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When are 3rd order effects important?

Characterizing 3rd order effects

The nonlinear refractive index

Self-lensing

Self-phase modulation

Non-perturbative effects

3rd order nonlinearities



(3) effects

Last lecture, we discussed (2) non-linear optical effects:
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• second harmonic generation
• sum frequency generation
• difference frequency generation
• optical rectification

If the power series is to converge, then | (3) | << | (2) | 

So when are (3) effects important?

when (2) vanishes identically due to symmetry



P(2) = (2) E2

Consider a medium which exhibits inversion symmetry. 
For example:

• many crystalline materials including all cubic crystals
• any amorphous material (glassy solid, liquid, gas)

In a material like that, reversing the sign of E must 
produce an induced polarization that is the same, 
but with opposite sign:

P(2) = (2) [E]2

This requires that P(2) = P(2),  which implies that (2) = 0

So:  (2) is zero most of the time. When is it not zero?
• in a material without inversion symmetry 

(e.g., KDP, BBO, LiNbO3, liquid crystals, etc.)
• near any surface or interface

Symmetry considerations



two components at shifted frequencies
one component at an 
unshifted frequency

As with second order phenomena, we expect 
to find new frequency components at sum and 
difference frequencies:
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Third-order nonlinear effects
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Consider the case where two of the components are equal:  

(3)







       

 1 3 32 21

1

*

3

*
3 3

2

*
2

33 (3)
0

3(
1 2

)
1

3
0

i t ii t i ti i tt t

E t

E e

E t

E e

E t

E e E eE e

P

E e   

 

    

    

   

We can group the terms according to the frequency at which they oscillate:



Again, we can group the terms according to frequency:
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First, let’s consider only the 3 term. This is the simplest (though 
not the most useful) example of four-wave mixing (4WM).

Third-order nonlinear effects (cont.)
What if all three of the components are equal:   
(e.g., all from a single laser beam at frequency )
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again: there is a piece 
at the same frequency 
as the input beam
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THG Medium

We must now cube
the input field:

Third-harmonic generation is weaker than second-harmonic and 
sum-frequency generation, so the third harmonic is usually 
generated using SHG followed by SFG, rather than by direct THG.

Third harmonic generation



We can also allow two different input beams, whose frequencies can 
be different.
So in addition to generating the third harmonic of each input beam, 
the medium will generate interesting sum frequencies. Note that the 
directions are not the same as those of either of the input beams!
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One field can 
contribute two 
factors, one E and 
the other E*.  This 
involves both 
adding and 
subtracting the 
frequency and its 
k-vector in the 
phase-matching 
expressions.

This effect is automatically phase-matched!
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The excite-probe geometry
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 Assume the beams have 
the same amplitudes E0.

4WM as diffraction from an induced grating



Because the medium absorbs light at the peaks and not the troughs, 
its  and n will develop sinusoidal modulations: diffraction gratings!

Two pulses crossing at an angle
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Induced gratings

It is not hard to show that the angle of the 
diffracted signal obeys:

sin sinpr si ex exgk k 



Third-order difference-frequency generation:  
Self-diffraction

In self-diffraction, a beam that creates the grating also probes it:

Nonlinear
medium

Signal #1

Signal #2
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Self-diffraction 
is not phase-
matched.  

So a very thin 
medium is 
necessary.
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

• Repeat for many different values of the delay .

Signal is the convolution of the 
gate function Iprobe(t) with the 
response of the medium g(t):

     probeS I t g t dt




    
delay = 0

transmitted 
pulse energy

The pump-probe measurement
Suppose two short pulses, coming from the same laser

sample

• A strong pump pulse perturbs the sample at t = 0.
• A time  later, a weak probe pulse passes through the sample.

detector (slow)

• Measure the transmission of the probe pulse

pump 
pulse

probe 
pulse

laser

90/10 
beam 
splitter



probe pulsepump pulse

Suppose the two 
pulses are very short: E(t) = Epump (t) eikpumpr + Eprobe (t  ) eikprober + c.c.

• The product E(t)2 has 16 terms, but none
of them have the wave vector kprobe.            
So they could not contribute to the signal.

phase matching again, but focusing on momentum rather than energy

As with the induced grating: consider the k dependence of 
the fields.



kpump

kprobe

Epump

Eprobe

This includes the factor: (kpump + kprobe – kpump) which is equal to kprobe.

So the third-order polarization contains a term that gives rise to a 
signal propagating parallel to kprobe.

How do we know this is a 3rd order process?

