
Nonlinear optics I
What are nonlinear-optical  effects and why do 

they occur?

Maxwell's equations in a medium

Nonlinear-optical media

Second-harmonic generation

Conservation laws for photons ("Phase-
matching")

Quasi-phase-matching



Reminder: linear optics
Recall that, in “ordinary” linear optics, a light wave acts on a 
molecule, which vibrates and then emits its own light wave that 
interferes with the original light wave.

We can also imagine this process in 
terms of the  molecular energy levels, 
using arrows for the photon energies:

In linear optical processes, the output E-field is always 
proportional to the input E-field: 

out inE E



Why do nonlinear-optical effects occur?
Now, suppose the irradiance is high enough that many molecules 
are excited to the higher-energy state.  This state can then act as 
the lower level for additional excitation.  This yields vibrations at all 
frequencies corresponding to all energy differences between 
populated states.

Beware: This picture can be 
misleading, because it implies that 
there need to be real energy levels 
resonant with the photon’s energy. 
This is not necessary!



Reminder: Maxwell's Equations in a Medium
The induced polarization, P, contains the effect of the medium.  
The inhomogeneous wave equation (in one dimension):
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The polarization is usually proportional to the electric field:

 = unitless proportionality constant

Then, the wave equation becomes:
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Recall, for example, in the forced oscillator model, we found:
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Reminder: Maxwell's Equations in a Medium
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And, we call the quantity              the “refractive index”.1 

So, we can describe light in a medium just like light in vacuum, as 
long as we take into account the refractive index correction.

But this only worked because P was proportional to E…

What if it isn’t?   Then P is a non-linear function of E!
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But this is the same equation as the usual homogeneous equation, 
if we define a new constant c such that:



Maxwell's Equations in a Nonlinear Medium
Nonlinear optics is what happens when the polarization is the result
of higher-order terms in the field:
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Then the wave equation must look like this:
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The linear term can be treated in the same way as before, giving 
rise to the refractive index.  But the non-linear term is different…
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Usually, (2), (3), etc., are very small and can be ignored. 
But not if E is big…
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What sort of effect does the non-linear term have? Consider (2).

terms that vary at a new frequency, the 2nd harmonic, 2!

The effects of the non-linear terms

If we write the field as:
22 2 *2

0 0 0( ) exp(2 ) 2 exp( 2 )   E t E i t E E i t then

Nonlinearity can lead to the generation of new frequency components.

This can be extremely useful:
Frequency doubling crystal:

1064 nm        532 nm



Mechanisms for nonlinear interactions
The (n) formalism can describe (nearly) all nonlinear optical 

interactions. 

But this formalism doesn’t tell us anything about the physical 
mechanism that is the origin of the nonlinearity. There are many 
sources of nonlinearity.
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Here’s one key example:
Real springs do not obey Hooke’s Law 
perfectly. Use Newton’s Law, F = ma, 
to write down an equation of motion, 
including a nonlinear spring force: Eapplied(t)

nucleus electron
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Hooke’s Law nonlinear spring: e.g., FNL ~ xe
2
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Hooke’s Law nonlinear spring
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If the electron is driven sinusoidally at frequency , the motion 
must include frequencies other than . 

This animation shows a decomposition of the motion 
into the fundamental (blue) as well as a DC term (red) 
and the 2nd harmonic term (green).

This is one common physical origin of the nonlinear response 
of many materials.

It is sometimes known as the “hyperpolarizability”.

Nonlinearity of the electron motion



The characteristic response time of this process is the time 
required for the electron cloud to become distorted.

This can be estimated: it must be on the order of the 
orbital period of an electron about its nucleus:

v
a 02 

a0 = Bohr radius (0.5 x 10-8 cm)
v = typical electron velocity (0.01c)

 = 10-16 sec

faster than any laser pulse (almost)

Electronic hyperpolarizability

There are many other sources of nonlinearity, but most of 
them are much slower, and therefore less relevant to 
ultrafast optics.



Sum and difference frequency generation
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Suppose there are two different-color beams present in a (2) medium, 
not just one:

Then E(t)2 has 16 terms:

2nd harmonic of 1

2nd harmonic of 2

sum frequency

difference frequency

zero frequency - known as “optical rectification”

This is an awful lot of processes - do they all occur simultaneously?  
Which one dominates (if any)?  What determines the efficiency?



Complicated nonlinear-optical effects can occur.

The more photons (i.e., the higher the order) the weaker the effect, 
however.  Very-high-order effects can be seen, but they require 
very high irradiance, since usually (2) > (3) > (4) > (5) …

Nonlinear-optical processes
are often referred to as:

"N-wave-mixing processes"

where N is the number of
photons involved (including 
the emitted one).Emitted-light

photon energy

This cartoon illustrates a 6-wave mixing process.  
It would involve the (5) term in the wave equation.



Conservation laws for photons in nonlinear optics
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Satisfying these two relations simultaneously is called "phase-matching."

