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11. Dispersion and Ultrashort Pulses II



Chirped vs. transform-limited
A transform-limited pulse:
• satisfies the ‘equal’ sign in the uncertainty relation  t  C
• is as short as it could possibly be, given the spectral bandwidth
• has an envelope function which is REAL (spectral phase  = 0)
• has an electric field that can be computed directly from S()
• exhibits zero chirp:

the same periodA chirped pulse:
• satisfies the ‘greater than’ sign in the relation  t  C
• is longer than it could be, given the spectral bandwidth
• has an envelope function which is COMPLEX (spectral phase   0)
• requires knowledge of more than just S() in order to determine E(t)
• exhibits non-zero chirp:

not the same period



pulse duration increases with z

dimensionless
chirp parameter  z

   
 

 
2

2 22 2

2 "exp 1                    
1in in

G G

ki z
t z t

       
   

  
 

2

2

/ V
( , ) exp

2 "

g p

in
G

t z
E t z

t ik z

       

Pulse propagation and broadening
After propagating a distance z, an (initially) 
unchirped Gaussian of initial duration tG

in becomes:

pulse duration tG(z)/tG
in
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propagation distance z

Most of the time,  is 
positive (normal 
dispersion, k’’ > 0), thus 
generating positive GDD 
(lower frequencies arrive 
earlier than higher ones).

where



So how can we generate negative GDD?

This is a big issue because pulses spread further and further 
as they propagate through materials.

We need a way of generating negative GDD to compensate.

Negative GDD 
Device



Suppose that an optical element introduces angular dispersion.

We’ll need to compute the projection onto the optic axis (the 
propagation direction of the center frequency of the pulse).

Input
beam

Optical
element 

Optic 
axis

In this cartoon, you can see 
why there is negative GDD: 
the blue precedes the red.

Angular dispersion produces GDD





Optic 
axis

We’re considering only the GDD due 
to the angular dispersion and not
that of the prism material.  Also we 
assume that nair = 1.
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Taking the projection of  
onto the optic axis, a given
frequency  sees a phase 
delay of:
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In fact, this is only an approximate result. You can tell because 
 should be an odd function of  but in this expression it isn’t. 
The more accurate result is:
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But since , we are 
going to ignore the factor 
in parentheses.





Optic 
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But  << 1, so the sine terms can be neglected, and cos() ~ 1.

z

Now, we need the 2nd

derivative of  in order to 
calculate the GDD that 
results from this frequency-
dependent difference in 
optical path lengths.

GDD from angular 
dispersion
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Angular dispersion yields negative GDD.

The GDD due to angular dispersion is always negative!

Also, note that we did not assume anything at all about ()
(other than that it is a smoothly varying function of ).

Thus, it doesn’t matter what kind of device gave rise to the 
angular dispersion (i.e., whether it was a prism or a diffraction 
grating or whatever). Angular dispersion always produces 
negative GDD.

Let’s consider prisms first.

Copying the result from the previous slide:



Because the refractive index depends on wavelength, 
the refraction angle also depends on wavelength.

Because n generally
decreases with wave-
length (dn/d < 0), smaller
wavelengths experience
greater refraction angles.
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Differentiating implicitly 
with respect to :
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We obtain the “prism angular dispersion:”

Prisms disperse light due to refraction



Diffraction by a prism is not so intuitive
The angle at which a ray 
emerges after refracting twice 
(measured relative to the original 
propagation direction) is known 
as the angle of deviation, dev.

Using geometry and Snell’s Law 
(twice), one can compute the 
relation between the input angle 
and the angle of deviation: 1 1 sinsin sin sin in

dev in n
n
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refractive index n

This is a non-monotonic function!  As in increases, dev passes 
through a minimum.

One can also prove that, when in is chosen such that dev is 
minimized, this is the condition for symmetric propagation: the ray 
inside the prism is parallel to the base of the prism (so  ).



In principle, we are free to specify:
• the apex angle 

• the angle of incidence in

These are chosen using two conditions:

• Brewster condition for minimum reflection loss (|| polarization)
• minimum deviation condition (symmetric propagation)
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Prism: beam divergence

One problem: the broadband beam 
emerging from a prism is diverging. 

If you want to use the beam after the 
prism, that’s inconvenient.



in

dev

refractive index n()

Solution: use a 2nd prism

in No longer diverging.
But spectrally dispersed.

Output beam || input beam



A prism pair has 
negative GDD.
Let’s write the GDD 
including both the angular 
dispersion and the material 
dispersion.

Let Lprism be the length of the 
path inside the prisms and 
Lsep be the prism separation.
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This term assumes
that the beam grazes 
the tip of each prism

This term allows the beam 
to pass through an additional
length, Lprism, of prism material.

We can independently vary Lsep or Lprism to tune the GDD!

Always 
negative!

Always 
positive (in 
visible and 
near-IR)

Assume Brewster
angle incidence
and exit angles.



It’s routine to stretch and then compress ultrashort pulses by factors 
of >1000.

Four prism Pulse Compressor
This device, which also puts the pulse back together, has negative
group-delay dispersion and hence can compensate for propagation 
through materials (i.e., for positive chirp due to material dispersion).

Angular dispersion yields 
negative GDD.



What does the pulse look like inside a 
pulse compressor?

If we send an unchirped pulse 
into a pulse compressor, it 
emerges with negative chirp.

Note all the spatio-temporal distortions.



What does the pulse look like inside a 
pulse compressor?

If we send a positively chirped 
pulse into a pulse compressor, it 
emerges unchirped (if everything 
is adjusted just right).

Note all the spatio-temporal distortions.



