Welcome to Ultrafast Optics

Who am I: Daniel Mittleman (office hours: to be determined)

When, where: Tues / Thurs @ 9am

Web page: see canvas

Prerequisites: Quantum mechanics and E&M at an undergraduate level, or permission of instructor. Come talk to me if you are uncertain.

Grading: Lecture attendance (mandatory)
Problem sets (occasional)
Research presentations (everybody)
Textbooks

No required text! But if you will be working in this field, you will want to own some of these…

Recommended reading - lasers and nonlinear optics:
• *Lasers*, by A. Siegman
 (University Science Books, 1986)
• *Fundamentals of Photonics*, by Saleh and Teich
 (Wiley, 1991)
• *The Principles of Nonlinear Optics*, by Y. R. Shen
 (Wiley, 1984)
• *Nonlinear Optics*, by R. Boyd
 (Academic Press, 1992)
• *Optics*, by Eugene Hecht
 (Addison-Wesley, 1987)

Recommended reading - ultrafast phenomena:
• *Ultrashort laser pulse phenomena*, by J.-C. Diels and W. Rudolph
• *Ultrafast Optics*, by Andrew Weiner
 (Wiley, 2009)
Topics to be covered

- Basic optical physics
- Pulse propagation
- 2nd and 3rd-order non-linearities
- Mode-locking

{ How do they do this? (and why) }

Other topics pending…

www.chem.rug.nl/spectro/projects/laser.html
How big and how small?

Prefixes:

<table>
<thead>
<tr>
<th>Small</th>
<th>Big</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli (m)</td>
<td>Kilo (k)</td>
</tr>
<tr>
<td>Micro (µ)</td>
<td>Mega (M)</td>
</tr>
<tr>
<td>Nano (n)</td>
<td>Giga (G)</td>
</tr>
<tr>
<td>Pico (p)</td>
<td>Tera (T)</td>
</tr>
<tr>
<td>Femto (f)</td>
<td>Peta (P)</td>
</tr>
<tr>
<td>Atto (a)</td>
<td>Exa (E)</td>
</tr>
<tr>
<td>Zepto (z)</td>
<td>Zetta (Z)</td>
</tr>
<tr>
<td>Yocto (y)</td>
<td>Yotta (Y)</td>
</tr>
</tbody>
</table>

Values:

- Milli (m): 10^{-3}
- Micro (µ): 10^{-6}
- Nano (n): 10^{-9}
- Pico (p): 10^{-12}
- Femto (f): 10^{-15}
- Atto (a): 10^{-18}
- Zepto (z): 10^{-21}
- Yocto (y): 10^{-24}
- Kilo (k): 10^{+3}
- Mega (M): 10^{+6}
- Giga (G): 10^{+9}
- Tera (T): 10^{+12}
- Peta (P): 10^{+15}
- Exa (E): 10^{+18}
- Zetta (Z): 10^{+21}
- Yotta (Y): 10^{+24}

Time (seconds):

- 10^{-14}: 10 fs light pulse
- 10^{-9}: Computer clock cycle
- 10^{-4}: Camera flash
- 10^1: 1 minute
- 10^6: One month
- 10^{11}: Age of pyramids
- 10^{16}: Age of universe
- 10^{16}: Human existence

The diagram illustrates the range of time scales, from 10^{-14} seconds (10 femtoseconds) to 10^{16} seconds (Age of universe), using various prefixes for magnitude.
Ultrafast Phenomena - The Evolution of Speed

Electronics
Optics

currently: factor of 10^6
A brief history of time resolution

Leland Stanford

Eadweard Muybridge

The "Trotting Horse" Controversy

Palo Alto, CA 1872

Time Resolution: 1/60th of a second
'Doc' Edgerton - Strobe Photography

Harold Edgerton 1942
MIT Research Laboratory for Electronics

“How to Make Apple sauce at MIT”
H. Edgerton, 1964

“Splash on a Glass”
Curtis Hurley
Junior High School student
1996

Time Resolution: a few microseconds
It all started with the laser...

