leg” of the “R.” After averaging the five se-
lected rows, the resulting trace can be approximated
by the convolution of a rectangular function with a
Gaussian function with unknown variance (a2). We
measure the width of the left leg of the R, i.e., the
width of the rectangular function, to be 8 mm. We can
then estimate o2 of the Gaussian function to fit the
average trace. Our estimate for ¢2 is around 1 mm?,
equivalent to a full width at half-maximum (FWHM)
of 2.354 mm or 1.68 pixels, which we define as the
resolution of our reconstructed image. This 2D Fou-
rier inversion technique requires measurements at
all 4096 pixel locations and is therefore slow. Using
CS, we can achieve good image reconstruction quality
from only a small randomly chosen subset of these
4096 pixels, thus speeding up the imaging process.

Consider our object mask a length-N signal x of di-
mension indexed as x(n), ne{1,2,...,N}. In this
case, x is a 2D image with pixels ordered in a N X 1
vector, where N=4096. We can view the Fourier mea-
surements as projections, y(m)={(x, ¢,7,;), of the signal
x onto a set of Fourier basis functions {¢,}, m
e{1,2,...,M}, where d),q; denotes the transpose of ¢,,
and (:,) denotes the inner product. For direct 2D
Fourier inversion, we acquire M =N=4096 measure-
ments for image reconstruction. However, in CS, we
use only a much smaller number of measurements
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than the number of pixels in the image, i.e., M <N. In
matrix notation, we measure y=®x, where y is an
M X1 column vector of measurements and the mea-
surement matrix ® is M XN. Despite using fewer
measurements, we can still reconstruct the object
perfectly, assuming its sparsity, through an optimiza-
tion procedure [6].

Many optimization algorithms exist to solve this
inverse imaging problem. These algorithms aim to
find the solution with the smallest /1 norm, i.e., to
solve the minimization problem

arg min|jx|; subject to constrainty =®dx, (1)
where ||-||; denotes the /1-norm [6]. Sometimes, when
the original image x is sparse in another reconstruc-
tion basis V¥ (such as wavelets), we substitute x=V6
in the constraint in Eq. (1) and solve for the mini-
mum /1-norm of 6 instead. We obtain the reconstruc-
tion result in Fig. 2(b) using only 500 measurements
out of the total 4096 measurements through the
SPGL1 algorithm described by van den Berg and
Friedlander [12]. Using CS, we reduce the number of
measurements required for image formation by more
than a factor of 8.

We desire to further improve the reconstruction re-
sult by removing the background profile of the phase,
which is not due to the object but is inherent in the
spherical wavefront curvature of the Gaussian beam
illumination of the object [see Fig. 2(d)]. As a result,
the phase in the Fourier plane is distorted by the su-
perposition of a spherically varying background. We
first remove the object mask in our setup and obtain
a 64 X 64 image of the background phase of the beam
through 2D Fourier inversion. These phase values at
each pixel form the diagonal entries of a matrix P.
Similar to the modification suggested by Lustig et al.

Fig. 2. Compressed sensing imaging results. (a) Magnitude of image reconstructed by inverse Fourier transform using the
full dataset (4096 uniformly sampled measurements) and (d) its phase. Note the phase distortion inherent in the THz beam
in (d). Compressed sensing reconstruction result using 500 measurements (12%) from the full dataset: (b) magnitude and
(e) phase. Compressed sensing with phase correction improves image quality and eliminates phase distortion [see (¢) and
(H)]. All figures show a zoom-in view on a 40 X 40 grid centered on the object.
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[13], we insert this diagonal matrix P after ® in Eq.
(1) and then solve the phase-corrected optimization
problem for image reconstruction. This phase-
correction procedure not only removes the spherically
varying phase profile in the reconstruction [compare
Fig. 2(f) to Figs. 2(d) and 2(e)] but also improves the
quality of the reconstruction [compare Fig. 2(c) to
Fig. 2(b)]. Using the same procedure as for Fig. 2(a),
we obtain a resolution of 4.19 and 3.35 pixels for
Figs. 2(b) and 2(c), respectively. Since an object with
a constant phase profile has a more sparse represen-
tation in wavelet basis than one with a spatially
varying phase profile, CS reconstruction using phase
correction yields superior performance for a given
number of measurements.

If we move the object mask in Fig. 1 away from the
object plane, the acquired Fourier data will have the
correct Fourier magnitude but a distorted phase. We
can no longer use the phase data for image recon-
struction. However, we can still reconstruct an image
by combining CS with the well-known technique of
PR [10]. Moravec et al. recently developed a PR mini-
mization algorithm, called compressive phase re-
trieval (CPR), which uses the full Fourier amplitude
dataset [14]. The same paper also describes a com-
pressive sensing phase retrieval (CSPR) algorithm,
which enables reconstruction with a subset of the
Fourier amplitude samples. It is particularly chal-
lenging for PR to reconstruct complex-valued images
of objects with a nonuniform phase profile. Therefore,
we modify the original Fourier dataset such that,
when applying the CPR and CSPR algorithms, we as-
sume that the illuminating beam is a perfect plane
wave. We first obtain the inverse Fourier image of
the object (magnitudes and phases) as in Figs. 2(a)
and 2(d) from the 4096 measurements. Then, we
keep the magnitude of this spatial image unaltered
but remove its phase using the background phase
profile of the beam. The magnitude of the Fourier
transform of this phase-corrected spatial image is the
input to our CPR and CSPR algorithms. Figures 3(a)
and 3(b) show the reconstruction results from CPR
with the full dataset and from CSPR with 1500 mea-
surements, respectively.

Our CSPR reconstruction results demonstrate the
applicability of our imaging scheme not only to
pulsed THz imaging systems but also to cw systems,
in which phase information is typically not available.

Fig. 3. Image reconstruction results using (a) CPR with
the full dataset (4096 magnitude measurements) and (b)
CSPR with a subset of 1500 measurements from the
dataset used in (a).

The latest research on THz cw imaging requires
high-power sources (>10mW), such as quantum-
cascade lasers operating at low temperature (~30 K),
because the focal-plane microbolometer array used
for imaging has low sensitivity at THz frequencies
[15]. In contrast, our Fourier imaging technique with
CSPR can use a single-pixel THz detector with much
higher sensitivity to enable imaging with a low-
power cw source.

In conclusion, we have shown the CS reconstruc-
tion of THz images using significantly fewer mea-
surements than a conventional raster-scan imaging
technique. Our resulting THz Fourier imaging sys-
tem successfully recovers the test object with pixel
size 1.4 mm, using only about 12% of the 4096 pixels.
We have also demonstrated an improvement of CS
reconstruction quality using phase correction and
successful image reconstruction with only the Fou-
rier amplitude using CSPR. Our transmission setup
in this Letter could be useful for quality control ap-
plications, such as detection of point impurities in
manufactured products, because Fourier-domain
measurements are particularly sensitive to sharp
pointlike features. Additional work is required to ef-
ficiently combine acquired data across frequencies to
enhance both the CS and the CSPR reconstruction
results.
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