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Spatio-Temporal Distortions
Ordinarily, we assume that the pulse-field spatial and temporal 
factors (or their Fourier-domain equivalents) separate:
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Sometimes, this separation of variables is not possible. 
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Angular dispersion is a 
spatio-temporal distortion.

0( )ˆ ˆ( , , , ) [ , , , ]x
xx y z y z

dkk
d

E k k k E k k 


   

In the presence of angular dispersion, the off-axis 
k-vector component kx depends on :

Prism
Input 
pulse

Angularly
dispersed 
output pulse

x

z

xdk
d

kx(red)

kx(yellow)

etc.

If       
is a function 
that peaks 
at kx = 0, 
then adding 
the coupling 
term moves 
the peak to: 
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Note: kx is an 
input variable, 
and kx() is a 
function: the 
mean kx of light 
of frequency .



Spatial chirp is a spatio-temporal distortion in 
which the color varies spatially across the beam.
Propagation through a well-aligned prism pair produces a beam with no 
angular dispersion, but with spatial dispersion, often called spatial chirp.

Prism pairs are found inside many ultrafast lasers.
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Spatial chirp can be difficult to avoid.

Simply propagating through a tilted window causes spatial chirp!

Because ultrashort pulses are so broadband, this distortion can 
be very noticeable—and sometimes problematic!



How to think about 
spatial chirp

where x0 is the center of 
the beam component of 
frequency .
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Suppose we send the pulse 
through a set of monochromatic 
filters and find the beam center 
position, x0, for each frequency, .
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Pulse fronts vs. phase fronts

propagation 
direction

Light always 
propagates in a 
direction 
perpendicular to the 
phase fronts.

Pulse fronts: refers 
to the intensity not 
the phase

These lines represents 
surfaces of constant phase.

Pulse front tilt: 
when the surface 
of max intensity is 
not perpendicular 
to the propagation 
direction

This red dashed line represents 
a surface of maximum intensity.

propagation 
direction



index n()
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BUT: the pulse front travels at Vg, so 
the travel distance is less by:

 g phased V V T   

The time to propagate 
the distance d1:

d1

must equal the time to 
propagate the distance d2:

d2

phase fronts: perpendicular to propagation
pulse fronts: not necessarily!

propagation 
direction

Refraction: a source of pulse front tilt



Pulse-front tilt is another common 
spatio-temporal distortion.

Because the group velocity is usually less than phase velocity, 
pulse fronts tilt when light traverses a prism.

Prism

Angularly 
dispersed pulse 

with pulse-front tilt
Undistorted  

input 
pulse



Diffraction gratings also yield pulse-front tilt.

Gratings yield about ten times more pulse-front tilt than prisms do.

Of course, 
angular 
dispersion and 
spatial chirp 
occur, too.

Diffraction 
grating

Angularly dispersed 
pulse with pulse-

front tilt

Undistorted  
input 
pulse

The path is simply shorter for rays that impinge on the near side of 
the grating. 



Pulse-Front Tilt from a Grating

In the limit of grazing incidence:
The extra distance traveled by 
the ray that impinges on the 
back edge of the grating is d, 
where d is the length of the 
grating.  

For a diffraction grating, use a 
grazing (large) incidence 
angle (for largest PFT).  

So the maximum pulse-front tilt angle achievable using a grating is 
given by:



tan() = d/d, or  = ~45º.

But, in the time it takes for this ray to travel this extra distance, the 
distance traveled by the ray that impinges on the front edge is also d.  



Modeling 
pulse-front tilt

Pulse-front tilt involves coupling 
between the space and time domains:
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For a given transverse position in the beam, x, the pulse mean 
time, t0, varies in the presence of pulse-front tilt.
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dx x

z



Angular dispersion always causes pulse-
front tilt!
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Angular dispersion means that the off-axis k-vector depends on :

where  = dkx0 /d

Inverse Fourier-transforming with respect to kx, ky, and kz yields:

0
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which is just pulse-front tilt!

Inverse Fourier-transforming with respect to  (or 0) yields:

using the shift theorem again



The combination of spatial and temporal 
chirp also causes pulse-front tilt.