Theodore Maiman (Hughes Research Lab), inventor of the laser, holding his invention (1960)
The Laser - Mode Locking

Active mode locking
 Passive mode locking
 Colliding pulse mode locking
 Extra-cavity pulse compression
 Intra-cavity pulse compression

Current record (visible light): 3.4 fsec

Current record (visible light): 3.4 fsec

Mode-locked Ti:sapphire laser
Generating ultrashort pulses: mode locking

Random
Phases of all laser modes

- Out of phase
- Out of phase
- Out of phase

Locked
Phases of all laser modes

- Out of phase
- In phase!
- Out of phase

Irradiance vs. time

- Random phases
- Light bulb

Locked phases

- Ultrashort pulse!!
Long vs. Short light pulses

The uncertainty principle says that the product of the temporal and spectral pulse widths is greater than \(~1\).

To make a short pulse, you need a lot of spectral bandwidth.
A typical pulse

Consider a pulse:

duration = 100 femtoseconds
wavelength = 800 nanometers

frequency domain:
E(ω)

number of cycles ~ (duration of one cycle) / (duration of pulse)

time domain:
E(t)

Fourier transform

2.6 fsec
The Shortest Pulses at Different Wavelengths

Pulse Duration (seconds) vs. Wavelength

- 3 mm
- 3 µm
- 3 nm

Current record: 80 attoseconds (x-rays)

One optical cycle

New in 2001
New in 2003
New in 2006
New in 2008
The Shortest Pulses at Long Wavelengths
Short Pulses at Short Wavelengths

90 degree relativistic Thompson scattering
Lawrence Berkeley National Laboratory
Breaking the attosecond barrier

F. Krausz and co-workers, TU Vienna, 2001

A cross-correlation of a 650 attosecond x-ray pulse with a 7.5 femtosecond infrared pulse.

Measured signal: spectral width of a photoelectron spectrum.

Required infrared pulse intensity: 5×10^{13} W/cm2
The shortest pulses ever (so far)

measured photoelectron spectrum

reconstructed attosecond pulse
Ultrafast set-ups can be very sophisticated.
Why does ultrashort usually mean ultra-intense?

A continuous-wave (cw) laser:

\[
\text{average energy} = \text{power/time} = \text{ joules per second} = \text{ Watts}
\]

Example: 1 Watt at \(\lambda = 800 \text{ nm} \) is \(4 \times 10^{18} \) photons per second. So, in a 100 fs window, we have only \(4 \times 10^5 \) photons.

A pulsed laser:

- pulse duration = 100 fs
- pulse rate = 100 MHz

Example: 1 Watt at \(\lambda = 800 \text{ nm} \) is \(4 \times 10^{10} \) photons per pulse.

Energy per pulse = \(4 \times 10^{10} \) photons per pulse \(\times \) energy/photon = 10 nJ/pulse

\textit{Peak} energy = energy per pulse / pulse duration = \(10^5 \) W

Focus this to a 10 \(\mu \text{m} \) diameter spot: \textit{Peak} irradiance = \(10^{15} \) W/m\(^2\)
Chirped pulse amplification
The Highest Intensities You Can Possibly Imagine

0.2 TW = 200,000,000,000 watts!

1 kHz CPA system at the University of California, Santa Barbara
(used to be) The world’s biggest laser

Nova - Lawrence Livermore National Laboratory
(currently) The world’s biggest laser

National Ignition Facility (commissioned in 2009)

192 shaped pulses
1.8 MJ total energy
In 2012: generated a peak power of 500 terawatts (2 megajoules in 4 nanoseconds)

For that brief instant, NIF produced 1000 times as much power as the entire US electrical grid.
Ultrafast Laser Spectroscopy: Why?

• Most events that occur in atoms and molecules occur on fs and ps time scales. The length scales are very small, so very little time is required for the relevant motion.