Energy must be conserved.  Recall that 
the energy of a photon is       .  Thus:

Photon momentum must also be conserved.  
The momentum of a photon is     , so:
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Usually, only one (or zero) of the many possible N-wave 
mixing processes can be phase-matched at a time.
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Phase-matching: an example
Consider the 2nd harmonic generation process:

nonlinear 
material

in out inEnergy conservation requires 
that out is twice as large as in.

Momentum conservation requires:      2 
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Unfortunately, dispersion prevents 
this from ever happening!
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The solution: birefringence
The molecular "spring constant" can 
be different for different directions.

The x- and y-polarizations can see 
different refractive index curves.

Hence, the refractive index of a 
material can depend on the 
orientation of the material 
relative to the polarization axis!
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Uniaxial crystals have an optic axis

Uniaxial crystals have one refractive 
index for light polarized along the optic 
axis (ne) and another for light polarized 
in either of the two directions 
perpendicular to it (no).  

Light polarized along the optic axis 
is called the extraordinary ray, and 
light polarized perpendicular to it 
is called the ordinary ray. These 
polarization directions are the 
crystal “principal axes.”



Calcite is one of the most birefringent materials known. It is 
particularly useful because it’s also transparent over the 
entire visible spectrum and even into the UV (~300nm).

Birefringent Materials

Calcite, CaCO3 Refractive Indices of Uniaxial 
Crystals

(20ºC;  = 589.3nm)

Material    no ne_______________________________________

Tourmaline 1.669 1.638
Calcite 1.6584 1.4864
Quartz 1.5443 1.5534
Sodium nitrate 1.5854 1.3369
Ice 1.309 1.313
Rutile 2.616 2.903

The phenomenon of ‘double refraction’ is easily visible to the 
eye, if the birefringence is large enough.



If both polarizations are present, this has the 
effect of changing the relative phase of the x
and y fields, and hence altering the polarization.

Birefringence for 
polarization control

Suppose we illuminate a slab of birefringent 
material with a wave that is not polarized along 
either of the principal axes.
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This wave must be broken down into its ordinary and 
extraordinary components, considered  individually, and 
added back together afterward. 



Birefringent media: the index ellipsoid
Things are more complicated if the 
k vector is at an angle  to the 
extraordinary axis, as shown here:

But the other component (red) is not parallel 
to any of the principal axes. It propagates with 
an index that lies between no and ne, as:

 
   2 2

2 2 2

cos sin1

o en n n
 


 

The propagation speed of the extraordinary component depends on angle. 

Then one component of the field (the orange
arrow) is parallel to the ordinary axis and 
propagates with refractive index no.

This equation describes the index ellipsoid.



Phase-matching Second-Harmonic 
Generation using birefringence
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Using birefringence, we can satisfy the phase-matching condition.

For example:
Use the extraordinary polarization
for  and the ordinary for 2:

ne depends on propagation angle, so by rotating the 
birefringent crystal, we can tune the condition precisely by 
moving the red curve up and down relative to the blue curve.



Light created in real crystals

Far from 
phase-matching:

Note that SH beam is brighter as phase-matching is achieved.

Closer to 
phase-matching:

Input beam

SHG crystal

Output beam

Input beam

SHG crystal

Output beam



Second-Harmonic Generation

SHG KDP crystals at Lawrence 
Livermore National Laboratory

These crystals convert as much 
as 80% of the input light to its 
second harmonic. Then 
additional crystals produce the 
third harmonic with similar 
efficiency!

They do it that way because the 
cascading of two second-order 
processes is usually much more 
efficient than a single-step third-
order process.



Difference-Frequency Generation: Optical 
Parametric Generation, Amplification, Oscillation
Difference-frequency generation takes many useful forms.

1

3

2 = 3  1

Parametric Down-Conversion
(Difference-frequency generation)

1

3 2

Optical Parametric 
Amplification (OPA)

1

"signal"

"idler"

By convention:
signal  idler

1

3
2

Optical Parametric 
Generation (OPG)

1

Optical Parametric 
Oscillation (OPO)

3
2

mirror mirror

All of these are (2) processes (three-wave mixing).



We have derived the wave equation in a medium, for 
the situation where the polarization is non-linear in E:

The wave equation with nonlinearity
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In these cases, we neglect the third (and higher) orders.

A good example: second harmonic generation



Second Harmonic Generation: SHG

In this process, we imagine that one laser (at frequency ) is used 
to illuminate a nonlinear medium.