Dispersive 
medium

Spatially chirped 
input pulse vg(red) > vg(blue)

Spatially 
chirped pulse 

with pulse-front tilt, 
but no angular 

dispersion

The theorem we just proved assumed no spatial chirp, however. 
So it neglects another contribution to the pulse-front tilt.

The total pulse-front tilt is the sum of that due to angular 
dispersion and that due to this effect.



A pulse with temporal chirp, spatial 
chirp, and pulse-front tilt.
It’s best to make a movie of such a pulse (coming at you):

We’ll need a 
nice 
formalism for 
calculating 
these 
distortions.

We’ll also need a nice technique for measuring them. The above pulse 
was measured using a technique called STRIPED FISH.



Spatio-temporal 
distortions can 
be useful or 
inconvenient.
Good:

They allow pulse compression.
They can be used to measure pulses (tilted pulse fronts).
They allow pulse shaping.
They can increase bandwidth and conversion efficiency in 
some nonlinear-optical processes (e.g. high-intensity 

terahertz pulses!)

Bad:
They usually increase the pulse length.
They reduce intensity.
They can be hard to measure.



Modeling the time and frequency
distributions of a light pulse
We’d like a matrix formalism to predict such effects as the: 

• group-delay dispersion ∂t/∂
• angular dispersion ∂kx /∂ or ∂/∂
• spatial chirp ∂x/∂
• pulse-front tilt ∂t/∂x
• time vs. angle ∂t/∂.

This pulse has all of 
these distortions!

We’ll need to consider, not 
only the position (x) and 
slope () of the ray, but 
also the time (t) and 
frequency () of the pulse.



Propagation in space and time:  
Ray-pulse Kostenbauder matrices
Kostenbauder matrices are a generalization of the 2x2 ray matrices 
that we discussed earlier. They are 4x4 matrices that multiply 4-vectors 
comprising the position, slope, time (group delay), and frequency.

A Kostenbauder matrix requires five additional parameters, E, F, G, H, I.
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Optical system ↔ 4x4 Ray-pulse matrix
where each vector 
component 
corresponds to the 
deviation from a 
mean value for the 
ray or pulse. 



the usual 2x2 
ray matrix

Kostenbauder matrix elements
As with 2x2 ray matrices, consider each element to correspond to 
a small deviation from its mean value (xin =  x – x0 ). So we can 
think in terms of partial derivatives.
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A. G. Kostenbauder, IEEE J. Quant. Electron. 26, 1148 (1990)
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Some Kostenbauder matrix elements are 
always zero or one.



Kostenbauder matrix for propagation 
through free space or a uniform material

1 / 0 0
0 1 0 0
0 0 1 2
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The ABCD elements are always the same as the ray matrix.

Here, the only other interesting element is the GDD: I  =  ∂tout /∂in

where L is the thickness of the medium, n is its refractive index,
and k” is the GVD:
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So:
The 2 is due to 
the definition of 
K-matrices in 
terms of , not .



Example: Using the Kostenbauder matrix 
for propagation through a uniform medium
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Apply the free-space propagation matrix to an input vector:

Because the group delay depends on frequency, the pulse broadens.

This approach works in much more complex situations, too.

The position varies 
in the usual way, 
and the beam angle 
remains the same.

The group delay 
increases by k”Lin

The frequency 
remains the same.



Kostenbauder Matrix for a Lens

1 0 0 0
1/ 1 0 0
0 0 1 0
0 0 0 1

lens

f
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The ABCD elements are always the same as the ray matrix.
Everything else is a zero or one.

To include the GDD of a lens, just multiply by a Kostenbauder 
material-propagation matrix for the thickness of the lens.

So: where f is the lens 
focal length.

As with ray matrices, 
the same holds for a 
curved mirror.

While chromatic aberrations can be modeled using a 
wavelength-dependent focal length, other lens imperfections 
cannot be modeled using Kostenbauder matrices.



no spatial 
chirp (yet)

Kostenbauder matrix for a diffraction grating
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Gratings introduce magnification, angular dispersion and pulse-front tilt:

where  is the incidence angle, and ’ is the diffraction angle (note that 
Kostenbauder uses different angle definitions in his paper).
The zero elements (E, H, I) become nonzero when propagation follows.