• The product E(t)3 has 64 terms, containing 
wave vectors with all possible sums of 
three k vectors from kpump and kprobe.



probe pulsepump pulse

Suppose there 
are two pulses: E(t) = Epump (t) eikpumpr + Eprobe (t  ) eikprober + c.c.



kpump

kprobe

Epump

Eprobe

Notice: another subset of the 64 terms is proportional to this wave vector:
(kpump  kprobe + kpump) 

which is not parallel to either kpump or kprobe. This term gives rise to 
radiation that emerges from the sample in a different direction!

Self-diffraction with short pulses

• The product E(t)3 has 64 terms, containing 
wave vectors with all possible sums of 
three k vectors from kpump and kprobe.

2kpump  kprobe

Depending on the details, this is known as a “photon 
echo”, or a “free induction decay”, or a “transient grating”.



Let’s now focus on the term 
that varies at frequency .

Third-order nonlinear effects (revisited)
Returning back to this:



(3) Medium





       
2(1) (3)

0 3    
TOTP E E E      

Considering just the unshifted polarization component (and assuming 
that (2) = 0), the total polarization (up to 3rd order) is:

We can define an effective susceptibility eff, such that PTOT = 0eff E
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0 1 n  is the usual low-intensity refractive index.

Degenerate third-order nonlinear effects
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Interpretation: the refractive index of a (3) medium has an 
intensity-dependent term.  This is usually written:

n = n0 + n2 I where (3)
2 n 

n2 has units of inverse intensity, or m2/ Watt.  It is usually very small.

Refractive index depends on intensity

If the incident radiation is very intense 
(i.e., approaching 1/n2), then the index 
of the medium changes in response to 
the light field.

This can lead to self-induced effects.

Typical numbers for n2:
air   4×10-19 cm2/W
glass 2.7×10-16 cm2/W

This is known as the “optical Kerr effect”.



How realistic is it to get to these intensities?
For silica glass:   n2 = 2.7×10-20 m2/W   (at  = 1.5 m)

So the interesting intensity range is when I approaches 1/n2 = 3.7×1019 W/m2.

Suppose our light is focused to a spot size of 10 microns.
Then: area =  R2 = 8×10-11 m2

necessary power = I × area = 3×109 W

Suppose our pulse duration is P = 100 femtoseconds.
Then: 

necessary pulse energy = power × P = 0.3 millijoules

Thus: focusing a pulse with an energy of 300 microjoules and a duration 
of 100 femtoseconds gives n2I ~ 1 in glass. 

In that case, the refractive index is changed by ~100% at the peak of the 
pulse. If the pulse energy is only 3 microjoules (instead of 300), this still 
causes a ~1% change in the index (which is not a trivially small change!)

These pulse energies are readily achievable using femtosecond lasers.



Intensity-dependent index

Conclusion:
An intense light field changes the refractive index of the 
medium in which the light is propagating.

This modified refractive index can in turn change the 
characteristics of the light field that caused the change.

self-induced effects are possible

If the material response is slow, then the effect is not 
observable with very short light pulses.  But if the 
response is fast, then it can have dramatic effects on 
short light pulses.



Different nonlinear mechanisms can manifest in very 
different regimes of intensity and time response.

Mechanism n2 (3) Response time
(cm2/W) (esu) (sec)

electronic hyperpolarization 10-16 10-14 10-15

molecular orientation 10-14 10-12 10-12

electrostriction 10-14 10-12 10-9

saturated atomic absorption 10-10 10-8 10-8

thermal effects 10-6 10-4 10-3

photorefractive effect (large) (large) (intensity-dependent)

Typically: the larger the effect, the slower the material response!

Mechanisms for intensity-dependent index



The intensity-dependent refractive index means that the center of a 
Gaussian beam sees a different refractive index from the edges of the 
beam.

optical thickness

A planar material 
can act like a lens!

One manifestation of the optical Kerr effect: 
self-lensing

intensity profile
of optical beam Innn 20 



Self-lensing and the formation of filaments
Suppose the material in question is air.

Self-focusing leads to an ever-
increasing intensity at the center of the 
laser beam.  Eventually, the intensity is 
high enough to ionize atoms.

In air, ionizing atoms produces a 
plasma.  This plasma then 
contributes to the refractive 
index. Plasmas have a refractive 
index which is less than that of 
air, so this reduces the index at 
the center of the beam, leading 
to de-focusing.

If these two contributions offset, then a stable filament is 
formed.  This filament can propagate for many meters!