Adjusting the GDD maintains alignment.
Any prism in the compressor can be translated perpendicular to the 
beam path to add glass and reduce the magnitude of negative GDD.

Remarkably, this does
not misalign the beam.

Output beamInput beam

The output path is 
independent of prism 

position.



Appl. Phys. Lett. 38, 671 (1981)

Incorporating a four-prism pulse compressor 
into the laser cavity was a revolutionary 
advance.



The required separation between prisms 
in a pulse compressor can be large.

It’s best to use highly dispersive glass, like SF10, or gratings. 
But compressors can still be > 1 m long. 

Kafka and Baer, 
Opt. Lett., 12, 
401 (1987)

Different prism 
materials

Compression of a 1-ps, 
600-nm pulse with 10 
nm of bandwidth (to 
about 50 fs).

The GDD      the prism separation and the square of the dispersion.



Four-prism pulse compressor

Fine GDD 
tuning

Prism

Wavelength 
tuning

Wavelength 
tuning

Prism

Coarse GDD tuning 
(change distance between prisms)

Wavelength 
tuning

Wavelength 
tuning

Prism

Prism

Also, alignment is critical, and many knobs must be tuned.

All prisms and their incidence angles must be identical.



Pulse compressors are 
notorious for their large size, 
alignment complexity, and 
spatio-temporal distortions.

Pulse-
front tilt

Spatial 
chirp

Unless the compressor is 
aligned perfectly, the output 
pulse has significant: 
1. 1D beam magnification 
2. Angular dispersion
3. Spatial chirp 
4. Pulse-front tilt

Pulse-compressors can have alignment 
issues.



Why is it difficult to align a pulse 
compressor?

Minimum 
deviation

The prisms are usually aligned using 
the minimum deviation
condition.  

The variation of the deviation angle is 2nd order in the prism angle.
But what matters is the prism angular dispersion, which is 1st order!
Using a 2nd-order effect to align a 1st-order effect is challenging.
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Two-prism pulse 
compressor

Prism

Wavelength tuning

Periscope

Wavelength 
tuning

Prism

Coarse GDD tuning

Roof 
mirror

Fine GDD 
tuning

This design cuts the size and alignment issues in half.



Single-prism pulse compressor

Corner cube

Prism

Wavelength 
tuning

GDD tuning
Roof 
mirror

Periscope



Example:
Four perfectly aligned 
SF11 prisms

Material length:
Lprism=1 cm
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Note that " depends on ! For very short pulses, third order 
dispersion can be important.

Angular dispersion from a sequence 
of four prisms
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Diffraction-grating pulse compressor
The two-grating pulse compressor also provides negative GDD.

Lg

Fork et al., Opt. Lett., 
12, 483 (1987)



2nd- and 3rd-order phase terms for prism 
and grating pulse compressors

Piece of glass

'' '''

Grating compressors yield more compression than prism compressors.

Note that the relative signs of the 2nd and 3rd-order terms are opposite
for prism compressors and grating compressors.



Compensating 2nd and 3rd-order spectral phase
Use both a prism and a grating compressor.  Since they have 3rd-order
terms with opposite signs, they can be used to achieve almost arbitrary 
amounts of both second- and third-order phase.

 input 2   prism 2  grating 2  0

 input 3  prism 3  grating 3  0

Given the 2nd- and 3rd-order phases of the input pulse, 
input2 and input3, one can solve two simultaneous equations:

Grating compressorPrism compressor



Pulse Compression: Simulation

Resulting intensity vs. time 
with only a grating compressor:

Resulting intensity vs. time 
with a grating compressor
and a prism compressor:

Note the cubic 
spectral phase!

Brito Cruz, et al., Opt. Lett., 13, 123 (1988).

Using prism and grating pulse compressors vs. only a grating compressor



Pulse Compression: Results
The ‘prisms + gratings’ pulse compressor design was used by Fork 
and Shank in 1987 to compress pulses to six femtoseconds – a 
record that stood for over a decade.

60 fsec 
input pulse

single-mode 
optical fiber chirped but spectrally 

broader pulse

6 fsec 
output 
pulse
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This ten-year gap happened (in part) because it did not occur to anybody 
to try to figure out a way to compensate the fourth-order phase.



The grism pulse compressor has tunable 
third-order dispersion.
A grism is a prism with a diffraction grating etched onto it.

A grism compressor can compensate for both 2nd and 3rd-order 
dispersion due even to many meters of fiber.

a [sin(m) – n sin(i)] = m

The (transmission) 
grism equation is:

Note the factor of n, 
which does not occur 
for a diffraction 
grating.



Chirped mirrors
A mirror whose reflection coefficient is engineered so that it has the form:

    ir e  

so that   1r  and  is chosen to cancel out the phase of the incident pulse.

SiO2 layers

TiO2 layers



Longest 
wavelengths 
penetrate 
furthest.

Doesn’t work 
for < 600 nm

Chirped mirror coatings



Chirped mirrors for extra-cavity dispersion control

Each bounce off of a mirror adds the chosen spectral phase () to the 
pulse.  One can accumulate large changes in () through multiple 
bounces.



Chirped mirrors for extra-cavity dispersion control



Chirped mirrors – intra-cavity



The shortest possible optical pulses

This requires:
- Starting with intense (>100 J) 30 fs pulses
- Spectrally broadening them in a gas-filled fiber
- Using a 648-pixel liquid-crystal modulator to 

dynamically adjust the spectral phases
- And a feedback system which iterates the LCM 

phases until the pulse is as short as possible.

Duration: 2.8 fs (1.5 cycles)
Spectrum: > 500nm width

M. Yamashita, et al., IEEE Journal of Selected 
Topics in Quantum Electronics, 12, 213-222, 2006