So:

time is independent of angle no GDD (yet)

pulse-
front 
tilt

angular
dispersion

spatial magnification angular
magnification



Kostenbauder matrix for a general prism

All new elements are 
nonzero.
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Just angular dispersion
and pulse-front tilt. No 
GDD etc.

Kostenbauder matrix for a Brewster prism
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If the beam passes 
through the apex 
of the prism:

(this simplifies the 
calculation a lot!)
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where

Use + if the prism is 
oriented as above; 
use – if it’s inverted.
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Using the Kostenbauder 
matrix for a Brewster prism

This matrix takes into account all that we 
need to know for pulse compression.

When the pulse reaches the two inverted 
prisms, this effect becomes very important, 
yielding longer group delay for longer 
wavelengths (W   < 0; and use the minus
sign for inverted prisms).

Pulse-front tilt
yields GDD.

Dispersion
changes the 
beam angle.
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Modeling a prism pulse compressor 
using Kostenbauder matrices

^prism ^prism^prism^prism
^air ^air

^air

1

2

3 4 5

6

7

^ = ^7 ^6 ^5 ^4 ^3 ^2 ^1

Use only Brewster 
prisms



Free space propagation in a pulse compressor
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There are three distances in this problem. 

n = 1 in free space

L1

L2

L3



^ = ^7 ^6 ^5 ^4 ^3 ^2 ^1

K-matrix for a prism pulse compressor

Spatial chirp unless L1 = L3.

Negative GDD!

The GDD is negative and can be tuned by changing the amount of extra 
glass in the beam (which we haven’t included yet, but which is easy).

Time vs. angle unless L1 = L3.
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What does the pulse look like inside a 
pulse compressor?

If we send an unchirped pulse 
into a pulse compressor, it 
emerges with negative chirp.

Note all the spatio-temporal distortions.



To follow beams that are Gaussian in both space and time:

Coupling spatial and temporal propagation

2 2( ) exp[ (1/ ) ]GE t i t   

We can propagate Gaussian beams in space because they’re quadratic 
in x and y:

2 2 2( , ) exp[ (1/ π/ ) ( )]E x y w i R x y   

A Gaussian pulse is quadratic in time.  And the real and imaginary
parts also have important meanings (pulse length and chirp):

Optical system



The complex-Q matrix
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We define the complex Q-matrix analogously to the complex-q
parameter, so the space and time dependence of the pulse can be 
written:
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These complex matrix elements contain all the parameters of 
beams/pulses that are Gaussian in space and time. And they 
can be propagated using the K-matrices.



An example: spatio-temporal phase distortions

The electric 
field vs. x 
and z. 

Red = +
Gray = -

Average wave-
propagation 
direction

z
x

The imaginary parts of the spatio-temporal distortions are not well-
known, but they are interesting. Consider the imaginary part of      : xtQ

This effect is called Wave-Front Rotation.



Attosecond 
pulses have 
XUV 
wavelengths.

XUV wavelengths 
diverge much 
less than IR.

Wave-front Rotation and the Attosecond 
Lighthouse
Spatial chirp causes wave-
front rotation.

Wave-front rotation leads to 
the lighthouse effect.

The ultrafast lighthouse effect, 
generated in this manner, is now 
used to separate out one atto-
second pulse from a train of them.

Because attosecond pulses have 
smaller divergence angles, all 
that’s then required is an aperture.

Wave-fronts

x f 
/

L

t /TL

Quéré and coworkers



Dispersion of spatio-temporal phase
distortions

This distortion is called Wave-Front-Tilt Dispersion.

The dynamic rotation of the wave front need not be the 
same for all frequencies.

Plots of the 
electric field 
vs. x and z
for different 
colors.

z
x



Summary of First-Order Spatio-
Temporal Distortions
In all, there are eight first-order spatio-temporal distortions, four in 
amplitude (intensity) and four in phase.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino. "Spatio-temporal couplings in ultrashort laser 
pulses." J. Optics 12: 093001 (2010).


