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Focusing Issues
Why focus an ultrashort pulse?

Ultrafast microscopy requires very a small spot size.
Focusing an ultrashort pulse can yield ultrahigh intensity.

typical Ti:sapphire output: 10nJ / (100fs) / (10m)2 ~ 1015 W/m2

But ultrashort pulses are broadband, so a lens that focuses a single 
color well won’t necessarily focus an ultrashort pulse well due to 
chromatic aberration.

And a lens that focuses white light well may not focus an ultrashort 
pulse well:  the pulse will lengthen due to group-velocity dispersion.

We’ll need to keep the pulse simultaneously short in time and small in 
diameter at the focus.

Nontrivial spatio-temporal distortions can occur.



Chromatic aberration distorts the pulse in 
space and time.

An ultrashort pulse is broadband, and different frequencies can 
focus at different points.

Chromatic aberration distributes the focused energy over a larger 
region than desired.
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Parallel red and blue input rays

The lens refractive index 
is higher for blue, 

so f is smaller 
for blue.
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The lens-maker’s formula



Chromatic aberration (cont’d)
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For a Gaussian pulse, the bandwidth, , is: 20.441 / c t   

Compute the variation in focal length f over the spectrum of a pulse 
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Chromatic aberration: a numerical example
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n = 1.51;  dn/d =  0.17
 = 248nm; pulse length = 50fs
f = 30mm;  desired focal spot size radius, w0 = 0.6m

Fused silica lens focusing a 50fs ultraviolet pulse from a KrF laser

Is this a lot or a little?  
Compare with the confocal parameter: 
(2×Rayleigh range )

2
02π / 9μmw   So it’s a lot!

Note: this problem is not nearly as bad the IR. At  = 800nm, the 
dispersion parameter  dn/d = 0.014, an order of magnitude smaller.



For a lens, the phase delay at the focus is independent of input radial 
position (r) (if we ignore spherical aberration), so the phase fronts are 
flat there.

Radially varying group delay also affects 
the pulse focus.

But the group velocity differs from the phase velocity, so the intensity 
fronts (“pulse fronts”) will not be the same as the phase fronts and will 
lag behind them—the more glass in the path, the greater the lag.

r

L(r) = Lens thickness vs. radial co-ordinate

Pulse fronts

Phase fronts



Understanding the effects of radially 
varying group delay on the focus.

Longer pulse at the focus

The group velocity is less than the phase velocity, so the more 
glass the later the pulse arrival time.

Radially varying group delay lengthens and distorts the focus.



Group vs. phase delay in a lens
The difference in propagation time between the phase and intensity:
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where vis the phase velocity and vg  is the group velocity,
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L(r) = lens thickness vs. 
radial co-ordinate, r

R1 = Front-surface radius of curvature
R2 = Back-surface radius of curvature

r0

For this lens, R2 < 0

Lens axis



Group and phase delays 
in a lens (cont’d)
Expressions for the phase velocity, v, and the group velocity, vg :
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Substituting for L(r) and the inverse-velocity difference:
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Practical example:  focusing a UV pulse

n = 1.51;     dn/d =  0.17
 = 248nm, pulse length = 50fs
f = 30mm,  desired focal spot size radius = 0.6µm
input spot size radius = 4mm (required for 0.6µm focus)

So the difference in group delay at the lens edge, r0 , and on axis, 0, is:

(The phase delays are 
equal and cancel out.)

300fsgt 

Example: Fused silica lens focusing a 50fs pulse from a KrF laser
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A big effect!



Radial group delay and chromaticity

Substituting this result 
into the lens phase-
minus-group time delay:
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We find:
This result relates the difference 
between the group and phase delays to 
the chromaticity of the lens.

It says that an achromatic lens (for which f is independent of ) has 
radially independent group delay and hence flat pulse fronts!!! 

So an achromatic lens solves two problems!
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Recall that:



Achromatic lenses solve two problems.
Combining two lenses into a doublet can create a lens that is 
achromatic (to first order) and that cancels out radially varying 
group delay.

1
f

 (n1 1)
1
R1


1
R2






 (n2 1)

1
R2


1
R3







r
Phase and pulse fronts

Lens #1 Lens #2

R1 R2
R3

d2d1

n1 n2

Radii of curvature
We can choose the
parameters so that:

1 0
( )

d
d f 

 
 

 



Achromatic lenses solve two problems 
(cont’d)
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The paths traveled through the lenses are:

As a result, doublets have a phase-minus-group delay difference 
with additional terms:
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Note that only the third term depends on the radial co-ordinate, r,
and this term is zero for an achromatic lens. 

Of course, an even more complex, highly aberration-corrected 
photography lens or microscope objective is even better. 



Of course, GDD in the lens adds chirp 
and lengthens the focused pulse.
Aberration-corrected microscope objectives have several cm of 
glass in the several elements in them.  This introduces GDD!

It may be necessary to pre-compensate for this glass using a pulse 
compressor (e.g., prism sequence) before the microscope objective.

Unfortunately, achromatic, highly aberration-corrected lenses can be 
very thick, so they can require significant chirp compensation, and 
residual 3rd-order spectral phase can distort the pulse badly.

vgr(blue) < vgr(red)



Worse, the GDD varies with lens radius.