Optical filaments - the Teramobile
A stable filament in air acts as a conductive channel, which is 
essentially a lightning rod.  This can be used as a mobile 
lightning protection system.

a self-guided filament induced 
in air by a high-power, infrared 
(800 nm) laser pulse 

guided and unguided lightning

Teramobile



Another manifestation of the optical Kerr 
effect: self-phase modulation

As a light beam propagates a distance z in a medium, it acquires a phase:
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Instantaneous frequency is equal to the time derivative of the temporal phase:

If intensity depends on time, then the pulse frequency changes with time!

“self-phase modulation”

Optical Kerr effect: the refractive index depends on intensity.



The nonlinear phase gives rise to an instantaneous
frequency which depends on time: )()( 0 tt  

where:

dt
tdI

c
ln

dt
dt NL

)()( 0
2
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If the light is a pulse, then 
the instantaneous 
frequency is first smaller 
than, and then larger than, 
the central frequency 0.

Self-phase modulation



Self-phase modulation:  depends on t

This can be extremely dramatic if the excursions 
of (t) away from its original value are large.



Self-phase modulation: spectral broadening
If I(t) changes very rapidly (e.g., femtosecond 
pulse), then its derivative is large - so that the 
excursions of the frequency  could be larger 
than the initial bandwidth of the pulse!  The 
spectrum of the light must be broadened!

microstructured 
optical fiber

output spectrum

Optics Letters, vol. 25, p. 25 (2000)

broadened by 
a factor of 100!

original 
pulse 

bandwidth

new 
frequencies!



The world’s shortest light pulse (1986 - 1997)

A diagram from an earlier paper (gratings only): the result with gratings & prisms:

spectrally and temporally broadened!



Supercontinuum generation

red light in…   white light out



What if this occurs in a regime 
of anomalous dispersion?

new frequency components 
generated by the early (rising) 
edge of the pulse, at  < 0

new frequency components 
generated by the later (falling) edge 
of the pulse, at  > 0

0
dn
d

lower  = lower velocity
higher  = higher velocity

Self-phase modulation + anomalous 
dispersion

The new (lower) frequencies generated on 
the leading edge travel a bit slower, so the 
pulse catches up to them.

The new (higher) frequencies generated on 
the trailing edge travel a bit faster, so they 
catch up to the pulse.

Result: the pulse shape 
is stable!  A “solitary 
wave”, or “soliton”



Anomalous dispersion + Kerr effect = soliton

Anomalous dispersion

Kerr



Solitons
Soliton: a localized traveling wave whose intensity 
profile is stablized by the interplay of (linear) anomalous 
dispersion and non-linearity, so that its shape doesn’t 
change as the wave propagates.

Discovered in 1834: John Scott 
Russell observed “solitary 
waves” of water propagating for 
long distances along the Union 
canal in Scotland.

a recreation of his observation, on the 
John Scott Russell Acqueduct, 1995

“…a well-defined heap of water which 
continued its course along the channel 
apparently without change of form or 
diminution of speed.”



Solitons are a solution to the nonlinear 
Schroedinger equation
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Group delay 
dispersion, GDD

Kerr nonlinearity
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The envelope of the 
solution is a pulse: with duration:
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• solution only exists if /D < 0 (requires anomalous dispersion)
• pulse duration is independent of propagation distance!



Solitons in optics
Solitons in fiber optics 
are the basis for many 
telecommunications 
transmission systems.

Dispersion of standard optical fiber

anomalous

Solitons can exist in standard optical fibers 
for wavelengths  > 1310 nm.



When solitons collide

http://kasmana.people.cofc.edu/SOLITONPICS/

A cool and easy-to-understand 
discussion about solitons:

Because of the non-linear 
nature of the equation, 
superposition does not hold 
for solitons.  

But they can still collide with 
each other, and when they 
do, they act like particles!

A soliton collision:

The same collision, 
decomposed:



Consider propagation of an intense pulse in a gas.

(1) (3) 3 (5) 5( ) ( ) ( ) ( ) ...P t E t E t E t     

This treatment assumes |(3)|  |(5)|  |(7)| …

Symmetry: all even orders of  vanish

We would therefore expect each successive high 
harmonic to be weaker than the preceding one.

Counter-example:
Kapteyn and Murnane, Phys. Rev. Lett., 79, 2967 (1997)

neon

helium

Limits to the perturbative approach



How to explain high harmonic generation?
We cannot use a perturbative 
approach, i.e., (n).

We must resort to an atomic 
picture of the dynamics:
1. ionization of an atom
2. acceleration of a free electron
3. impact with the parent ion

If all of the x-ray harmonics are 
in phase (and since there are a 
lot of them!), they could be 
used to generate attosecond
pulses. attosecond physics


