

Engineering

Electrical Sciences and Computer Engineering (ESCE) Seminar

Direct look at charge, lattice and spin dynamics in solids with ultrafast terahertz spectroscopy

Dr. Dmitry Turchinovich

Max Planck Institute for Polymer Research, Germany

Abstract:

Abstract: Ultrafast terahertz spectroscopy allows one to observe the dynamics of charge, lattice and spin in solids on the most elementary timescale: in the regime $\omega \tau \approx 1$, where ω is the electromagnetic wave oscillation frequency, and τ is the characteristic subpicosecond timescale at which the effects like electron momentum scattering, lattice oscillation, and spin precession occur. In this presentation, after a brief introduction, we will review two recent case studies from my group: ultrafast electron transport in graphene [1,2], and fundamental observation of spin-controlled conduction in ferromagnetic metals [2].

References:

[1] Z. Mics et al., "Thermodynamic picture of ultrafast charge transport in graphene," Nature Commun. 6, 7655 (2015)

[2] I. Ivanov et al., "Perspective on terahertz spectroscopy of graphene," EPL 111, 67001 (2015)

[3] Z. Jin et al., "Accessing the fundamentals of magnetotransport in metals with terahertz probes," Nature Phys. 11, 761 (2015)

Friday, June 10, 2016

11:00 AM

B&H Room 751

Coffee served at 10:30 AM