Without GVD:

With GVD:

Kempe, et al.,  JOSAB, 9, 1158 (1992)

This effect is not well understood.  But its magnitude is likely small.

The magnitude of the chirp depends on radial position.



But now the pulse fronts lead the phase fronts!  You can’t win!
Maybe a combination of the two types of lenses would work…

Z. Bor, Opt. Lett., 14, 119 (1989)

Avoiding GDD in lenses (maybe…)

Pulse fronts

Phase fronts

Fresnel lens

You might think that a Fresnel lens, which has no group-velocity 
component to the delay, would solve the problem...



How about using a mirror?
This nicely avoids GDD (and chromatic aberration) completely!

For all rays to converge to a point a distance f away from a curved 
mirror requires a paraboloidal surface. 

But this only works for on-axis rays.  Alas, focused off-axis rays suffer 
from astigmatism.

Worse, the focus is in the middle of the incident beam.

Spherical surface Paraboloidal surface
Optic 
axis



The off-axis paraboloid

Alas, these focusing optics are difficult to align, and slight 
misalignments yield large distortions.

To keep the focus out of the beam, use only part of the paraboloidal 
mirror.

Paraboloidal surface

Focus



Reflective (Cassegrain) microscope 
objectives
You might think that the 
focus will have a hole in it, 
but no.  

Away from the focus, 
there is a hole, however.  
And at the focus, some 
light is lost due to the hole.

A photograph taken using a Cassegrain
lens.  Note that the in-focus foreground 
looks fine, but point-sources in the out-of-
focus background are donut-shaped. 



Spherical aberration in lenses
Usually we use spherical surfaces for lenses and mirrors, which 
work better for a wide range of input angles (avoiding 
astigmatism and coma). 

Nevertheless, off-axis rays see a different focal length, so 
lenses and curved mirrors have spherical aberration, too.

This yields spatial fringes before the focus due to the crossing 
of the beams.



A Theoretically Perfectly Focused Pulse
E(x,z,t)

A white pulse remains white vs. x and t (that is, z).

Uniform color indicates a lack of phase distortions.
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Side views:



Spherical and chromatic aberration
Singlet BK-7 
plano-convex 
lens with 
spherical and 
chromatic 
aberration and 
GDD.

f = 50mm
NA = 0.03*

810 nm

790 nm *reminder: NA = numerical aperture = 0.5/(f-number) 



Distortions are more pronounced for a tighter 
focus.

814 nm

787 nm
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Singlet BK-7 
plano-convex 
lens with a 
shorter focal 
length.

f = 25mm
NA = 0.06



Measured E(x,z,t) of a focused pulse
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810 nm

790 nm

Aspheric PMMA 
lens with 
chromatic (but 
no spherical) 
aberration and 
GDD.

f = 50mm
NA = 0.03



817 nm

789 nm

NA = .28
Ex

pe
rim

en
t

Si
m

ul
at

io
n

The focus of an SF11 plano-convex lens 



The spot size at 
the focus is 4μm.

The spot size at 
the focus is 2μm.

Some radially 
varying GDD is 
present.

10X  NA = .25

20X  NA = .45
817 nm

789 nm

Minimal 
aberrations, but 
GVD is present.

Measurements of microscope objectives



Focusing a pulse with spatial chirp and 
pulse-
front 
tilt.

790 nm

812 nm

Aspheric 
PMMA lens.

f = 50mm
NA = 0.03
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817 nm

789 nm
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tOverfilling of 
the lens and 
chromatic 
aberration 
cause an 
additional 
“fore-runner” 
pulse ahead of 
the main pulse. 

NA = 0.4

A “fore-runner” pulse due to edge effects



How to focus an ultrashort pulse
You cannot do it perfectly and easily.  Options:

1) Use an achromatic, highly corrected lens and pre-compensate
for the average GDD.

You can’t really do this exactly (GDD varies with radius).
Third-order spectral phase is also likely present.
Some pulses have more bandwidth than any lens is designed for.

2) Use a curved mirror.

On axis (Cassegrain design), the beam center is blocked.
Off axis, an off-axis paraboloid is hard to align.

Clearly it’s important to measure the pulse in space and time as well 
as possible to see if you’ve done what you hoped to do.



Even a perfectly achromatic lens with no 
GVD may not focus the way you’d like…

1
0π
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w
  Different colors focus to different spot sizes:

To avoid this, you would need to start with a beam with a color-dependent 
input spot size…

Again, good spatiotemporal pulse measurement is important. 
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Using an achromatic lens to focus a 
broadband terahertz pulse

Four images of a 200m 
pinhole at four different 
frequencies, obtained by 
scanning the pinhole in the 
focus of a broadband THz 
pulse.

scale bars: 
300m

Resolution is given by the 
focusing of a Gaussian 
beam:

1.22 fR
D

 

From: M. Di Fabrizio et al., Appl. Sci. 11, 562 (2021)

Lens: TPX (an 
achromatic plastic 
material)

NA = 0.27



Everything we’ve just said about focusing 
also applies to collimating a diverging pulse.

The beam divergence angle  depends on :  
 =  2/w, where w = beam spot size.

So if w is independent of , and  ranges 
from 400nm to 1600nm,  varies by a 
factor of 4.  

To collimate such a beam, the lens focal 
length will have to depend strongly on .

Such lenses do not yet exist.  
Worse, w typically won’t be independent of .