As this field propagates 
through the medium, its 
intensity will be depleted 
and the intensity of the 2nd 
harmonic wave (initially 
zero) will grow.
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Describing the 2nd harmonic wave
We are interested in the behavior of the field that oscillates at 2; 
that is, the 2nd harmonic.  We can assume that this field is of the 
form:

where we require that the amplitude A2(z) is slowly varying, and 
also that it vanishes at the input facet of the nonlinear medium:
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Furthermore, the wave vector of this wave depends on the 
refractive index of the nonlinear medium at frequency 2:
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What equation must the 2nd harmonic obey?
The 2nd harmonic wave must obey the wave equation, of course.
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As we have seen, the 2nd-order polarization results from the 
field at frequency  - the fundamental.  Putting in the spatial 
dependence explicitly:

       22 2
0 02 i t ik zP t E e    

the amplitude of the incident field 
(the one at frequency )

this is the k of the 
incident field:

 k n
c


       2 22 2 2
0 02 i k z tP t E e    



Plug our assumed forms for E(z,t) and P(2), to find:
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Plugging in to the wave equation…

Slowly Varying Envelope Approximation (SVEA):

2
2 2

22

 


 
A Ak
z z

 


So we neglect the second derivative of A2.
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The nonlinear wave equation becomes:

Now, we could find a similar first-order differential equation for E0, 
and then solve the two coupled equations.

Solving the wave equation in second order

But, instead of doing that, let’s see if we can gain some physical 
insight by making another simplifying assumption:

E0 is independent of z.
In this case, we can easily integrate both sides of this equation.

The incident field is not significantly depleted 
by the conversion process.  That is, E0 does 
not decrease very much with increasing z.

Assume:
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Integrate both sides

We can do the integral on the right side:
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Define the 'phase mismatch' 22  k k k 

This is just A2(z).

Thus we’ve arrived at a result!
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The solution
The intensity of the second harmonic radiation is proportional to | A2 |2.
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The intensity of the 2nd 
harmonic is proportional to the 
square of the intensity of the 
fundamental.

It also depends sensitively on 
the product of k and z.
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SHG intensity is most 
efficient for || < 1

 SVEA and zero-depletion approximations give lowest order solution.
 Intensity of SHG radiation is proportional to the square of the input intensity.
 Intensity of SHG radiation grows quadratically with propagation distance.
 Intensity of SHG is very sensitive to phase mismatch - maximum when k = 0

Phase matching for a (2) process

To summarize:
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If the SHG medium is too thick for a 
given k, conversion efficiency suffers.



What does phase matching mean?
When k = 0,  = 0, this means that n() = n(2).  The phase velocity 
of the input and the 2nd harmonic are equal.   = 2 2.

The condition 
k L << 1 ensures 
that the two waves 
don’t walk too far 
out of phase with 
each other before 
reaching the end of 
the SHG crystal.

The two waves 
maintain the same 
relative phase as 
they propagate.

phase-matched: 
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not phase-matched: 

When k is not zero, the phase velocity of the fundamental and 2nd 
harmonic are different, and    2 2.  As z increases, the 2nd 
harmonic wave walks out of phase with the input wave.
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Materials for (2) non-linear optics
There are a number of materials commonly used for SHG or 
other frequency conversion effects based on (2).

• KDP (KH2PO4): potassium di-hydrogen phosphate
• BBO (-BaB2O4): beta-barium borate
• LiNbO3: lithium niobite
• AgGaSe2: silver gallium selenide
• ZnTe: zinc telluride
• and many others

Each material has advantages and 
disadvantages: 
• size of the nonlinear coefficient (2)

• ease of phase-matching
• wavelength range of transparency
• optical damage threshold
• price / ease of fabrication

LiNbO3 crystals

ZnTe crystals



SHG illustration
Example of matching n() and n(2) in a nonlinear medium:
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What if we changed the angle 
slightly?  For example: 23º.

Then no() is unchanged.  But 
ne(2) = 1.6542.  And thus:
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For  = 1064 nm, at this angle, 
no() = ne(2) and thus k = 0.



What if the phase matching is not perfect?
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intensity of the fundamental (decreasing?)

intensity of the 2nd harmonic (increasing quadratically if k = 0)

If the phase mismatch is not 
precisely zero, then how does the 
second harmonic intensity behave?

   
 

2
2 2

2 0 2

sin 2
2

 


 

k z
I z I z

k z


SHG crystal

The SHG intensity oscillates as a function of propagation distance:
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In some cases, we can control the sign of 
(2) by changing the crystal structure.

LiNbO3

Another way to boost the SHG efficiency

SHG crystal
Why does the signal oscillate?

If phase matching condition is not perfect, then 
after a certain length (called the ‘coherence 
length’ Lcoh), the fundamental and 2nd harmonic 
walk out of phase with each other.

At that point, the process reverses itself, and the fundamental grows 
while the 2 beam diminishes.  This process then oscillates.

What if, at z = Lcoh, we could flip the sign of 
(2)?  This would change the phase of E2 by 
.  Instead of cancelling out as it propagates 
beyond Lcoh, E2 would be further enhanced.



Flipping the sign of (2) once each coherence length is known as 
“quasi-phase matching.”  It has recently become a critically important 
method for efficient second harmonic generation.

Quasi-phase matching

(Length)2

phase 
matching

quasi-
phase 
matching

no phase 
matching

The process of fabricating a 
material where the sign of 
(2) flips back and forth is 
known as “periodic poling”.

A photo of PPLN: 
periodically poled 
lithium niobate