• Excited state decay via fluorescence occurs on a ns time scale, but competing non-radiative processes only speed things up because relaxation rates add:

$$\frac{1}{\tau_{ex}} = \frac{1}{\tau_{fl}} + \frac{1}{\tau_{nr}}$$

• Biologically important processes utilize excitation energy for purposes other than fluorescence and hence must be very fast.

• Collisions in room-temperature liquids occur on a few-fs time scale, so nearly all processes in liquids are ultrafast.

• Semiconductor processes of technological interest are necessarily ultrafast or we wouldn’t be interested.
The most common type of ultrafast measurement

• Strong pump pulse perturbs the sample at \(t = 0 \).
• A time \(\tau \) later, a weak probe pulse interrogates the sample.
• Measure the transmission of the probe pulse at each delay \(\tau \).

transmitted pulse energy

\(\tau = 0 \) delay

information about the dynamics!
PRESS RELEASE 12 OCTOBER 1999

The Royal Swedish Academy of Sciences has awarded the 1999 Nobel Prize in Chemistry to

Professor Ahmed H. Zewail, California Institute of Technology, Pasadena, USA

for showing that it is possible with rapid laser technique to see how atoms in a molecule move during a chemical reaction.

The Academy's citation:
For his studies of the transition states of chemical reactions using femtosecond spectroscopy.

This year's laureate in Chemistry is being rewarded for his pioneering investigation of fundamental chemical reactions, using ultra-short laser flashes, on the time scale on which the reactions actually occur. Professor Zewail's contributions have brought about a revolution in chemistry and adjacent sciences, since this type of investigation allows us to understand and predict important reactions.
What is "Femtochemistry"?

Example:
Pump-probe fluorescence of iodine in the gas phase

Ultrashort in time is also ultrashort in space

A cw laser beam

A pulsed laser beam

30 microns (for a 100 fs pulse)
In multi-photon imaging, we focus an ultrashort pulse tightly into an object and observe the multi-photon signal light.

\[F \sim I^2 \]

\(F \) = Two-photon Fluorescence energy

Ultrashort in time is also ultrashort in space, part II
Ultrashort in time is also ultrashort in space, part III

One-photon fluorescence from a beam entering from the right

Two-photon fluorescence from an identical beam entering from the left

Image from Chris Schaffer, UCSD
Ultrasound pulses interact with materials differently

groove machined with nanosecond pulse

...and with femtosecond pulse

Clark MXR, Inc., Ann Arbor, MI
Ultrafast lasers make great scalpels!

Introducing... The INTRALASE FS Laser

New eye surgery technique developed at CUOS (Center for Ultrafast Optical Sciences), at the University of Michigan

www.intralase.com
Lightning protection using amplified short pulses

- Use amplified 100 fs pulses to initiate spark
- Self-trapped filament propagates >30 m in air!

The pulse induces a conducting path, discharging the cloud before lightning can occur.
Ultrafast lasers make great clocks!

- Temporal spacing of pulses translates to frequency spacing of the comb.
- Temporal spacing can be stabilized to much better than one part in 10^{11}.
PRESS RELEASE 4 OCTOBER 2005

The Royal Swedish Academy of Sciences has awarded the 2005 Nobel Prize in Physics for 2005 with one half to

Roy J. Glauber
Harvard University, Cambridge, MA, USA
"for his contribution to the quantum theory of optical coherence"

and one half jointly to

John L. Hall
National Institute of Standards and Technology, Boulder, CO, USA and
Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik, Garching, Germany
"for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique".
How does it work?

In order to understand the formation of femtosecond pulses, we need to know about:

- how a cw (continuous wave) laser works.
- how a short pulse propagates through materials at low intensities,
- …and at high intensities.
- mode locking.

Our model system to learn all of this:

Titanium-doped sapphire laser (Ti:sapphire)
The Ti:sapphire laser

A typical optical layout, if you want to build your own:

or you can buy one:
Reminders

This class has:

• mandatory lecture attendance

• no text book

• oral presentations by all students in March/April

• weekly office hours (Tuesday 1:00-2:30 in Brockman 351)